首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quaternary glacial stratigraphy and relative sea-level changes reveal at least two glacial expansions over the Chelyuskin Peninsula, bordering the Kara Sea at about 77°N in the Russian Arctic, as indicated from tills interbedded with marine sediments, exposed in stratigraphic superposition, and from raised-beach sequences mapped to altitudes of at least up to ca. 80 m a.s.l. Chronological control is provided by accelerator mass spectrometry 14C dating, electron-spin resonance and optically stimulated luminescence geochronology. Major glaciations, followed by deglaciation and marine inundation, occurred during marine oxygen isotope stages 6–5e (MIS 6–5e) and stages MIS 5d–5c. These glacial sediments overlie marine sediments of Pliocene age, which are draped by fluvial sediment of a pre-Saalian age, thereby forming palaeovalley/basin fills in the post-Cretaceous topography. Till fabrics and glacial tectonics record expansions of local ice caps exclusively, suggesting wet-based ice cap advance, followed by cold-based regional ice-sheet expansion. Local ice caps over highland sites along the perimeter of the shallow Kara Sea, including the Byrranga Mountains and the Severnaya Zemlya archipelago, appear to have repeatedly fostered initiation of a large Kara Sea ice sheet, with the exception of the Last Glacial Maximum (MIS 2), when Kara Sea ice neither impacted the Chelyuskin Peninsula nor Severnaya Zemlya, and barely touched the northern coastal areas of the Taymyr Peninsula.  相似文献   

2.
We present sub-bottom profiling (sparker and Parasound) results from the eastern Kara Sea, on the Eurasian Arctic margin, which enable the identification of the Last Glacial Maximum (LGM) ice extent. The analysed profiles show that glacigenic diamicton is ubiquitous at the seafloor, east of about 95°E and 78°N. The eastern margin of this diamicton is expressed in a conspicuous morainic ridge at the entrance to the Vilkitsky Strait, and to the south the diamicton projection aligns with the LGM limit mapped at the north-western Taymyr. The bottom of the Voronin Trough further north is also covered with diamicton and has numerous erosional bedforms, indicating a streamlined flow of grounded ice along the trough. Accurate dating of the diamicton is not attainable, but the correlation of pre-diamict sediments to well-dated sections in the Laptev Sea, and available 14C ages from sediments on top of the diamicton, indicate its LGM age. These results support the palaeogeographic reconstruction that assumes the extension of the LGM Barents–Kara ice sheet as far east as Taymyr. This configuration implies that LGM ice blocked the drainage of the Ob and Yenisey rivers on the Kara shelf. This inference is consistent with the presence of large (>100 km wide) lenses of basin infill adjacent to the southern margin of the diamicton. However, the limited distribution of the eastern Kara ice lobe, not extending on Severnaya Zemlya, suggests that the ice was fairly thin and short-lived: insufficient for the accumulation of the gigantic proglacial lakes that occurred during earlier glaciations.  相似文献   

3.
The early Russian researchers working in central Siberia seem to have preferred scenarios in which glaciations, in accordance with the classical glaciological concept, originated in the mountains. However, during the last 30 years or so the interest in the glacial history of the region has concentrated on ice sheets spreading from the Kara Sea shelf. There, they could have originated from ice caps formed on areas that, for eustatic reasons, became dry land during global glacial maximum periods, or from grounded ice shelves. Such ice sheets have been shown to repeatedly inundate much of the Taymyr Peninsula from the north-west. However, work on westernmost Taymyr has now also documented glaciations coming from inland. On at least two occasions, with the latest one dated to the Saale glaciation (marine isotope stage 6 [MIS 6]), warm-based, bedrock-sculpturing glaciers originating in the Byrranga Mountains, and in the hills west of the range, expanded westwards, and at least once did such glaciers, after moving 50–60 km or more over the present land areas, cross today's Kara Sea coastline. The last major glaciation affecting south-western Taymyr did, however, come from the Kara Sea shelf. According to optically stimulated luminescence dates, this was during the Early or Middle Weichselian (MIS 5 or 4), and was most probably not later than 70 Kya. South-western Taymyr was not extensively glaciated during the last global glacial maximum ca. 20 Kya, although local cold-based ice caps may have existed.  相似文献   

