首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To improve the understanding of the distribution of reservoir properties along carbonate platform margins, the connection between facies, sequence stratigraphy, and early diagenesis of discontinuities along the Bathonian prograding oolitic wedge of the northeastern Aquitaine platform was investigated. Eight facies are distributed along a 50 km-outcropping transect in (1) toe-of-slope, (2) infralittoral prograding oolitic wedge, (3) platform margin (shoal), (4) open marine platform interior, (5) foreshore, and (6) terrestrial settings. The transition from shallow platform to toe-of-slope facies is marked in the field by clinoforms hundred of meters long. Carbonate production was confined to the shallow platform but carbonates were exported basinward toward the breakpoint where they cascaded down a 20–25° slope. Ooid to intraclast grainstones to rudstones pass into alternating marl-limestone deposits at an estimated paleodepth of 40–75 m. Three sea-level falls of about 10 m caused the formation of discontinuities corresponding to sequence boundaries. Along these discontinuities, erosional marine hardgrounds formed in a high-hydrodynamic environment at a water depth of less than 10 m, displaying isopachous fibrous cements and meniscus-type cements. The cements pass landward into meniscus and microstalactitic forms along the same discontinuities, which are characteristic of subaerial exposure. During the deposition of transgressive systems tracts, carbonate accumulation remained located mostly on the shallow platform. Energy level increased and carbonates were exported during the deposition of highstand systems tracts forming the infralittoral prograding oolitic wedge. During the deposition of lowstand systems tracts, carbonate production fell to near zero and intraclast strata, derived from the erosion of hardgrounds on the shallow platform, prograded basinward. Early diagenetic cements are related exclusively to discontinuities that are not found within the prograding wedge because of the continuous high sedimentation rate under lower hydrodynamic conditions. This absence of early cementation within the infralittoral prograding oolitic wedge was conducive to porosity conservation, making such features good targets for carbonate reservoir exploration. This study proposes a novel sequence stratigraphy model for oolitic platform wedges, including facies and early diagenesis features.  相似文献   

2.
Progress in understanding the structural evolution of the Pannonian Basin is reported. This has been driven by the application of seismic stratigraphy constrained by magnetostratigraphic data and the recent release of a great amount of hydrocarbon exploration data. This has led to a redefinition and better understanding of the syn-rift period and style of rifting. In addition, a complex structural evolution history during the post-rift phase has been recognized. Two compressive events are defined: one in the early stage and another in the late stage of evolution. The importance of these findings for hydrocarbon exploration includes an improved knowledge of the timing of trap formations and a possible explanation for remarkably variable reservoir pressures in pools of the Great Hungarian Plain.  相似文献   

3.
It is usually very difficult to identify and quantify the relative influence of tectonics, eustasy and climate on carbonate system evolution from sedimentary records. In order to improve our understanding of these mechanisms, we have traced for the first time, the evolution of the eastern Paris Basin platform throughout the entire Jurassic period. This carbonate platform underwent eight successive growth and demise phases, with different depositional profiles ranging from ramps to flat-topped geometries. The eight carbonate growth periods are compared with the standard sea-level curves, local tectonic regimes and recently published oxygen-isotope and/or clay mineralogy databases. Prograding heterozoan facies along ramp profiles mark periods dominated by second-order eustatic sea-level rise, relatively cool sea surface temperatures, and mesotrophic and humid conditions (Hettangian, Pliensbachian, late Oxfordian, Tithonian). During these periods, variable detrital contents in the sedimentary succession hampered the efficiency of shallow-marine carbonate factories. Higher sea surface temperatures, oligotrophic and humid conditions associated with either eustatic sea-level rise or very high local subsidence occurred during the early Bajocian and the mid-Oxfordian. These seawater properties seem to have favoured the aggradation of scleractinian corals forming dome-shaped bioherm buildups. An oolitic and lime-mud carbonate system, deposited during the Bathonian second-order eustatic sea-level fall, is characterised by miliolid-rich micritic facies on a rimmed-ramp under stable, cooler and drier conditions. The second-order maximum flooding associated with a sea surface temperature decline and/or a seawater eutrophication caused at least five carbonate demise periods (i.e. Toarcian, earliest late Bajocian, Callovian/Oxfordian transition, earliest late Oxfordian and Kimmeridgian).  相似文献   

