首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A hydrodynamic survey carried out in semiarid southwest Niger revealed an increase in the unconfined ground water reserves of approximately 10% over the last 50 years due to the clearing of native vegetation. Isotopic samplings (3H, 18O, 2H for water and 14C, 13C for the dissolved inorganic carbon) were performed on about 3500 km2 of this silty aquifer to characterize recharge. Stable isotope analyses confirmed the indirect recharge process that had already been shown by hydrodynamic surveys and suggested the tracers are exclusively of atmospheric origin. An analytical model that takes into account the long-term rise in the water table was used to interpret 3H and 14C contents in ground water. The natural, preclearing median annual renewal rate (i.e., recharge as a fraction of the saturated aquifer volume) lies between 0.04% and 0.06%. For representative characteristics of the aquifer (30 m of saturated thickness, porosity between 10% and 25%), this implies a recharge of between 1 and 5 mm/year, which is much lower than the estimates of 20 to 50 mm/year for recent years, obtained using hydrological and hydrodynamic methods and the same aquifer parameters. Our study, therefore, reveals that land clearing in semiarid Niger increased ground water recharge by about one order of magnitude.  相似文献   

2.
A study on flood water infiltration and ground water recharge of a shallow alluvial aquifer was conducted in the hyperarid section of the Kuiseb River, Namibia. The study site was selected to represent a typical desert ephemeral river. An instrumental setup allowed, for the first time, continuous monitoring of infiltration during a flood event through the channel bed and the entire vadose zone. The monitoring system included flexible time domain reflectometry probes that were designed to measure the temporal variation in vadose zone water content and instruments to concurrently measure the levels of flood and ground water. A sequence of five individual floods was monitored during the rainy season in early summer 2006. These newly generated data served to elucidate the dynamics of flood water infiltration. Each flood initiated an infiltration event which was expressed in wetting of the vadose zone followed by a measurable rise in the water table. The data enabled a direct calculation of the infiltration fluxes by various independent methods. The floods varied in their stages, peaks, and initial water contents. However, all floods produced very similar flux rates, suggesting that the recharge rates are less affected by the flood stages but rather controlled by flow duration and available aquifer storage under it. Large floods flood the stream channel terraces and promote the larger transmission losses. These, however, make only a negligible contribution to the recharge of the ground water. It is the flood duration within the active streambed, which may increase with flood magnitude that is important to the recharge process.  相似文献   

3.
Groundwater recharge studies are essential for investigating the feasibility of using the reclaimed lands in Singapore for subsurface storage and recovery of water. Through time‐series and spectral analyses, net recharge percentages and stress‐filtering characteristics at the reclaimed land were found to depend strongly on the stress transfer velocity, which was a combined function of rainfall pattern and vadose zone thickness. Based on stress transfer velocity, a theory was established to provide logical explanations for the rainfall–recharge relationship, the observed stress‐filtering characteristics and the recharge percentage characteristics at the unconfined sandy aquifer. Although the reclaimed land site has a lithollogically homogeneous soil profile, a non‐uniform recharge pattern was observed to be influenced pronouncedly by the uneven density distribution of bush grasses. Under a bare soil condition, significantly lower recharge percentages were observed for areas under the influence of offshore tides. The unconfined sandy aquifer appears to dampen out the wave propagation of offshore tides rapidly within a short distance from the tidal source, though it has a fairly straight shoreline and is created from highly compacted sand fills. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
At an aviation gasoline spill site in Traverse City, Michigan, historical records indicate a positive correlation between significant rainfall events and increased concentrations of slightly soluble organic compounds in the monitoring wells of the site. To investigate the recharge effect on ground water quality due to infiltrating, water percolating past residual oil and into the saturated zone, an in situ infiltration experiment was performed at the site. Sampling cones were set at various depths below a circular test area, 13 feet (4 meters) in diameter. Rainfall was simulated by sprinkling the test area at a rate sufficiently low to prevent runoff. The sampling cones for soil-gas and ground water quality were installed in the unsaturated and saturated zones to observe the effects of the recharge process. At the time of the test, the water table was below the residual oil layer. The responses of the soil-gas and ground water quality were monitored during the recharge and drainage periods, which resulted from the sprinkling.
Infiltrated water was determined to have transported organic constituents of the residual oil, specifically benzene, toluene, ethylbenzene, and ortho-xylene (BTEX), into the ground water beneath the water table, elevating the aqueous concentrations of these constituents in the saturated zone. Soil-gas concentrations of the organic compounds in the unsaturated zone increased with depth and time after the commencement of infiltration. Reaeration of the unconfined aquifer via the infiltrated water was observed. It is concluded that water quality measurements are directly coupled to recharge events for the sandy type of aquifer with an overlying oil phase, which was studied in this work. Ground water sampling strategies and data analysis need to reflect the effect of recharge from precipitation on shallow, unconfined aquifers where an oil phase may be present.  相似文献   

