首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Subsurface mass-transport deposits (MTDs) commonly have a chaotic seismic-reflection response. Synthetic seismic-reflection profiles, created from a precise lithological model, are used to interpret reflection character and depositional geometries at multiple frequencies. The lithological model was created from an outcrop of deep-water lithofacies where sandstone deposition was influenced by mass-transport deposit topography. The influence of MTD topography on sandstone distribution should be considered in reservoir characterization and modeling when MTDs underlie the reservoir, especially if the reservoir is thin relative to the scale of the topography. MTD topography up to several tens of meters in both the horizontal and vertical dimensions (relative to local elevation) compartmentalizes significant quantities of sandstone and is not resolved at lower seismic-reflection frequencies. The resolvability of thick (up to 70 m) sandstone packages is hindered when they are encased in MTDs of at least equivalent thickness. Lateral and vertical changes in seismic-reflection character (e.g., amplitude, polarity, geometry) of sandstone packages in the synthetic profiles are due to lithology changes, tuning effects, resolution limits, and depositional geometries, which are corroborated by the lithological model. Similar reflection-character changes are observed in an actual seismic-reflection profile, of comparable scale to the synthetic profiles, from the Gulf of Mexico, which demonstrates similar lithofacies distributions. Synthetic profiles, when constrained by a precise lithological model, are particularly useful analogues for interpretation of lithofacies relationships, and depositional geometries, in complicated depositional environments, such as deep-water slope deposits.  相似文献   

2.
Gravity-driven processes are important agents for transporting sediments downslope into deep-marine environments. The Pliocene to Holocene offshore succession of the Colombian Caribbean margin and its stratigraphic distribution, have been affected by faulting and mud diapirism, and have been characterized using 3D seismic data. Nine stratigraphic intervals were characterized within the study, and are interpreted to consist of a range of seismic geomorphologies, including slumps and debrites. Nine gravity-driven deposits were defined within the study area, interpreted to have been transported to the north and northwest. Slumps display high-amplitude, high continuity, elongated, stratified, lobate and confined morphologies, while debrites have a reflection-free pattern or show discontinuous, low-amplitude and chaotic reflections. Mixed slumps-turbidites-debrites deposits are composed by a succession of laterally and vertically interfingered slumps, debrites and turbidites. These deposits are morphologically lobate and broadly scattered. In addition, erosional features such as basal small scours, megascours, linear scours and rafted blocks were used as kinematic indicators within the gravity-driven deposits. There are several candidates triggering mechanism, including over-steepening of slope (related to high sediment supply or slope tectonism). In the study area, confined slumps and debrites with a main transport direction from south to north have been observed, while transport direction of the mixed slumps-turbidites-debrites was toward northwest. Additionally, the fact that slumps and debrites are found in depocenters between periclines suggests a confined environment of deposition. Finally, mixed slumps-turbidites-debrites are unconfined without evident structural control. We suggest that local intraslope sub-basin margin become over-steepened as a result of mud diapirism in the subsurface. In this situation, the paleobathymetry was sufficient to trap the resultant gravity-driven deposits within the sub-basins, suggesting a local origin. Seismic evidence of BSR (Bottom Simulating Reflector) suggests the presence of gas hydrate in the study area, and is taken as an additional potential mechanism to provide instability of slope and generate gravity-driven deposits.  相似文献   