4.
Our analysis of approximately 40,000 km of multichannel 2-D seismic data, reef oil-field seismic data, and data from several boreholes led to the identification of two areas of reef carbonate reservoirs in deepwater areas (water depth ≥ 500 m) of the Qiongdongnan Basin (QDNB), northern South China Sea. High-resolution sequence stratigraphic analysis revealed that the transgressive and highstand system tracts of the mid-Miocene Meishan Formation in the Beijiao and Ledong–Lingshui Depressions developed reef carbonates. The seismic features of the reef carbonates in these two areas include chaotic bedding, intermittent internal reflections, chaotic or blank reflections, mounded reflections, and apparent amplitude anomalies, similar to the seismic characteristics of the LH11-1 reef reservoir in the Dongsha Uplift and Island Reef of the Salawati Basin, Indonesia, which house large oil fields. The impedance values of reefs in the Beijiao and Ledong–Lingshui Depressions are 8000–9000 g/cc × m/s. Impedance sections reveal that the impedance of the LH11-1 reef reservoir in the northern South China Sea is 8000–10000 g/cc × m/s, whereas that of pure limestone in BD23-1-1 is >10000 g/cc × m/s. The mid-Miocene paleogeography of the Beijiao Depression was dominated by offshore and neritic environments, with only part of the southern Beijiao uplift emergent at that time. The input of terrigenous sediments was relatively minor in this area, meaning that terrigenous source areas were insignificant in terms of the Beijiao Depression; reef carbonates were probably widely distributed throughout the depression, as with the Ledong–Lingshui Depression. The combined geological and geophysical data indicate that shelf margin atolls were well developed in the Beijiao Depression, as in the Ledong–Lingshui Depression where small-scale patch or pinnacle reefs developed. These reef carbonates are promising reservoirs, representing important targets for deepwater hydrocarbon exploration.  相似文献   

5.
The Eocene Sant Llorenç del Munt fan-delta complex developed in the Ebro foreland basin. The stratigraphy of this succession, about 1000 m thick, has been described as made up of several transgressive–regressive composite sequences, each composed of a stack of fundamental sequences, in turn made up of a transgressive systems tract and an overlying regressive systems tract. Systems tracts are composed of several facies belts: proximal alluvial fan, distal alluvial fan, fan-delta front, carbonate platform, and fan-delta slope and prodelta.  相似文献   

6.
The tectonic evolution of the Vienna Basin overlying the Alpine-Carpathian fold and thrust belt includes two stages of distinct basin subsidence and deformation. The earlier phase contemporaneous with thrusting of the Alpine-Carpathian floor thrust is related to the formation of a wedge-top basin (“piggy-back”), which was connected to the evolving foreland basin (Lower Miocene; c. 18.5–16 Ma). This stage is followed by the formation of a pull-apart basin (Middle to Upper Miocene; c. 16–8 Ma). Sediments of the latter unconformably overly wedge-top basin strata and protected them against erosion.  相似文献   

7.
Ground Penetrating Radar (GPR) surveys were conducted on Mesoproterozoic eolian, fluvial, deltaic, estuarine, and shallow marine successions in the Chapada Diamantina Basin. The subsurface continuation of facies and facies architecture exposed on road cuts was imaged using the GPR signal of a 400-MHz antenna penetrating 8 m in depth, even with mudstone intervals. Reflection patterns in the GPR profiles that were compared with photo mosaics of outcrops and supporting data from vertical sections and gamma ray logs, reveal sedimentary, stratigraphic, and structural features, such as sedimentary structures, the external geometry of architectural elements, stratigraphic surfaces, folds and tension gashes. The patterns most likely reflect the response from low-weathered, non-porous muscovite-illite-rich mudstone and quartzarenite sandstone in which authigenic and detrital illite and sericite are prevalent clay minerals.Measured vertical sections and radar stratigraphy indicate high-frequency cyclic successions of estuarine and shoreface intervals are present at the base of the Tombador Formation. The shoreface intervals are composed of heterolithic strata and offshore tidal bars deposits. The heterolithic shoreface strata exhibit tabular geometry that can be easily identified throughout the outcrop and in the subsurface. Such intervals represent the end of high-frequency transgressive cycles, and hence they are potential candidates for including the maximum flooding surfaces and for defining genetic sequences. Therefore, GPR proved to be an independent method for studying facies architecture and the establishment of a high-resolution stratigraphic framework even in the Precambrian.  相似文献   