5.
A Stable and Efficient Numerical Algorithm for Unconfined Aquifer Analysis   总被引:2,自引:0,他引:2  
The nonlinearity of equations governing flow in unconfined aquifers poses challenges for numerical models, particularly in field-scale applications. Existing methods are often unstable, do not converge, or require extremely fine grids and small time steps. Standard modeling procedures such as automated model calibration and Monte Carlo uncertainty analysis typically require thousands of model runs. Stable and efficient model performance is essential to these analyses. We propose a new method that offers improvements in stability and efficiency and is relatively tolerant of coarse grids. It applies a strategy similar to that in the MODFLOW code to the solution of Richard's equation with a grid-dependent pressure/saturation relationship. The method imposes a contrast between horizontal and vertical permeability in gridblocks containing the water table, does not require "dry" cells to convert to inactive cells, and allows recharge to flow through relatively dry cells to the water table. We establish the accuracy of the method by comparison to an analytical solution for radial flow to a well in an unconfined aquifer with delayed yield. Using a suite of test problems, we demonstrate the efficiencies gained in speed and accuracy over two-phase simulations, and improved stability when compared to MODFLOW. The advantages for applications to transient unconfined aquifer analysis are clearly demonstrated by our examples. We also demonstrate applicability to mixed vadose zone/saturated zone applications, including transport, and find that the method shows great promise for these types of problem as well.  相似文献   

6.
Seasonal signals of stable isotopes in precipitation, combined with measurements of isotope ratios in soil water, can be used for quantitative estimation of groundwater recharge rates. This study investigates the applicability of using the piston flow principle and the peak shift displacement method to estimate actual groundwater recharge rates in a humid Nordic region located in the province of Quebec, Canada. Two different sites with and without vegetation (C1 and C2) in an unconfined aquifer were tested by measuring soil water isotope ratios (18O/16O and 2H/1H) and volumetric pore water content. Core samples were obtained along the vadose zone down to the groundwater table at the two sites (2.45 m for Site C1 and 4.15 m for Site C2). The peak shift method to estimate groundwater recharge rates was shown to be accurate only in certain specific conditions inherent to the soil properties and the topographical situation of the investigated sites. Indeed, at Site C2, recharge from the snowmelt could not be estimated because of heterogeneity in the lower part of the vadose zone. At this same site the later recharge after the snowmelt (in the period from late spring to early autumn) could be estimated accurately because the upper part of the vadose zone was homogeneous. Furthermore, at site C1, runoff/runon phenomena hampered calculations of actual infiltration and thus produced inaccurate results for recharge. These two different site effects (heterogeneity in the first site and runoff/runon in the other site) were identified as being limiting factors in the accurate assessment of actual recharge. This study therefore recommends the use of the peak shift method for (1) humid Nordic regions, (2) homogeneous and thick vadose zones, and (3) areas with few or limited site effects (runoff/runon).  相似文献   

