共查询到2条相似文献,搜索用时 0 毫秒
1.
Pedro Villegas Vanesa Paredes Teresita Betancur Jean D. Taupin Luis E. Toro 《水文研究》2018,32(14):2158-2175
The coastal confined aquifer in the Gulf of Urabá (Colombia) is an important water source for the banana agro‐industry as well as for urban and rural communities. However, the main processes controlling recharge and mixing in the aquifer are still poorly understood. Hydrochemical analyses and stable isotope monitoring were conducted to (a) determine groundwater recharge origin, mean groundwater age, and the main processes governing groundwater chemistry and the potential mixing of marine water and the influence of diffusive processes from the two surrounding aquitard layers. Hydrochemical data indicate that the main processes affecting the dissolved chemical composition include cation exchange, dissolution of carbonated and CO2, and silicate weathering. δ18O and δ2H compositions combined with 14C data highlight the differences in climatic conditions between the recharge zone and the confined section of the aquifer, which is close to the Atlantic Ocean. Groundwater samples with 14C ages from recent to 28,300 years BP show a depleted isotopic trend ranging from ?6.43‰ to ?9.14‰ in δ18O and from ?43.2‰ to ?65.7‰ in δ2H. The most depleted δ18O and δ2H compositions suggest a cooler recharge climate than the current conditions (corresponding to the last glacial period of the late Pleistocene). Depleted δ13C values in the total dissolved inorganic carbon indicate the existence of organic material oxidation processes within the geologic formation. These results can be used or transferred to enhance groundwater modelling efforts in other confined coastal aquifers of South America where scarcity of long‐term monitoring data limits water resources planification under a changing climate. 相似文献
2.
José Manuel Gil-Márquez Beatriz De la Torre Matías Mudarra Jürgen Sültenfuß Bartolomé Andreo 《水文研究》2020,34(20):3981-3999
Environmental dating tracers (3H, 3He, 4He, CFC-12, CFC-11, and SF6) and the natural spring response (hydrochemistry, water temperature, and hydrodynamics) were jointly used to assess mixing processes and to characterize groundwater flow in a relatively small carbonate aquifer with complex geology in southern Spain. Results evidence a marked karst behaviour of some temporary outlets, with sharp and rapid responses to precipitation events, while some perennial springs show buffer and delayed variations with respect to recharge periods. The general geochemical evolution shows a pattern, from higher to lower altitudes, in which mineralization and the Mg/Ca ratio rise, evidencing longer water–rock interaction. The large SF6 concentrations in groundwater suggest terrigenic production, whereas CFC-11 values are affected by sorption or degradation. The groundwater age in the perennial springs—as deduced from CFC-12 and 3H/3He—points to mean residence times of several decades, although the large amount of radiogenic 4He in samples indicate a contribution of old groundwater (free of 3H and CFC-12). Lumped parameter models and shape-free models were created based on 3H, tritiogenic 3He, CFC-12, and radiogenic 4He data in order to interpret the age distribution of the samples. Results evidence the existence of two mixing components, with an old fraction ranging between 160 and 220 years in age. The correlation of physicochemical parameters with some dating parameters, derived from the mixing models, serves to explain the hydrogeochemical processes occurring within the system. Altogether, long residence times are shown to be possible in small alpine systems with a clearly karst behaviour if the geological setting features highly tectonized media including units with diverse hydrogeological characteristics. These findings highlight the importance of applying different approaches, including groundwater dating techniques, when studying such groundwater flow regimes. 相似文献