8.
The evolution of large-scale paleo-uplifts within sedimentary basins controls the sedimentary provenance, depositional systems and hydrocarbon distributions. This study aims to unravel changes in paleo-geomorphology, interpret sedimentary sequence evolution, and investigate favourable reservoir types and the hydrocarbon distribution during the buried stage of a long-term eroded paleo-uplift, taking the Lower Cretaceous Qingshuihe Formation (K1q) in the Junggar Basin as an example. These research topics have rarely been studied or are poorly understood. This study integrates current drilling production data with outcrop and core analyses, drilling well logs, 3D seismic data interpretations, grading data, physical property comparisons and identified hydrocarbon distributions.After more than 20 million years of differential river erosion and weathering in arid conditions, the large-scale Chemo paleo-uplift within the hinterland area of the basin formed a distinctive valley–monadnock paleo-geomorphology prior to the deposition of K1q. Since the Early Cretaceous, tectonic subsidence and humid conditions have caused the base level (lake level) to rise, leading to backfilling of valleys and burial processes. Two systems tracts in the target strata of K1q, consisting of distinctive depositional systems, can be identified: (1) a lowstand systems tract (LST), which is confined within incised valleys and is mainly composed of gravelly braided rivers and rarely occurring debris flows and (2) an extensive transgressive systems tract (TST), which developed into an almost flat landform and consists of braided river delta to lacustrine depositional systems. Overall, the physical properties of braided river reservoirs in the LST are better than those of the braided river delta reservoirs in the TST. However, the inhomogeneous distributions of carbonate cements cause differences in the physical properties of conglomerate reservoirs in the LST. However, for sandstones in both the LST and TST, coarser grain sizes and better sorting result in better physical properties. Altogether, four types of reservoir can be identified in the study area: Jurassic inner monadnock reservoirs, K1q LST stratigraphic onlap reservoirs, LST structural reservoirs and TST structural reservoirs.  相似文献   

9.
In a broader application of sequence stratigraphic concept to a tectonically active margin setting, this study presents a sequence model that considers all three controls on sequence development (i.e. eustasy, tectonic movement and sediment supply) as independent variables. The model introduces six sequence types (A to F) including type 1 and type 2 sequences defined in the original Exxon scheme. Each sequence shows a variety in number and stacking pattern of its constituent parasequence sets reflecting combined effects of accommodation change and sediment supply. This model is applied to a seismic sequence analysis of the shelf–slope system (middle to upper Miocene) in the southwestern margin of Ulleung Basin which has experienced significant crustal deformation during the Tertiary back-arc opening and subsequent closing of the East Sea (Sea of Japan). The model application delineates four sequence types whose development is closely associated with the tectonic evolution of the Ulleung Basin margin. During the back-arc opening (early to middle Miocene), type A and B sequences were emplaced as a result of steady creation of accommodation space due to a rapid subsidence combined with a tectonic-controlled high to moderate rate of sediment supply. The sequences associated with the extensional tectonism are characterized by active progradation and aggradation without forced regressive phases. In the initiation stage of back-arc closure (middle to late Miocene), subsidence rates were significantly reduced because of a widespread contractional deformation, while subaerial erosion of the uplifted thrust belt resulted in an increase in sedimentation rate. As a result, steady prograding type-E sequences were formed by alternating normal and forced regressions. During the quiescent phase of back-arc closure in the late Miocene, rise-dominant fluctuating relative sea-level change and moderate to low sediment supply gave rise to type-F sequences (similar to type-1 sequences of the Exxon group) reflecting a major control of eustatic sea-level change.  相似文献   