4.
In this paper the effect of a delayed onset of glaciation in the Barents Sea on glacial isostatic adjustment is investigated. The model calculations solve the sea-level equation governing the total mass redistributions associated with the last glaciation cycle on a spherically symmetric, linear, Maxwell viscoelastic earth for two different scenarios for the growth phase of the Barents Sea ice sheet. In the first ice model a linear growing history is used for the Barents Sea ice sheet, which closely relates its development to the build-up of other major Late Pleistocene ice sheets. In the second ice model the accumulation of the Barents Sea ice sheet is restricted to the last 6 ka prior to the last glacial maximum.
The calculations predict relative sea levels, present-day radial velocities, and gravity anomalies for the area formerly covered by the Weichselian ice sheet. The results show that observed relative sea levels in the Barents Sea are appropriate for distinguishing between the different glaciation histories. In particular, present-day observables such as the free-air gravity anomaly over the Barents Sea, and the present-day radial velocities are sensitive to changes in the glaciation history on this scale.
A palaeobathymetry derived from relative sea-level predictions before the last glacial maximum based on the second ice model essentially agrees with a palaeobathymetry derived by Lambeck (1995). The additional emerged areas provide centres for the build-up of an ice sheet and thus support the theory of Hald, Danielsen & Lorentzen (1990) and Mangerud et al. (1992) that the Barents Sea was an essentially marine environment shortly before the last glacial maximum.  相似文献   

5.
Novaya Zemlya was covered by the eastern part of the Barents–Kara ice sheet during the glacial maximum of marine isotope stage 2 (MIS 2). We obtained 14C ages on 37 samples of mollusc shells from various sites on the islands. Most samples yielded ages in the range of 48–26 14C Ky. Such old samples are sensitive to contamination by young 14C, and therefore their reliability was assessed using replicate analyses and amino acid geochronology. The extent of aspartic acid racemization (Asp D/L) indicates that many of the 14C ages are correct, whereas some are minimum ages only. The results indicate that a substantial part of Novaya Zemlya was ice-free about 35–27 14C Kya, and probably even earlier. Corresponding shorelines up to >140 m a.s.l. indicate a large Barents–Kara ice sheet during early MIS 3. These results are consistent with findings from Svalbard and northern Russia: in both places a large MIS 4/3 Barents–Kara ice sheet is postulated to have retreated about 50 Kya, followed by an ice-free interstadial that lasted until up to ca. 25 Kya. The duration of the MIS 2 glaciation in Novaya Zemlya was calculated by applying the D/L values to a kinetic equation for Asp racemization. This indicates that the islands were ice covered for less than 3000 years if the basal temperature was 0oC, and for less than 10 000 years if it was −5oC.  相似文献   

6.
南北极海冰变化及其影响因素的对比分析   总被引:1,自引:0,他引:1       下载免费PDF全文
海冰是海洋-大气交互系统的重要组成部分,与全球气候系统间存在灵敏的响应和反馈机制。本文选用欧洲空间局发布的1992—2008年海冰密集度数据分析了南北极海冰在时间和空间上的变化规律与趋势,并结合由美国环境预报中心(National Centers for Environmental Prediction,NCEP)和美国大气研究中心(National Center for Atmospheric Research, NCAR)联合制作的NCEP/NCAR气温数据和ENSO指数探讨了南北极海冰变化的影响因素。结果表明,北极海冰面积呈明显的减少趋势,其中夏季海冰最小月的减少更快。北冰洋中央海盆区、巴伦支海、喀拉海、巴芬湾和拉布拉多海的减少最明显。南极海冰面积呈微弱增加趋势,罗斯海、太平洋扇区和大西洋扇区的海冰增加。北极海冰面积与气温有显著的滞后1个月的负相关关系(P0.01)。北极升温显著,北冰洋中央海盆区、喀拉海、巴伦支海、巴芬湾和楚科奇海升温趋势最大,海冰减少很明显。南极在南大西洋、南太平洋呈降温趋势,海冰增加。北极海冰减少与39个月之后ONI的下降、40个月之后SOI的上升密切相关;南极海冰增加与7个月之后ONI的下降、6个月之后SOI的上升存在很好的响应关系。南北极海冰变化与三次ENSO的强暖与强冷事件有很好的对应关系。  相似文献   

7.
This paper discusses predicted evolution patterns of present-day changes of ice thickness, surface elevation, and bedrock elevation over the Greenland and Antarctic continents. These were obtained from calculations with dynamic 3-D ice sheet models which were coupled to a visco-elastic solid Earth model. The experiments were initialized over the last two glacial cycles and subsequently averaged over the last 200 years to obtain the current evolution. The calculations indicate that the Antarctic Ice Sheet is still adjusting to the last glacial-interglacial transition yielding a decreasing ice volume and a rising bedrock elevation of the order of several centimetres per year. The Greenland Ice Sheet was found to be close to a stationary state with a mean thickness change of only a few millimetres per year, but the calculations revealed large spatial differences. Predicted patterns over Greenland are characterized by a small thickening over the ice sheet interior and a general thinning of the ablation area. In Antarctica, almost all of the predicted changes are concentrated in the West Antarctic Ice Sheet, which is still retreating at both the Weddell and Ross Sea margins. Over most of both ice sheets, the model indicates that the surface elevation trend is dominated by ice thickness changes rather than by bedrock elevation changes.  相似文献   