3.
In order to assess the controlling factors on the evolution of a shelf margin and the timing of sediment transfer to deep waters, a seismic stratigraphic investigation was carried out in the Eocene interval of northern Santos Basin, offshore Brazil. The studied succession configures a complex of prograding slope clinoforms formed in a passive margin and encompasses five seismic facies and their respective depositional settings: shelf-margin deltas/shorefaces, oblique slope clinoforms, sigmoidal slope clinoforms, continental to shelfal deposits and mass-transport deposits. These are stratigraphically arranged as seven depositional sequences recording a total shelf-edge progradation of about 35 km and a progradation rate of 1,75 km/My. Two main types of sequences can be recognized, the first one (type A) being dominated by oblique slope clinoforms and shelf-margin deltas/shorefaces in which shelf-edge trajectories were essentially flat to descending and extensive sandy turbidites were deposited on the foreset to bottomset zones. Sequences of this type are dominated by forced-regressive units deposited during extensive periods of relative sea-level fall. Type B comprises an upper part represented by aggradational shelfal deposits and a lower part composed of mass-transport deposits and high-relief sigmoidal clinoforms with descending shelf-edge trajectory. Steep slump scars deeply cut the shelfal strata and constitutes the boundary between the two intervals observed in type B sequences. Sandy turbidites occur at the same frequency in both forced- and normal-regressive units but are more voluminous within forced-regressive clinoforms associated with shelf-margin deltas/shorefaces. Major slope failures and mass-transport deposits, by the other hand, occurred exclusively in type B sequences during the onset of sea-level fall and their volume are directly related to the thickness of the shelfal sediments formed during the pre-failure normal regressions.  相似文献   

4.
3-D seismic data and wireline log profiles of the Central Depression in the Songliao Basin exhibit four lacustrine mass-transport complexes (MTCs) in the second and the third members of the Upper Cretaceous Nenjiang Formation. The mass-transport complex named MTC-A lies in the north of the Daqing Anticline with an area of approximately 95 km2 and a maximum thickness of 62 m. It consists of five laterally and vertically stacked blocks striking E-W and has a convex-downslope front. The mass-transport complex named MTC-C is located in the south of the Daqing Anticline consisting of seven blocks. This MTC strikes NNE-SSW and has an area of approximately 61.5 km2 and a maximum thickness of 55 m. MTC-B, the mass-transport complex lying in the middle of the Daqing Anticline, consists of three vertically stacked blocks and has a semi-circular outline striking E-W. MTC-B has an area of approximately 24 km2 and a maximum thickness of 92 m. Along the Daqing Anticline from north to south, the three MTCs distribute in lacustrine facies in the NNE direction. The mass-transport complex named MTC-D located in the southeast of the Daqing Anticline has an area of approximately 150 km2 with a maximum thickness of 135 m striking E-W, which is rich in mudstones. MTC-D is characterized by the three-layer architecture vertically consisting of a dragged layer at the bottom, a slumped layer in the middle, and a stable layer at the top. Besides, in the plane view, MTC-D can be divided into three parts according to the sliding distance and stacking pattern of the slip blocks: the detaching area, the stacking area and the drifting area. The MTCs are characterized by thickening upslope and thin-out downslope. Siltstones and very fine sandstones occur in 2–4 beds that are cumulatively 0.8–7 m thick in the upslope and central parts of the MTCs. The edges of the blocks are composed of mudstone. Seismic amplitude slices reveal arcuate or straight ridges on the block surfaces with a spacing density of 4–10 per kilometer and a height ranging from 25 to 40 m. The arcuate ridge paleo-morphology on the MTC surfaces suggests that blocks are slump bodies. The estimated minimum water depth at the time of the MTC emplacement is 30–70 m, and the sliding distance is 2–10 km. From 3-D seismic amplitude slices, no feeding channel connected to the mass-transport complexes is found. Besides, coupled with the continuous ridges on blocks and the clear and flat lateral edges suggest that mass-transport complexes belong to the prodelta slump bodies. Thus, the triggering mechanism of the MTCs may be closely related to earthquakes caused by volcanic activities with the evidence of three cinerite layers shown in the well cores.  相似文献   