10.
Seismic stratigraphic and structural analyses of the northwest Phu Khanh Basin, offshore Central Vietnam, based on 2-D seismic data, indicate that the initial rifting began during the latest Cretaceous? or Palaeogene controlled by left-lateral transtension along the East Vietnam Boundary Fault Zone (EVBFZ) and northwest–southeast directed extension east of the EVBFZ. Rifting stopped due to transpression during middle Oligocene times but resumed by left-lateral transtension during the Late Oligocene. Thick sequences of lacustrine and alluvial sediments were deposited during the Palaeogene rift periods. The Late Oligocene rifting ended due to inversion, triggered by right-lateral wrenching near the Palaeogene–Neogene boundary. Following the onset of this inversion regional uplift and volcanism took place in the southern half of the study area and contemporaneous subsidence and transgression took place farther north, leading to widespread carbonate deposition. As the right-lateral wrenching decreased during the early Neogene, thermal subsidence and siliciclastic sedimentation became dominant, resulting in the buildup and southward propagation of the shelf slope. Sediment accumulation and subsidence rates increased after the Middle Miocene times due to eastward tilting of Central Vietnam and the adjacent offshore area.  相似文献   

11.
Over the past several years, a number of hydrocarbon reservoirs have been discovered in the deepwater area of Qiongdongnan Basin, northwestern South China Sea. These oil/gas fields demonstrate that the...  相似文献   

12.
Sedimentary heterogeneities are ubiquitous in nature and occur over a range of scales from core, reservoir to basin scales. They may thus exert significant influences on hydrocarbon generation, migration and accumulation. The sedimentary heterogeneities of the Permian Shanxi Formation in the Ordos Basin, China were modelled using Sedsim, a stratigraphic forward modelling program. The simulation results were then used to construct a 3D petroleum system model using PetroMod. The effects of sedimentary heterogeneities on hydrocarbon accumulations were evaluated by comparing the integrated Sedsim-PetroMod model with the classic 3D basin model. The Sedsim simulation shows that considerable sedimentary heterogeneities are present within the Shanxi Formation, as a result of the interplay of the initial topography, tectonic subsidence, base level change and sediment inputs. A variety of lithologies were developed both laterally and vertically within the Shanxi Formation at kilometre and metre scales, respectively, with mudstones mainly developed in the depositional centre, while sandstones developed in the southern and northern margin areas. A typical source-ward retrogradation is well developed within the Lower Shanxi Formation.A base-case classic 3D basin model was constructed to quantify the Permian petroleum system in the Ordos Basin. The geological and thermal models were calibrated using Vr and borehole temperature data. The source rocks of the Upper Paleozoic became mature (Ro > 0.5%) and high mature (Ro > 1.2%) in the late Triassic and late Jurassic, respectively, in the central and southern areas. During the Early Cretaceous, a tectonically induced geothermal event occurred in the southern Ordos Basin. This caused the source rocks to reach over maturity (Ro > 2.0%) quite rapidly in the early Late Cretaceous in the central and southern areas. All the source rock transformation ratios (TR) at present are greater than 70% in the P1 coal and P1 mudstone layers with TR values approaching 100% in the central and southern areas. The transformation ratios of the P1 limestone are close to 100% over the entire interval.In the base-case model, a large amount of hydrocarbons appear to have been expelled and migrated into the Shanxi Formation, but only a minor amount was accumulated to form reservoirs. In the model, the Shanxi Formation sandstone layer was set to be homogeneous vertically and there was no regional seal rocks present at the top of the Shanxi Formation. Therefore hydrocarbons could not be trapped effectively with only minor accumulations in some local structural highs where hydrocarbons are trapped both at the top and in the up-dip direction by the adjacent mudstone facies. In contrast, the integrated Sedsim-PetroMod model takes into account of the internal lithological and sedimentary facies heterogeneities within the Shanxi Formation, forming complex contiguous sandstone-mudstone stacking patterns. Hydrocarbons were found to have accumulated in multiple intervals of lithological traps within the Shanxi Formation. The results indicate that lithological distinctions, controlled by sedimentary heterogeneities in three dimensions can provide effective sealing in both the top and up-dip directions for hydrocarbon accumulations, with gas being mainly accumulated near the depocentre where lithological traps usually formed due to frequent oscillations of the lake level.  相似文献   