8.
Late Quaternary Lakes in the McMurdo Sound Region of Antarctica   总被引:2,自引:0,他引:2  
Lake levels within the enclosed drainage basins of the Dry Valleys adjacent to McMurdo Sound have fluctuated widely during the Late Quaternary due to (a) local climate change and the consequent variation in the evaporation–precipitation regime, and (b) glacial fluctuations, resulting in changes in the catchment and meltwater drainage areas of the glaciers and, in some cases, in the volumes of the available lake basins. Three types of lakes can be distinguished on the basis of their water source: (1) lakes receiving the bulk of their water from melting of local alpine glaciers; (2) proglacial lakes associated with outlet glaciers from the East Antarctic Ice Sheet; (3) proglacial lakes associated with the marine oxygen-isotope stage 2 Ross Sea ice sheet and its precursors. The Dry Valleys contain an exceptionally long lacustrine record, extending back at least 300,000 years. Lacustrinesedimentation is cyclical, occurring over periods of about 100,000 years. During the last such cycle, relatively small lakes, both adjacent to East Antarctic outlet glaciers and fed by meltwater from alpine glaciers, existed during stage 5. However, these local lakes gave way to large proglacial lakes adjacent to the Ross Sea ice sheet in stage 2. The same relationship apparently occurred during the previous 100,000-year cycle. Dating of lacustrine sediments suggests that lakes proglacial to the Ross Sea ice sheet have existed during episodes of sea-level lowering during global glaciations. Lakes proglacial to outlet glaciers from the East Antarctic Ice Sheet have formed coincident with episodes of high eustatic sea level during interglacial periods.  相似文献   

9.
南极冰盖与冰川的快速变化   总被引:1,自引:0,他引:1       下载免费PDF全文
近10年的观测研究表明,南极冰盖和冰川存在快速的变化阿蒙森海扇区的主要冰流系统正在迅速变薄,减薄趋势可上溯至内陆150km处;罗斯冰流出现了停滞或明显减速,有的流动方向发生了改变,引发冰流袭夺;南极半岛冰架大面积崩塌,补给冰川加速,冰川出现了跃动;变暖的海水进一步侵蚀了冰架,着地线附近底部冰层融化强烈。上述发现改变了南极冰盖缓慢变化的传统观点,并对今后的冰川动力学研究,冰流模型模拟,冰盖物质平衡研究及预测具有重要意义。  相似文献   

10.
During the last glacial maximum, a coalescent ice mass consisting of the grounded Ross Sea ice sheet and an expanded Wilson Piedmont Glacier covered the southern Scott Coast. This coalescent ice mass was part of a larger grounded ice sheet that occupied the Ross Sea Embayment during the last glacial maximum. Deglaciation of the western Ross Sea Embayment adjacent to the southern Scott Coast was delayed until shortly before 6500 14C yr bp , aconclusion based on ages of marine shells from McMurdo Sound, a relative sea-level curve, and algae that lived in ice-dammed lakes. Therefore, most recession of grounded ice in the Ross Sea Embayment occurred in mid to late Holocene time, after deglacial sea-level rise due to melting of Northern Hemisphere ice sheets essentially was accomplished. Rising sea level alone could not have driven grounding-line retreat back to the present-day Siple Coast.  相似文献   

11.
The eastern part Svalbard archipelago and the adjacent areas of the Barents Sea were subject to extensive erosion during the Late Weichselian glaciation. Small remnants of older sediment successions have been preserved on Edgeeya, whereas a more complete succession on Kongsøya contains sediments from two different ice-free periods, both probably older than the Early Weichselian. Ice movement indicators in the region suggest that the Late Weichselian ice radiated from a centre east of Kong Karls Land. On Bjørnøya, on the edge of the Barents Shelf, the lack of raised shorelines or glacial striae from the east indicates that the western parts of the ice sheet were thin during the Late Weichselian. The deglaciation of Edgeøya and Barentsøya occurred ca 10,300 bp as a response to calving of the marine-based portion of the ice sheet. Atlantic water, which does not much influence the coasts of eastern Svalbard today, penetrated the northwestern Barents Sea shortly after the deglaciation. At that time, the coastal environment was characterised by extensive longshore sediment transport and deposition of spits at the mouths of shallow palaeo-fjords.  相似文献   