5.
Mass-wasting on the Brazilian margin during the Mid-Eocene/Oligocene resulted in the accumulation of recurrent Mass Transport Deposits (MTDs) offshore Espírito Santo, SE Brazil. In this paper, we use three-dimensional seismic data to characterize a succession with stacked MTDs (Abrolhos Formation), and to assess the distribution of undeformed stratigraphic packages (i.e. turbidites) with reservoir potential separating the interpreted MTDs. High-amplitude strata in less deformed areas of MTDs reflect their internal heterogeneity, as well as possible regions with a higher sand content. Separating MTDs, turbiditic intervals reach 100 ms Two-Way Travel Time (TWTT), with thicker areas coincident with the flanks of growing diapirs and areas of the basin where mass-wasting is less apparent. Turbiditic strata laterally grade into, or are eroded by MTDs, with transitional strata between MTDs and turbidites being also influenced by the presence of diapirs. MTDs show average thickness values ranging from 58 to 82 ms TWTT and constitute over 50% of Eocene-Oligocene strata along the basin slope. Low average accumulations of 58 ms TWTT in areas of high confinement imposed by diapirs suggest sediment accumulation upslope, and/or bypass into downslope areas. This character was induced by the high sediment input into the basin associated with coastal erosion and growth of the Abrolhos volcanic plateau. Our results suggest that significant amounts of sediment derive from the northwest, and were accumulated in the middle-slope region. Interpretations of (palaeo)-slope profiles led to the establishment of a model of margin progradation by deposition of MTDs, contrasting with the retrogressive erosional margins commonly associated with these settings.  相似文献   

6.
Abstract

A study was carried out to investigate the simple shear behaviour of a clay from the Israeli continental slope, and to consider the relevance of this behaviour to the stability of the slopes during earthquake conditions. Norweigian simple shear apparatus was modified in order to enable both static and cyclic shearing of undisturbed samples taken from the slope.

Static tests performed on virgin samples and on samples which had undergone extensive cycling indicated similar static strengths, despite development of large cyclic shear strains during cycling. This suggests that the stability of the slopes following completion of an earthquake would not be significantly less than it was before the onset of the earthquake; the critical period for instability would be during the earthquake.

The results of the cyclic tests indicated that shear strain development accelerated once the cyclic strain reached the order of 3%. A failure criterion for the clay, relevant to cyclic loading conditions, was developed, based on this strain value, and was incorporated into a cumulative damage type of analysis for earthquake loading, using Miner's rule. This analysis was used to develop a computer program for the stability analysis of the continental slope during any given earthquake.  相似文献   

7.
文章利用三维地震数据揭示了南海白云凹陷东南部两种不同类型的块体搬运沉积体系的内部反射特征、外部形态及运动指示标志, 并且探讨了其成因机制。结果表明, 自晚中新世以来研究区共发育4种地震相: 弱振幅水平状连续地震相、强振幅波状连续地震相、弱振幅半透明杂乱反射地震相和中-强振幅丘状连续反射地震相。通过地震相分析可知, 研究区自晚中新世以来共发育两种不同类型的块体搬运沉积体系: 1) 多期块体搬运沉积复合体, 主要由弱振幅半透明杂乱反射地震相组成, 边界模糊; 2) 单期块体搬运沉积体, 主要由弱振幅半透明杂乱反射地震相和中-强振幅丘状连续反射地震相组成, 边界清晰明显。另外, 研究结果发现高沉积速率和地震活动使得研究区的块体搬运沉积体系表现出内部运动指示特征发育程度低的特征, 而东沙构造活动导致该块体搬运沉积体系具有频发性。  相似文献   

8.
Host sediments may exert a significant influence on the formation of gas hydrate reservoirs. However, this issue has been largely neglected in the literature. In this study, we investigated the types, characteristics and the depositional model of the fine-grained gas hydrate-bearing sediments in the northeastern margin of the South China Sea by integrating core visual observations and logging-while-drilling downhole logs. The gas hydrate-bearing sediments consist dominantly of muddy sediments formed in the inter-canyon ridges of the upper continental slope, including hemipelagites, debrites (mud with breccia) and fine-grained turbidites. Cold-seep carbonates and associated slumping talus, muddy breccia debrites, as well as coarse-grained turbidites, may locally occur. Four classes and six sub-classes of log facies were defined by cluster analysis. Core-log correlation indicates that gas hydrates are majorly distributed in fine-grained sediments with high resistivity and low acoustic transit time (AC) log responses, which are easily differentiated from the fine-grained background sediments of high gamma-ray (GR), high AC, and low resistivity log values, and the seep carbonates characterized by low GR, high resistivity, high density, low AC and low porosity log values. The primary host sediments consist of fine-grained hemipelagic sediments formed by deposition from the nepheloid layers of river material and from the microfossils in seawater column. Most of the hemipelagic sediments, however, might have been extensively modified by slumping and associated gravity flow processes and were re-deposited in the forms of debrites and turbidites. Locally developed seep carbonates associated with gas hydrate dissociation and leakage provided additional sources for the gravity flow sediments.  相似文献   