13.
Eight lacustrine Type I kerogen samples from the Songliao Basin were pyrolyzed using the Rock-Eval equipment, and parallel first-order reaction models including the model with a single frequency factor and a discrete distribution of activation energies (SFF model) and the model with multiple frequency factors and a discrete distribution of activation energies (MFF model) were adopted to analyze kinetic characteristics of hydrocarbon generation of the Type I kerogen samples. The results show that the MFF and SFF models can satisfactory simulate hydrocarbon generation under laboratory conditions and the Type I kerogen shows relatively concentrated activation energy distributions (activation energies of MFF model range from 190 kJ/mol to 250 kJ/mol, activation energies of SFF model range from 220 kJ/mol to 240 kJ/mol), which indicates a homogeneous chemical bond structure of the Type I kerogen. The hydrocarbon generated curves from Type I kerogen were calculated by using the two models with a linear heating rate (3.3 K/Ma). It indicates that the hydrocarbon generation potentials (reaction fractions) are underestimated by using the SFF model during the kerogen thermal degradation for the components with chemical bond of lower and higher activation energies, while this problem can be avoided by using the MFF model. The calculated temperatures for 50% transformation ratio (TR) of all samples differ by as much as 20 °C. For the SFF model, the hydrocarbon generation curve obtained by using the weighted averaged kinetic parameters and the SFF model almost includes every curve calculated by using its own kinetic parameters. While the curve obtained by using the weighted averaged kinetic parameters and the MFF model cannot include every curve for all samples, it lies at the position of the averaged curve of all samples. The application of the MFF model in Songliao Basin shows that if TR 10% is taken as the onset of hydrocarbon generation, the threshold depth of hydrocarbon generation is about 1700 m, which is consistent with other geochemical parameters, such as S1/TOC, S1/(S1 + S2) and HC/TOC.  相似文献   

14.
Two depocentres, >4200 m and >3200 m thick, have been recognized in the Mesohellenic piggy-back basin of middle Eocene to middle Miocene age, where submarine fans have accumulated unconformably over an ophiolite complex. The hydrocarbon potential is indicated by the presence of kerogen types II/III with minor amounts of type I; the evidence is mostly for wet gas and gas, with minor oil. Source rocks are the middle Eocene to lower Oligocene Krania and Eptachori formations, of up to 2000 m total thickness, reaching maturation during the early Miocene. The source rocks consist of outer fan and basin plain deposits. They are conformably overlain by the lower member (late Oligocene) of the up to 2600 m thick Pentalophos Formation, which consists mostly of thick submarine sandstone lobes. Possible stratigraphically trapped reservoirs include the lower member of the Pentalophos Formation, which overlies source rocks, as well as limestones tectonically intercalated within the ophiolite complex, underlying the source rocks. Traps may have formed also on the western side of an internal thrust (Theotokos Thrust), which influenced the evolution of the depocentres.  相似文献   

15.
The Eocene Niubao Formation of the Lunpola Basin, a large Cenozoic intermontane basin in central Tibet, is an important potential hydrocarbon source and reservoir unit. It represents ∼20 Myr of lacustrine sedimentation in a half-graben with a sharply fault-bounded northern margin and a low-angle flexural southern margin, resulting in a highly asymmetric distribution of depositional facies and sediment thicknesses along the N-S axis of the basin. An integrated investigation of well-logs, seismic data, cores and outcrops revealed three third-order sequences (SQ1 to SQ3), each representing a cycle of rising and falling lake levels yielding lowstand, transgressive, and highstand systems tracts. Lowstand systems tracts (LST) include delta and fan delta facies spread widely along the gentle southern margin and concentrated narrowly along the steep northern margin of the basin, with sublacustrine fan sand bodies extending into the basin center. Highstand systems tracts (HST) include expanded areas of basin-center shale deposition, with sublacustrine fans, deltas and fan deltas locally developed along the basin margins. Sequence development may reflect episodes of tectonic uplift and base-level changes. The southern margin of the basin exhibits two different structural styles that locally influenced sequence development, i.e., a multi-step fault belt in the south-central sector and a flexure belt in the southeastern sector. The sedimentary model and sequence stratigraphic framework developed in this study demonstrate that N2 (the middle member of Niubao Formation) exhibits superior hydrocarbon potential, characterized by thicker source rocks and a wider distribution of sand-body reservoirs, although N3 (the upper member of Niubao Formation) also has good potential. Fault-controlled lithologic traps are plentiful along the basin margins, representing attractive targets for future exploratory drilling for hydrocarbons.  相似文献   