7.
Contaminants may persist for long time periods within low permeability portions of the vadose zone where they cannot be effectively treated and are a potential continuing source of contamination to ground water. Setting appropriate vadose zone remediation goals typically requires evaluating these persistent sources in terms of their impact on meeting ground water remediation goals. Estimating the impact on ground water can be challenging at sites with low aqueous recharge rates where vapor-phase movement is the dominant transport process in the vadose zone. Existing one-dimensional approaches for simulating transport of volatile contaminants in the vadose zone are considered and compared to a new flux-continuity-based assessment of vapor-phase contaminant movement from the vadose zone to the ground water. The flux-continuity-based assessment demonstrates that the ability of the ground water to move contaminant away from the water table controls the vapor-phase mass flux from the vadose zone across the water table. Limitations of these approaches are then discussed with respect to the required assumptions and the need to incorporate three-dimensional processes when evaluating vapor-phase transport from the vadose zone to the ground water. The carbon tetrachloride plume at the U.S. Department of Energy Hanford Site is used as the example site where persistent vadose zone contamination needs to be considered in the context of ground water remediation.  相似文献   

8.
In glacial outwash deposits, the movement of ground water Is determined by small scale irregularities in the pattern of hydraulic conductivity. Permeability determinations on split spoon samples obtained from coring the site are not sufficient to predict the patchiness of flow since it cannot define continuity of the strata. The lattice work pattern can be determined by vertical profiling with direct ground water flow measurement. The rate and direction of flow is combined with head gradient changes to compute hydraulic conductivity changes across the site.
The results of the tests can be plotted on triangular graphs depicting the fundamental Darcy equation. The local conditions reflect a mathematical "patchiness" of hydraulic conductivity unique to outwash deposits.
The procedure was employed to determine flow characteristics and define the zone of contribution to porous bottom kettle lakes. The zone of contribution was defined by projecting backward from the vertical profiling and shallow measurements and taking into account the daily rain water recharge rate across the site.
For the unconfined aquifer north of the pond, shallow ground water flow measurements were necessary to define the recharge portion of the shoreline. Vertical profiling was required to define the recharge volume since the rate of flow was not even with depth. A simple differential equation for determining the recharge area is presented along with the calculations.  相似文献   

9.
The vadose zone is the main region controlling water movement from the land surface to the aquifer and has a very complex structure. The use of non-invasive or minimally invasive geophysical methods especially electrical resistivity imaging is a cost-effective approach adapted for long-term monitoring of the vadose zone. The main aim of this work is to know the fractures in the vadose zone, of granitic terrene, through which the recharge or preferred path recharge to the aquifer takes place and thus to relate moisture and electrical resistivity. Time lapse electrical resistivity tomography (TLERT) experiment was carried out in the vadose zone of granitic terrene at the Indian Geophysical Research Institute, Hyderabad along two profiles to a depth of 18 m and 13 m each. The profiles are 300 m apart. Piezometric, rainfall and soil moisture data were recorded to correlate with changes in the rainfall recharge. These TLERT difference images showed that the conductivity distribution was consistent with the recharge occurring along the minor fractures. We mapped the fractures in hard rock or granites to see the effect of the recharge on resistivity variation and estimation of moisture content. These fractures act as the preferred pathways for the recharge to take place. A good correlation between the soil moisture and resistivity is established in the vadose zone of granitic aquifer. Since the vadose zone exhibits extremely high variability, both in space and time, the surface geophysical investigations such as TLERT have been a simple and useful method to characterize the vadose zone, which would not have been possible with the point measurements alone. The analyses of the pseudosection with time indicate clearly that the assumption of the piston flow of the moisture front is not valid in hard rocks. The outcome of this study may provide some indirect parameters to the well known Richard's equation in studying the unsaturated zone.  相似文献   