9.
Seismic reflection profiles and long- and medium-range sidescan sonar were used to investigate a salt diapir complex and area of slope instability near the base of the Continental Slope off North Carolina. Within the area of investigation three diapirs are bounded on their upslope side by a scarp 60 m high and 50 km long. The slope above the scarp is characterized by a series of shallow rotational normal faults. The bottom below the scarp is furrowed by slide tracks, which were probably carved by large blocks that broke off the scarp face and slid downslope leaving rubble and scree lobes.Extensive slumping in this area appears to be a result of uplift and faulting associated with salt intrusion, which has fractured and oversteepened the slope leading to instability and failure. Sharply defined slide tracks suggest that slope failure above the breached diapir complex is a continuing process, in contrast to much of the surrounding slope area where few instability features were observed.  相似文献   

10.
对从南海东沙群岛近海陆坡(水深约500-3100m)采集到的二维地震剖面提取地形数据后进行统计学分析,结合地震相研究,发现研究区陆坡形态的变化与火成岩体,以及与火成岩体相关联的沉积过程存在着紧密地联系。共识别出了3种陆坡类型:(a)发育多个火成岩体的粗糙、陡的陆坡(类型1);(b)发育单个火成岩体的较为光滑、平缓的陆坡(类型2);(c)无火成岩体发育的光滑并且平缓的陆坡(类型3)。这些火成岩体形成于南海海底扩张之后,具有较为复杂的形态,在地震剖面上多表现为强振幅的杂乱反射。在类型1中,多个火成岩体将陆坡分为上部的两个或者多个次凹和下部的一个主凹,这些凹陷可以同时被沿坡流带来的沉积物充填。然而在类型2中,单个火成岩体将陆坡为一个上部的次凹和一个下部的主凹,只有当上部的次凹被沉积物填满后,沉积物才可以开始充填主凹。类型3为发育斜坡沉积的正常陆坡。研究区现今的陆坡形态是由于火成岩体的侵入和与火成岩体相关的沉积过程所共同导致的陆坡形态调整的结果。三种陆坡类型现今陆坡形态间的差异指示不同的沉积条件和陆坡形态调整。  相似文献   

11.
Triple mass-transport deposits(MTDs) with areas of 625, 494 and 902 km2, respectively, have been identified on the north slope of the Xisha Trough, northern South China Sea margin. Based on high-resolution seismic reflection data and multi-beam bathymetric data, the Quaternary MTDs are characterized by typical geometric shapes and internal structures. Results of slope analysis showed that they are developed in a steep slope ranging from 5° to 35°. The head wall scarps of the MTDs arrived to 50 km in length(from headwall to termination). Their inner structures include well developed basal shear surface, growth faults, stepping lateral scarps, erosion grooves, and frontal thrust deformation. From seismic images, the central deepwater channel system of the Xisha Trough has been filled by interbedded channel-levee deposits and thick MTDs. Therefore, we inferred that the MTDs in the deepwater channel system could be dominated by far-travelled slope failure deposits even though there are local collapses of the trough walls. And then, we drew the two-dimensional process model and threedimensional structure model diagram of the MTDs. Combined with the regional geological setting and previous studies, we discussed the trigger mechanisms of the triple MTDs.  相似文献   

12.
A long-range side-scan sonar (GLORIA) survey of the entire West Iberian slope and rise has provided the first overview of the interrelationship between structure and sedimentation patterns on a continental margin. The results emphasize the importance of slope-following contour currents as a depositional mechanism in fashioning this continental rise. Terrigenous sediments transported down-canyon by-pass the rise which does not consist of a series of coalescing fans. The sedimentation patterns identified on the sonographs can be interpreted in terms of facies models and caution must be exercised against over-emphasis of downslope processes in models for the construction of lower slopes and rises.  相似文献   