16.
The Late Miocene Zeit Formation is exposed in the Red Sea Basin of Sudan and represents an important oil-source rock. In this study, five (5) exploratory wells along Red Sea Basin of Sudan are used to model the petroleum generation and expulsion history of the Zeit Formation. Burial/thermal models illustrate that the Red Sea is an extensional rift basin and initially developed during the Late Eocene to Oligocene. Heat flow models show that the present-day heat flow values in the area are between 60 and 109 mW/m2. The variation in values of the heat flow can be linked to the raise in the geothermal gradient from margins of the basin towards offshore basin. The offshore basin is an axial area with thick burial depth, which is the principal heat flow source.The paleo-heat flow values of the basin are approximately from 95 to 260 mW/m2, increased from Oligocene to Early Pliocene and then decreased exponentially prior to Late Pliocene. This high paleo-heat flow had a considerable effect on the source rock maturation and cooking of the organic matter. The maturity history models indicate that the Zeit Formation source rock passed the late oil-window and converted the oil generated to gas during the Late Miocene.The basin models also indicate that the petroleum was expelled from the Zeit source rock during the Late Miocene (>7 Ma) and it continues to present-day, with transformation ratio of more than 50%. Therefore, the Zeit Formation acts as an effective source rock where significant amounts of petroleum are expected to be generated in the Red Sea Basin.  相似文献   

17.
琼东南盆地深水区第四系乐东组是南海北部已证实的天然气水合物主要勘探层系。近年来,其层序地层格架、构成特征以及对天然气水合物稳定域及运聚成藏的控制影响作用等科学问题引发了广泛关注。为了厘清乐东组层序地层格架、构成特征及其展布规律,基于层序地层学理论,结合研究区高分辨率地震资料,建立了乐东组精细层序地层格架及层序样式。依据典型的地震接触关系识别了乐东组复合层序界面T20、T14和T0,同时划分确定了乐东组下段6套三级层序(LDSQ1-6)和上段8套三级层序(LDSQ7-14)。在三级层序内部还进一步识别出初始海泛面、最大海泛面以及最大海退面,在三级层序中进一步划分出低位体系域(LST)、海侵体系域(TST)、高位体系域(HST)和下降体系域(FFST)。研究表明,1.8 Ma以来,红河物源体系沉积物供给充足,乐东组下段陆架边缘体系进积和加积组分厚度大,层序样式主要为H型层序;0.9~0.8 Ma至今,地层以进积叠置样式为主,且峡谷发育频次增大,低位体系域组分占比增大,主要发育L-H型层序。笔者结合国内外相似区域的沉积相模式,明确了层序格架约束下的沉积相发育类型及时空演化特征,为该区域天然气水合物储层预测提供了地质依据。  相似文献   

18.
The sedimentology and sequence stratigraphy of the central Apennine lower Miocene carbonate deposits (Guadagnolo Formation) are the goal of this paper. The Guadagnolo carbonate ramp deposits consist of a thick succession of three main lithofacies: marls, marly limestones and cross-bedded limestones. The lateral and vertical facies distribution, as well as the biota assemblages, suggests a deposition of these sediments along the middle-outer ramp sector of the Latium-Abruzzi carbonate platform. All the data suggest sedimentation under the influence of tidal currents that were responsible of bedforms generation as simple and compound dunes. These bodies are developed on metric and decametric scale, and are stacked one to other to form complex sedimentary bodies extending both in strike and dip section for several tens to hundred meters. The dune system developed in a semiclosed basin (the Paleoadriatic sea), open in the southern and closed in the northern sector respectively. Within this basin a probably amphidromic system developed. The flow sediment transport was dominantly westward, and was conditioned by the ramp paleotopography. From a sequence stratigraphic point of view several high and low rank depositional sequences that were differentiated basing on their relative physical scale (thickness of each unit) and on the lateral extension of the unconformities and the correlative conformities bounding them were recognized. The hierarchy of recognized sequence-stratigraphic units include, from the smallest to the largest: simple depositional sequences, low-rank composite depositional sequences and high-rank composite depositional sequences. In the Guadagnolo succession four high-rank composite depositional sequences having a duration variable from 0.9 to 1.6 Ma, and named Guadagnolo 1, 2, 3, and 4, were recognized. These high-rank composite sequences are internally constituted by a stacking of simple and low-rank composite depositional sequences, having a duration ranging from 40 ka to 200 ka. All these units constitute part of a higher-rank composite sequence developing between 21 and 14.80 Ma that we name “The Guadagnolo Depositional Sequence”. The wedge-shaped geometry, the thickness variation and the stacking pattern of the Guadagnolo succession are the response to eustasy and tectonic subsidence. The glacial eustasy mostly controlled the formation of the high-frequency depositional sequences, tectonic subsidence, related to the roll-back of the hinge west-directed subduction in turn connected to the advancement of the Apennine thrust modulated the accommodation space.  相似文献   