12.
This work investigates the temporal and spatial variation of shore-fast ice extent in the north-eastern part of the Kara Sea during 1953-1990 and its sensitivity to interannual variability of the regional climate. The area of fast ice in spring months shows a bimodal distribution. This indicates the existence of two different regimes of fast ice formation driven by the system of prevailing winds. The westward wind transport during the cold season gives larger fast ice extent while the eastward wind transport suppresses the expansion of fast ice. There is a significant correlation (ca. −0.55) between the average winter temperature and the area of fast ice. Linear trends for time records of shore-fast ice area in spring show a decrease during 1953-1990. This decrease is most pronounced in April: the mean fast ice area in April is 12% lower in 1988-1990 compared to 1953-55. A comparison of fast ice regimes for two particular years–1979 and 1985–revealed a significant influence of cyclone activity on fast ice development over the course of the cold season. It is shown that partial break-ups of fast ice in spring 1985 are associated with the passage of cyclones across the area of fast ice.  相似文献   

13.
东南极大陆沿岸的维斯特福尔德丘陵(68°22'~68°40'S,77°55'~78°30'E)和西南极乔治王岛南端的菲尔德斯半岛(62°08'~62°20'S,58°45'~58°58'W)的气候条件不同。前者属于极地大陆性气候,气温低,冬季严寒,干燥、风大,夏季较短;后者属于极地海洋性气候,气温不很低,湿润、风小,夏季较长。因此,两地的冰缘地貌的组合类型及其发育过程存在明显的差异。前者冰缘地貌单一,发展速度较慢;后者冰缘地貌复杂多样,发展速度较快。 本文根据实地观测资料,对极地大陆型和极地海洋型两类冰缘地貌作一些比较,并且提出,年冻融日数是决定冰缘作用强弱的最重要指标。  相似文献   

14.
Formation of turbid ice during autumn freeze-up in the Kara Sea   总被引:1,自引:0,他引:1  
A one-dimensional (vertical) model is used to estimate the mass of ice-rafted sediment in turbid sea ice on the shallow Kara Sea shelf during autumn freeze-up. Sediment is entrained into the ice through aggregation with frazil ice crystals that are diffused downwards by wind-generated turbulence. Data from local meteorological stations are used to force the model, while water stratification and sediment concentrations from the area are used to initiate the model. Model results indicate a 0.2 m thick layer of slush ice created during 48 h with a mean wind of 6 m/s and an air temperature of −10°C. This ice contains ca. 20 mg/1 of sediment, or in total ca. 2% of the annual sediment discharge by nearby rivers. In shallow areas (<20 m depth) the process is very effective with winds of ca. 12 m/s, and the process can incorporate many years of sediment discharge. In the deeper areas (>20 m depth), the strong salinity stratification implies that winds above 18 m/s are needed for the process to be effective. For the rest of the winter months the same process may lead to additional sediment incorporated in a coastal polynya, but the freeze-up alone has the capacity to incorporate the total summer discharge of sediment into the surface ice. Calculated sediment concentrations in the surface ice cover are in the range 3 mg/1-19 g/1, in good agreement with available field data.  相似文献   

15.
南极冰盖物质平衡与海平面变化研究新进展   总被引:2,自引:0,他引:2       下载免费PDF全文
本文在简要介绍冰盖物质平衡及其对海平面影响的基础上,从整体法和分量法两个方面总结了南极冰盖物质平衡研究的最新进展,并分析了影响其物质平衡的不确定因素。研究表明,整个南极冰盖物质平衡呈现负增长的趋势,其中西南极Amundsen海湾附近的冰盖物质流失最为明显。另外,南极冰盖边缘的大部分地区还呈现变薄的趋势。南极冰盖物质流失是引起海平面上升的最大潜在因素之一,其冰架的缓冲作用、冰盖的不稳定性和冰盖底部融水的作用等不确定因素对南极冰盖物质平衡具有重要的影响。未来随着观测技术和数据处理技术的不断提高,南极冰盖物质平衡的估算及其不确定因素有望得到进一步的认识,从而为预测海平面的上升范围提供更多的理论和技术支撑。  相似文献   