13.
The structural analysis of regional 3D seismic data shows evidence of long-term tectonic inheritance in Campos Basin, offshore Brazil. Main Lower Cretaceous rift structures controlled themselves by strike-slip deformation belts related to Proterozoic orogenic events, have been episodically reactivated during the divergent margin phase of Campos Basin, from the Albian to the Miocene. Balanced cross-sections of major salt structures indicate that such tectonic reactivations have been controlling thin-skinned salt tectonics, triggering pulses of gravitational gliding above the Aptian salt detachment. Additionally, major basin features like the Neogene progradation front and the salt tectonic domains are constrained by the main Proterozoic orogenic trends of the Ribeira Belt (NE–SW) and the Vitória-Colatina Belt (NNW–SSE). As the basement involved structures observed in Campos Basin can be attributed to general geodynamic processes, it is suggested that basement tectonic reactivation can be as relevant as isostatic adjustment and detached thin-skinned tectonics on the structural evolution of divergent margin settings.  相似文献   

14.
Eastward migration of the Caribbean plate relative to the South American plate has caused lithospheric loading along the northern margin of South America, which is recorded by an 1100-km-long foreland basin which is oldest in the west (Maracaibo basin, 65-55 Ma) and youngest in the east (Columbus basin, eastern offshore Trinidad, 15-0 Ma). The Orinoco River has been the primary source of sediment for the basin since early Miocene. We have integrated approximately 775 km of deep-penetration 2D seismic lines acquired in the area of eastern offshore Trinidad as part of the 2004 “Broadband Ocean-Land Investigations of Venezuela and the Antilles arc Region” (BOLIVAR) project, 8000 km2 of shallow industry 3D seismic data, and published industry well data from offshore eastern Trinidad. Active mud diapirism in the Columbus basin is widespread and is related to overthrusting and tectono-sedimentary loading of upper Miocene-lower Pliocene age mud. Analysis of the shallow 3D seismic data reveals the presence of extensive gravity-flow depositional elements on the Columbus basin slope and the deepwater area. These stacked gravity-flow deposits are characterized by mass-transport deposits at the base, turbidite frontal-splay deposits, leveed-channel deposits, and capped by fine-grained condensed-section deposits. Exploration targets in the deepwater area are located towards the center of the Columbus basin, where northeast-trending fault-propagation folds are important Plio-Pleistocene trap-forming elements. Deep basin wells drilled in recent years have proven that turbidites were transported into the deepwater Columbus basin during the Plio-Pleistocene. Analysis of these well results suggests that a deeper oil charge is present within the deepwater Columbus basin area. The primary uncertainty for this variable hydrocarbon system is whether fault or diapiric pathways connect or divert the petroleum charge at depth with shallower reservoir rocks.  相似文献   

15.
The Pelotas Basin of Brazil and Uruguay represents a frontier basin with under-explored hydrocarbon potential. Although oil and gas accumulations have yet to be identified, only 21 exploratory wells have been drilled in an area of more than 330,000 km2, 20 of which are located in the Brazilian portion of the basin. A detailed study of the petroleum system of offshore Uruguay has strong potential to contribute to a better characterization of the capacity of the basin to generate and accumulate hydrocarbons. Three stages have previously been recognized during the evolution of Pelotas basin: (1) a prerift phase which preserved Paleozoic and Mesozoic units of the Paraná Basin; (2) an Early Cretaceous volcano-sedimentary synrift phase; and (3) a Cretaceous to Cenozoic postrift phase deposited during the passive margin stage. In this study, we use sequence stratigraphy methodology to interpret 2D multichannel seismic sections of the southern segment of the Pelotas Basin in the Uruguayan Atlantic margin. This analysis allows us to identify depositional sequences, systems tracts and the distribution of the main elements of the potential petroleum systems. Following our analysis, we propose six speculative petroleum systems (SPS) in the Pelotas Basin. The first SPS is related to the prerift phase and is represented by a Lower Permian restricted marine source rock and reservoirs related to Permian to Upper Jurassic aeolian and fluvial sandstones. The second SPS corresponds to the synrift phase and is constituted by a Barremian lacustrine source rock with reservoirs of alluvial/fluvial sandstones of the same age. The other four proposed SPS are associated with the postrift phase, represented by marine source rocks related to Aptian-Albian, Cenomanian-Turonian and Paleocene transgressions, all of which are identified in the region and interpreted in seismic lines from Uruguay. These postrift SPS have predominantly siliciclastic reservoirs represented by Early Cretaceous aeolian sandstones and Cretaceous to Cenozoic deltaic sandstones and turbidites.  相似文献   