19.
The Trans Indus-Salt Range, located in northern Pakistan, is one of the most tectonically active fold-and-thrust belts and comprises three main regions: the Potwar-Salt Range, the Kohat-Surghar Range and the Bannu Basin-Khisor Range. Of these, the Bannu Basin is the least studied and only a handful of publically accessible datasets and publications are available. Recently made public 2D seismic profiles and well data from the Bannu Basin indicate the presence of salt as well as evidence for a main detachment surface which is Neoproterozoic in age. Our findings suggest that the Salt Range Formation could be the main detachment for the entire basin.Interpretation also shows a Miocene-Eocene basin-wide unconformity that marks the Himalayan orogenic event which separates the pre-Himalayan from the syn-Himalayan sedimentary units. On the basis of seismic reflection data, we conclude that the basin experienced three main tectonic settings. An early stage of pre-Himalayan passive tectonic environment is followed by the compressional Himalayan tectonics which resulted in uplifted areas sourcing the fluviatile fill of the subsided basin. During this time, sedimentation from the northern margin of the basin may have influenced the southward flow of salt. This is followed by a more recent stage of thrusting that produced folds and thrusts deforming all of the sedimentary units.Structural geometries suggest that prospective traps are developed mainly in the anticlines outlining the eastern and western boundaries of the Bannu Basin, as well as the southern zone of the basin. Furthermore, the presence of salt diapirism and transpression zones together with numerous oil seeps in and around the basin increase the probability of hydrocarbon accumulation and indicate great potential for future exploration.  相似文献   

20.
The quality of source rocks plays an important role in the distribution of tight and conventional oil and gas resources. Despite voluminous studies on source rock hydrocarbon generation, expulsion and overpressure, a quality grading system based on hydrocarbon expulsion capacity is yet to be explored. Such a grading system is expected to be instrumental for tight oil and gas exploration and sweet spot prediction. This study tackles the problem by examining Late Cretaceous, lacustrine source rocks of the Qingshankou 1 Member in the southern Songliao Basin, China. By evaluating generated and residual hydrocarbon amounts of the source rock, the extent of hydrocarbon expulsion is modelled through a mass balance method. The overpressure is estimated using Petromod software. Through correlation between the hydrocarbon expulsion and source rock evaluation parameters [total organic carbon (TOC), kerogen type, vitrinite reflectance (Ro) and overpressure], three classes of high-quality, effective and ineffective source rocks are established. High-quality class contains TOC >2%, type-I kerogen, Ro >1.0%, overpressure >7Mpa, sharp increase of hydrocarbon expulsion along with increasing TOC and overpressure, and high expulsion value at Ro >1%. Source rocks with TOC and Ro <0.8%, type-II2 & III kerogen, overpressure <3Mpa, and low hydrocarbon expulsion volume are considered ineffective. Rocks with parameters between the two are considered effective. The high-quality class shows a strong empirical control on the distribution of tight oil in the Songliao Basin. This is followed by the effective source rock class. The ineffective class has no measurable contribution to the tight oil reserves. Because the hydrocarbon expulsion efficiency of source rocks is controlled by many factors, the lower limits of the evaluation parameters in different basins may vary. However, the classification method of tight source rocks proposed in this paper should be widely applicable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号