16.
The extent of the Barents-Kara Ice Sheet during the eastern Last Glacial Maximum (LGM) is not yet fully known. A detailed echo-sounding survey performed during the Boris Petrov Expedition 2001 permitted the detailed mapping of part of it. Based on the profiling results, a southern connection between the LGM Barents-Kara Ice Sheet and a local ice sheet on Taymyr Peninsula appears to be unlikely. Based on sediment core data and profiling results, most of the terrigenous river-derived material accumulated in the estuaries during late Holocene times, whereas during early Holocene times of lowered sea level major amounts were transported further offshore and accumulated on the shelf. During the post-glacial sea level rise, the main depocentre migrated southward, reaching its present position no earlier than about 6 cal. Ky BP (or 5.2 Kya). Future studies of accelerator mass spectrometry (AMS) 14C-dated sediment cores will allow a detailed reconstruction of the variability of fluvial sediment discharge and the history of glaciation in the Kara Sea during late Quaternary times.  相似文献   

17.
The estimation of ice/snow accumulation is of great significance in quantifying the mass balance of ice sheets and variation in water resources. Improving the accuracy and reducing uncertainty has been a challenge for the estimation of annual accumulation over the Greenland ice sheet. In this study, we kriged and analyzed the spatial pattern of accumulation based on an observation data series including 315 points used in a recent research, plus 101 ice cores and snow pits and newly compiled 23 coastal weather station data. The estimated annual accumulation over the Greenland ice sheet is 31.2 g cm?2 yr?1, with a standard error of 0.9 g cm?2 yr?1. The main differences between the improved map developed in this study and the recently published accumulation maps are in the coastal areas, especially southeast and southwest regions. The analysis of accumulations versus elevation reveals the distribution patterns of accumulation over the Greenland ice sheet.  相似文献   

18.
Summer sea ice characteristics of the Chukchi Sea   总被引:1,自引:0,他引:1       下载免费PDF全文
During August 1999, we investigated sea ice characteristics; its distribution, surface feature, thickness, ice floe movement, and the temperature field around inter-borders of air/ice/seawater in the Chukchi Sea. Thirteen ice cores were drilled at 11 floe stations in the area of 72°24′ 77°18′N, 153°34′ 163°28′W and the ice core structure was observed. From field observation, three melting processes of ice were observed; surface layer melting, surface and bottom layers melting, and all of ice melting. The observation of temperature fields around sea ice floes showed that the bottom melting under the ice floes were important process. As ice floes and open water areas were alternately distributed in summer Arctic Ocean; the water under ice was colder than the open water by 0.4 2.8℃. The sun radiation heated seawater in open sea areas so that the warmer water went to the bottom when the ice floes move to those areas. This causes ice melting to start at the bottom of the ice floes. This process can balance effectively the temperature fluctuating in the sea in summer. From the crystalline structure of sea ice observed from the cores, it was concluded that the ice was composed of ice crystals and brine-ice films. During the sea ice melting, the brine-ice films between ice crystals melted firstly; then the ice crystals were encircled by brine films; the sea ice became the mixture of ice and liquid brine. At the end of melting, the ice crystals would be separated each other, the bond between ice crystals weakens and this leads to the collapse of the ice sheet.  相似文献   

19.
More than 250 radiocarbon dates of lacustrine algae and marine shells afford a chronology for Ross Sea drift in eastern Taylor Valley. Dates of algae that lived in ice-dammed Glacial Lake Washburn show that grounded Ross Sea ice blocked the mouth of Taylor Valley between 8340 and 23,800 14C yr bp . Ross Sea ice was at its maximum position at the Hjorth Hill moraine between 12,700 and 14,600 14C yr bp and was within 500m distance of this position as late as 10,794 14C yr bp . The implication is that the flow line of the Ross Sea ice sheet which extended around northern Ross Island and across McMurdo Sound to Taylor Valley must have remained intact, and hence that a grounded ice sheet must have existed east of Ross Island as late as 8340 14C yr bp . Evidence from ice-dammed lakes in Taylor Valley and from shells from McMurdo Sound suggests grounding-line retreat from the vicinity of Ross Island between 6500 and 8340 14C yr bp . If this is correct, then most recession to the present-day grounding line on the Siple Coast took place subsequently in the absence of significant deglacial sea-level rise. Rising sea level may have triggered internal mechanisms within the ice sheet that led to retreat, but did not in itself drive continued ice-sheet recession. Ice retreat, once set in motion, continued in the absence of sea-level forcing. If correct, this hypothesis implies that the grounding line could continue to recede into the interior reservoir of the West Antarctic Ice Sheet.  相似文献   

20.
Bjørnøya has a very thin cover of unconsolidated Quaternary sediments. Glacial erratics of local origin are spread throughout the lowland areas, and glacial striae indicate glacial movement which was centred middle of the island. No traces of the Barents Sea ice sheet have been observed on Bjørnøya, nor has there been any postglacial emergence of the island. Lake cores date the deglaciation of the lowlands to ca 10,000 BP, and peat deposits on high mountains show that these were deglaciated before 8700 bp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号