16.
Sediments of the continental slope are commonly bioturbated by endo- and epibenthic organisms, particularly in and around submarine canyons and channels. This study reviews the architecture and depositional environments associated with canyons and channels on the continental slope, and assesses the key physical and chemical conditions encountered in and around these conduits. Hydrodynamic energy, concentration and quality of organic carbon, dissolved oxygen concentration and sedimentation rate are identified as key controls on the composition of benthic ecosystems in slope environments. Submarine canyons and channels focus a variety of turbid and clear-water currents, all of which serve to increase the concentration of oxygen, labile organic carbon and other nutrients, which tend to elevate the abundance and biodiversity in the seafloor sediments, compared with those of the surrounding slope. Ancient slope channel and canyon systems reflect some of the variation in ichnological assemblages that is seen in modern analogues, although processes of erosion and trace fossil preservation mean that the benthic environment is often incompletely preserved in the ancient record. By integrating current understanding of sedimentology, oceanography, biology and ichnology of slope environments it is possible to provide a first order summary of the inter-relationships between ichnology and depositional environments on the continental slope. The combination of these data has the potential to improve our understanding of changes in deep marine benthic ecosystems through geological time, and to further the use of ichnology in assessing hydrocarbon reservoir presence, quality and performance from bioturbated slope, canyon and channel-levee hydrocarbon reservoirs.  相似文献   

17.
The distribution of megabenthic epifauna (invertebrates) in the Balearic Basin (western Mediterranean) has been analyzed at depths between 427 and 2265 m after compiling samplings performed in 1985–1992 and 2007–2008 with an OTSB-14 bottom trawl. 84 epibenthic taxa of invertebrates (excluded decapod crustaceans) were collected. Epibenthic assemblages were organized in five groups (n-MDS analyses) as a function of increasing depth: upper slope assemblage, U, hauls between 427 and 660 m; middle slope assemblages M1 and M2, hauls between 663–876 m and 864–1412 m, respectively; lower slope assemblages L1 and L2, hauls between 1488–1789 m and 1798–2265 m, respectively). We found significant differences in assemblage composition between all depth-adjacent pairs of groups. Trends in the distribution of biomass vs. depth and within assemblages varied when hauls taken over insular were compared to those over mainland slopes. Over insular slopes we found (n-MDS) only four distinct depth assemblages, with significant differences between all depth-adjacent group pairs, except between L1 and L2. Over the mainland slope, two peaks of biomass situated at U (427–660 m) and at L1 (1488–1789 m) were clearly identified, attributable to the echinoid Brissopsis lyrifera and holothurian Molpadia musculus at U and to the synallactid holothurian Mesothuria intestinalis at L1. The distribution of biomass vs. depth on insular slopes did not follow this pattern, showing no significant biomass peak below 1000 m and a total biomass an order of magnitude lower than adjacent to the mainland. After compiling available environmental data over the mainland slope off Barcelona, we found coincidence between the peak biomass of Mesothuria intestinalis and: i) a significant increase of labile OM (%OrgC, C/N, hydrolizable aminoacids–EHAA, and the EHAA/THAA-total hydrolizable aminoacids-ratio) over 1600 m; and ii) an increase of turbidity and T at 1500–1600 m in February 2008. We suggest that such OM inputs must likely be associated to the formation of nepheloid layers close to submarine canyons, probably associated with oceanographic processes in deep water masses in the area. This would explain why aggregations of M. intestinalis were linked to the mainland part of the Balearic basin, with highest densities located south of canyons. If hotspots of biomass as cited here for M. intestinalis are regulated by factors such as river inputs, both natural climatic changes (e.g. changes in rainfall regimes) and human impact (e.g. river damming) may affect deep-Mediterranean communities below 1000 m.  相似文献   