10.
Soil and vadose zone profiles are used as an archive of changes in groundwater recharge and water quality following changes in land use in an area of the Loess Plateau of China. A typical rain‐fed loess‐terrace agriculture region in Hequan, Guyuan, is taken as an example, and multiple tracers (chloride mass balance, stable isotopes, tritium and water chemistry) are used to examine groundwater recharge mechanisms and to evaluate soil water chloride as an archive for recharge rate and water quality. Results show that groundwater recharge beneath natural uncultivated grassland, used as a baseline, is about 94–100 mm year?1 and that the time it takes for annual precipitation to reach water table through the thick unsaturated zone is from decades to hundreds of years (tritium free). This recharge rate is 2–3 orders of magnitude more than in the other semiarid areas with similar annual rainfall but with deep‐rooted vegetation and relatively high temperature. Most of the water that eventually becomes recharge originally infiltrated in the summer months. The conversion from native grassland to winter wheat has reduced groundwater recharge by 42–50% (50–55 mm year?1 for recharge), and the conversion from winter wheat to alfalfa resulted in a significant chloride accumulation in the upper soil zone, which terminated deep drainage. The paper also evaluates the time lag between potential recharge and actual recharge to aquifer and between increase in solute concentration in soil moisture and that in the aquifer following land‐use change due to the deep unsaturated zone. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
《水文科学杂志》2013,58(1):206-220
Abstract

The Asmari limestone formation is the major aquifer system at the Khersan 3 Dam site, Zagros, Iran. Characterization of the aquifer system and study of karst development are essential for forecasting leakage potential and to plan remediation works. The aquifer functioning and karst structure were evaluated by geology, well hydrodynamics and natural tracing studies, showing one unconfined and three artesian sub-aquifers, the last being characterized by rapid flow, with contributing old recharge water, and a recharge at higher elevation than the unconfined sub-aquifer. The anticline structure outcrops the artesian sub-aquifers downstream of the site. The confining layers disappear and the aquifer system discharges as a mix of all groundwater. Artesian groundwater is estimated to contribute about 80% (dry season) and 50% (wet season) of flow in the mixing zone. Very few karst features are observed in cores and galleries at the site, despite some karst landforms in the reservoir area. However the aquifer exhibits fast flow of karst type in the artesian sub-aquifers.  相似文献   

12.
Cleanup standards for volatile organic compounds in thick vadose zones can be based on indirect risk (transport to ground water) when contamination is below depths of significant direct risk. At one Arizona Superfund site, a one-dimensional vadose zone transport model (VLE-ACH) was used to estimate the continued transport of VOCs from the vadose zone to ground water. VLEACH is a relatively simple and readily available model that proved useful for estimating indirect risk from VOCs in the vadose zone at this site. The estimates of total soil concentrations used as initial conditions for VLF.ACH incorporated a variety of data from the site. Soil gas concentrations were found to be more useful than soil matrix data for estimating total soil concentrations at this arid-zone site. A simple mixing cell model was used with the VLEACH-derived mass loading estimates from the vadose zone over time to estimate the resulting changes in ground water concentrations. For this site, the results of the linked VLEACH/mixing cell simulations indicate it is likely that the federal MCI. for TCE will be exceeded in underlying ground water if remedial action on I he vadose zone is not pursued.  相似文献   

13.
Estimation of groundwater recharge to an unconfined aquifer is studied using analytical and numerical techniques and results are compared with field observations. There is an acute need for such estimation in water balance studies in arid climates, and the case study in this paper is for such a region. The wetting front movement in the unsaturated zone depends on antecedent soil moisture, the ponded water depth and its duration, and on the position of the water table and the hydraulic properties of the unsaturated zone. A hydraulic connection between the recharge basin and the aquifer is not immediately established because the wetting front is unsaturated. A numerical model is applied to estimate recharge in an arid-zone wadi, and its validity is tested by comparing it with an analytical solution of the equations. The calculated recharge values matched the piezometric levels observed at a well site at the edge of the wadi channel. The total recharge depths found by integration in the time domain provided a good estimate of the transmitted volume of water per unit length of wadi channel. The findings were confirmed by runoff volume measurements at gauging stations located in the basin. © 1997 John Wiley & Sons, Ltd.  相似文献   

