首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 15 毫秒
1.
Thick Upper Cambrian-Lower Ordovician carbonates were deposited on a shallow marine platform in the northern Tarim Basin, which were extensively dolomitized, particularly for the Upper Cambrian carbonates. The resulting dolomite rocks are predominantly composed of matrix dolomites with minor cement dolomites. Based on petrographic textures, matrix dolomites consist of very finely to finely crystalline, nonplanar-a to planar-s dolomite (Md1), finely to medium crystalline, planar-e(s) dolomite (Md2), and finely to coarsely crystalline, nonplanar-a dolomite (Md3). Minor cement dolomites include finely to medium crystalline, planar-s(e) dolomite (Cd1) and coarsely crystalline, nonplanar saddle dolomite (Cd2), which partially or completely fill dissolution vugs and fractures; these cements postdate matrix dolomites but predate later quartz and calcite infills. Origins of matrix and cement dolomites and other diagenetic minerals are interpreted on the basis of petrography, isotopic geochemistry (O, C and Sr), and fluid inclusion microthermometry. Md1 dolomite was initially mediated by microbes and subsequently precipitated from slightly modified brines (e.g., evaporated seawater) in near-surface to very shallow burial settings, whereas Md2 dolomite was formed from connate seawater in association with burial dissolution and localized Mg concentration (or cannibalization) in shallow burial conditions. Md3 dolomite, however, was likely the result of intense recrystallization (or neomorphism) upon previously-formed dolomites (e.g., Md1 or Md2 dolomite) as the host carbonates were deeply buried, and influenced by later hydrothermal fluids. Subsequent cement dolomite and quartz crystals precipitated from higher-temperature, hydrothermal fluids, which were contributed more or less by the extensive Permian large igneous province (LIP) activity in Tarim Basin as evidenced by less radiogenic Sr in the cement and parts of matrix dolomites. This extensive abnormal hydrothermal activity could also have resulted in recrystallization (or neomorphism) on the previous matrix dolomites. Faults/fractures likely acted as important conduit networks which could have channeled the hydrothermal fluids from depths. However, the basin uplift triggered by the Late Hercynian Orogeny from the Late Permian would have facilitated downward infiltration of meteoric water and dilution of hydrothermal fluids, resulting in precipitation of later calcites in which lighter C and more radiogenic Sr components demonstrate such a switch of fluid properties. This study provides a useful analogue to understand the complicated dolomitizing processes and later hydrothermal alteration intimately related to the Permian LIP activity within Tarim Basin and elsewhere.  相似文献   

2.
The seasonal occurrence and reproductive strategy of the nemertean Tetrastemma fozensis, which inhabits the mantle cavity of the bivalve Scrobicularia plana, was studied through the analysis of the temporal diversity of a T. fozensis population. Bimonthly sampling was carried out from February 2001 to January 2002 at mudflats of Villaviciosa estuary (Asturias, Northern Spain). Nemerteans were found throughout the study period, but variations in their abundance were detected, with a maximum during winter months and a minimum during summer months. Moreover, variations in mean size of nemerteans were found, with maximal sizes at the end of the spring and the beginning of the summer and minimum size at early autumn. The annual variations in population parameters (decrease in abundance and complete disappearance of large individuals in summer) suggest that T. fozensis has a distinct reproductive season and a semelparous reproductive strategy.  相似文献   

3.
Ría de Vigo is a river valley flooded by the sea, with a bay (San Simón Bay) at its innermost part. The accumulation of Holocene sediment in San Simón Bay has been studied by the integration of 1) large scale high resolution seismic data, and 2) detailed geochemical analysis of a gravity core. In San Simón Bay the majority of the seismic records are obscured by acoustic turbidity which represents gassy sediments, but on records from Rande Strait it is possible to distinguish two Quaternary seismic sequences; an Upper Pleistocene sequence (SQ1) and a Holocene sequence (SQ2). Only SQ2 is recognized in San Simón Bay where it is comprised of two seismic units; the upper unit represents the HST sediment, i.e. the period of highest sea level. A gravity core taken within the gassy zone at 10 m water depth provided 3.55 m of fine-grained sediments (muds) from the youngest seismic unit (4 m thick). Geochemical analysis show high values (4 to 10%) of TOC. Sediment and porewater analyses indicate a distinct sulphate–methane transition zone (SMTZ) between 60 and 80 cm where sulphate is depleted (to <1.7 mM) and methane increases (to >0.4 mM). The top of the acoustic turbidity (the gas front) at 80 cm corresponds to the lower limit of the SMTZ. The methane cannot have been derived from the underlying metamorphic and granitic rocks, but was probably derived by microbial degradation of the organic matter in the Holocene sediments. We estimate that the sediments of the Bay contain approximately 1.8 × 106 m3 of organic carbon and 275 ton of methane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号