18.
Six submarine slope canyons in an area of the northwestern Mediterranean, offshore from the Ebro River and Delta, were surveyed with bathymetric swathmapping (SeaBeam) and mid-range side-looking sonar (SeaMARC I). All of the canyons have slightly winding paths with concave-upwards gradients that are relatively steep shallower than 1,200 m. Two major types of canyons are identified on the basis of their morphologic character at the base of the slope; Type-I canyons lead to an unchannelled base-of-slope deposit and Type-II canyons are continuous with channel-levee systems that cross the rise.Four Type-I canyons were surveyed in the area. Two of these are broad, U-shaped, steep (average gradients of 1:14), do not indent the shelf, and terminate downslope at debris-flow deposits. These two canyons, the most northern in the area, have rounded heads with extensive gullies separated by knife-edge ridges. Relief of the canyon walls is about equal on both sides of the canyons, although the right-hand walls (looking downslope) are generally steeper. The other two Type-I canyons in the area are similar in that they do not indent the shelf, but they are much smaller and shallower and coalesce before terminating in the base-of-slope region. The two Type-II canyons that feed leveed-channels are U-shaped with flatter floors, longer profiles and gentler gradients than Type-I canyons. They are closer to the Valencia Valley and have relatively small cross-sectional areas.We propose a four-stage evolutionary sequence to explain the development of the canyons observed in this section on the prograding Ebro margin. During the initial stage, slumping and erosion on the slope creates a network of small gullies. During the next stage, headward growth of one (or more) gully leads to a major indentation of the shelf. This is the critical factor for developing a channel that will incise the slope and provide a major conduit for moving sediment to the basin. Stage 3 is characterized by the development of a continuous channel accompanied by levee growth across the lobe. In the final stage, the channel-levee system becomes inactive either through destruction by mass wasting, infilling of the channel, or loss of the major sediment source.  相似文献   

19.
Abstract

A giant submarine slump, encompassing a 91‐km by 26‐km block, occurring on the continental slope offshore Iquique, Chile, was identified during a SeaMARC II survey. Utilizing SeaMARC II side‐scan imagery, bathymetry, and seismic reflection data, five morphostructural zones of the slump were identified: the fissured zone, scar zone, tensional depression, central block, and front zone. The fissured zone was developed on the crown of the slump; the scar zone is characterized by scars with the crescent‐shaped slip surfaces and throws ranging from 200 m to 50 m. The tensional depression zone is marked by an area voided by mass slumping, while the central block morphology was formed by uplift. The front zone is comprised of both compressional and tensional subzones. The compressional subzone is characterized by a relative topographic low, on the middle slope, whereas the extensional subzone is characterized by a convex pattern of alternated ridges and hollows, which may represent the debris of the slump on the lower slope. The formation of the slump was strongly influenced by the subduction of the Nazca plate beneath the Chile continental margin, which resulted in the subsidence of the continental slope with a resultant increase in the slope gradient and pore‐water pressure in the sedimentary layers. Slump formation was further facilitated by the development of a complex fault system associated with the subduction and by the triggering effect of earthquakes in the area.  相似文献   

20.
地貌形态对海底管线稳定性影响的研究   总被引:1,自引:1,他引:1       下载免费PDF全文
以东方1-1平台海底管线路由区为例,多次对该路由区多波束测深、旁扫声纳、浅地层剖面、土质、海流及海底过程的原位监测调查数据和收集的波浪、海流等相关资料进行分析,得出,在水动力条件的作用下,海底会产生沉积物的侵蚀、搬运和沉积等过程,这些过程对海底地貌有重要的改造作用,会对管线稳定性具有重大影响。提出管线铺设需预先了解水下环境的动力条件的规律,识别沿拟定管线路由区可能存在的海床运动和波流冲刷的地质灾害,找到地貌形态对海底管线稳定性影响的原因。进而提出根据不同情况的解决对策,有效地减少地貌形态对海底管线稳定性影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号