14.
Recharge processes of karst aquifers are difficult to assess given their strong heterogeneity and the poorly known effect of vadose zone on infiltration. However, recharge assessment is crucial for the evaluation of groundwater resources. Moreover, the vulnerability of karst aquifers depends on vadose zone behaviour because it is the place where most contamination takes place. In this work, an in situ experimental approach was performed to identify and quantify flow and storage processes occurring in karst vadose zone. Cave percolation monitoring and dye tracing were used to investigate unsaturated zone hydrological processes. Two flow components (diffuse and quick) were identified and, respectively, account for 66% and 34% of the recharge. Quickflow was found to be the result of bypass phenomenon in vadose zone related to water saturation. We identify the role of epikarst as a shunting area, most of the storage in the vadose zone occurring via the diffuse flow component in low permeability zones. Relationship between rainfall intensity and transit velocity was demonstrated, with 5 times higher velocities for the quick recharge mode than the diffuse mode. Modelling approach with KarstMod software allowed to simulate the hybrid recharge through vadose zone and shows promising chances to properly assess the recharge processes in karst aquifer based on simple physical models.  相似文献   

15.
A thorough understanding of rainfall recharge processes and their controlling factors is essential for management of groundwater systems. This study investigates the effects of various meteorological and hydrogeological factors on the gross recharge percentages, the rainfall–recharge relationships and the recharge threshold values for unconfined sandy aquifers under an equatorial climate. Among the meteorological factors investigated, rainfall intensity was found to have the most significant impact on the gross recharge rate. The effects of potential evaporation rate, relative humidity and air temperature on the gross recharge percentage were significant when the vadose zone thickness is larger than 2·5 m. The recharge threshold values were found to depend strongly on the vadose zone thickness. The rainfall–recharge relationships could generally be well defined by a normal–log relationship. The rainfall–recharge relationships derived here are applicable to yield estimates of gross recharge percentages for unconfined sandy aquifers under an equatorial climate, using rainfall intensity and vadose zone thickness as input variables. In this study, a theory was developed and validated to provide physical explanations for the observations, based on the residence time of the percolated rainwater within the vadose zone. Among the soil hydraulic parameters tested, porosity and saturated hydraulic conductivity were found to have the most pronounced effects on the gross recharge percentage. Utilizing the sensitivity results and the theory derived, an approach was developed for extending the application of the derived rainfall–recharge relationships to other sand textures. The approach was found to be capable of producing rough and fast estimations of gross recharge percentage for other sand textures. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
The area under study covers 3500 km2 in the upstream part of the closed catchment basin of the salt crust of Uyuni. This crust is a remnant of the saline Lake Tauca, which covered the area about 15,000 years ago. In the downstream part of the aquifer, the Cl concentration of ground water and Cl content in the unsaturated zone exceed 20 meq/L and 18 kg/m2, respectively. With the present hydrological conditions under semiarid conditions, the ground water residence time in the study area exceeds 3000 years. Transient simulations over 11,000 years were made using initial conditions as the retreat of Lake Tauca and taking into account a low recharge during the arid mid-Holocene period. The modeling simulates ground water flow, Cl transport, and ground water residence time. It includes the evaporation from the aquifer that leads to the accumulation of chloride in the unsaturated zone. Results of the modeling are consistent with the observations if it is assumed that the Cl previously accumulated in the unsaturated zone was flushed back into the aquifer around 2000 years B.P., contemporaneously with the end of the arid period.  相似文献   

17.
Determination of hydraulic diffusivity of aquifers by spectral analysis   总被引:1,自引:1,他引:0  
This study uses the cyclical frequency to develop the mathematical relationship between hydraulic diffusivity and spectral density functions calculated from groundwater level variation. Such relationship can be applied to (1) unsteady state, one-dimensional confined aquifer with time-dependent water level on both end boundaries, and (2) linearized unconfined aquifer with or without vertical recharge. The spectral density functions of groundwater fluctuations are largely affected by the spectral density functions obtained from time-dependent end boundaries and their cross-spectral density functions. Hydraulic diffusivity of an aquifer can be solved by type-curve matching technique at a specified frequency band under the conditions of (1) confined aquifer having equal time-dependent boundaries on both ends, (2) unconfined aquifer having equal time-dependent boundaries on both ends with surface recharge, and (3) unconfined aquifer subjected to surface recharge but neglecting the water table fluctuations on both end boundaries.  相似文献   

18.
The vadose zone is the portion of the geologic profile above a perennial aquifer. Inclusion of mandatory vadose zone monitoring techniques as an approach to aquifer protect ion was first proposed under the Resource Conservation and Recovery Act in the United States in 1978 and has since received increasing acceptance at federal and stale levels. The goals of a vadose zone characterization and monitoring effort are to establish background conditions, identify contaminant transport pathways, identify the extent and degree of existing contamination, establish the basis for monitoring network design, measure the parameters needed in a risk assessment, and provide detection of contaminant migration toward ground water resources. The benefits of vadose zone monitoring include early warning of contaminant migration, potential reduction of ground water monitoring efforts, reduction of contaminant spreading and volume, and reduced time and cost of remediation once a contaminant release occurs. Vadose zone characterization and monitoring techniques should be considered as critical hydrologic tools in the prevention of ground water resource degradation.  相似文献   

19.
A number of optimization approaches regarding the design location of groundwater pumping facilities in heterogeneous porous media have elicited little discussion. However, the location of groundwater pumping facilities is an important factor because it affects water resource usage. This study applies two optimization approaches to estimate the best recharge zone and suitable locations of the pumping facilities in southwestern Taiwan for different hydrogeological scales. First, for the regional scale, this study employs numerical modelling, MODFLOW‐96, to simulate groundwater direction and the optimal recharge zone in the study area. Based on the model's calibration and verification results, this study preliminarily utilizes the simulated spatial direction of groundwater and compares the safe yield for each well group in order to determine the best recharge zone. Additionally, for the local scale, the micro‐hydrogeological characteristics are considered before determining the design locations of the pumping facilities. According to drawdown record data from six observation wells derived from pumping tests at the best recharge area, this study further utilizes the modified artificial neural network approach to improve the accuracy of the estimation parameters as well as to analyse the direction and anisotropy of the hydraulic conductivities of an equivalent homogeneous aquifer. The results suggested that the best locations for the pumping facilities are along the more permeable major direction. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
Soliz JG  Acebo HL 《Ground water》2001,39(3):339-347
The aim of this study is to apply a parsimonious hydrologic model to the Itxina karstic aquifer that can predict changes in discharge resulting from variable inputs (recharge). The Itxina Aquifer was divided into four cells corresponding to different recharge areas. Each cell was treated as a tank to characterize the conditions within the cell. In the model, when the reservoir boundaries coincide with the position of the siphons, the signal simulated is sensitive to input pulses of the recharge. This supports the hypothesis that the siphons are the controlling mechanism in the flow system of the aquifer. The good agreement between predicted and measured discharges demonstrates the ability of the model to simulate the flow in the Itxina Aquifer. These results demonstrated that the hydraulic conductivity increases downstream within the aquifer. The hydraulic conductivities obtained by calibration varied between 4.2 x 10(-3) m/s upstream of the aquifer, 6.0 x 10(-2) m/s in the central region, and 9.5 x 10(-1) m/s in the lower region of the aquifer. These values seem reasonable because the underground features in the principal caves show that the density of caves increases downstream in the Itxina Aquifer. The simple representation of the system produced results comparable to traditional ground water models with fewer data requirements and calibration parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号