首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wang  Tao  Wautier  Antoine  Liu  Sihong  Nicot  François 《Acta Geotechnica》2022,17(6):2449-2463

In recent years, binary mixtures have been the subject of numerous experimental and numerical studies. However, few attempts have been made on investigating the effect of fines content (fc) on the non-associated plasticity of binary mixtures, which is significant for constitutive modelling of such material. Thanks to 2D DEM simulations, this study aims to provide an understanding of how fc affects the non-associated character of the flow rule and the resulting material instability in binary mixtures. For under-filled materials (where coarse grains constitute most of the load-bearing skeleton), fine grains help to stabilize the granular assembly (1) by limiting macroscopic plastic deformations, which results in strain hardening, and (2) by reducing contractive microstructure reorganizations, which reduces the gap between the associated and non-associated flow rule directions. Fines content influences the plastic flow direction but has no influence on normal direction of yield surface. Eventually, perspectives on mesoscale mechanisms are given to highlight the role of fine grains in the geometrical and mechanical properties of granular materials.

  相似文献   

2.
Xu  Zengguang  Ye  Yan 《Natural Hazards》2022,113(1):63-102

Internal instability is a phenomenon of fine particle redistribution in granular materials under the seepage action and consequent change in the soil’s internal structure and hydraulic and mechanical properties. It is one of the primary causes of failures of sand-gravel foundations and embankment dams. The criteria establishment is considered the key to solving the erosion problems, so the existing internal stability criteria need a review and classification to study the recent development trends in soil seepage and erosion. Therefore, this paper aims at reviewing the internal stability factors of gap-graded soil with a focus on the internal erosion mechanism and internal stability evaluation based on geometric and hydraulic criteria. Firstly, the paper compared the effect of several commonly used geometric criteria for gap-graded soil evaluation, such as particle size, fine content, void ratio, and fractal dimension. Furthermore, it provided a hydraulic criteria overview and analyzed the effects of the hydraulic gradient, hydraulic shear stress, confining pressure, and pore velocity on internal erosion. The geometric–hydraulic coupling methods were introduced, with a detailed elaboration of the erosion resistance index method based on accumulated dissipated energy. The capabilities and limitations of these criteria were discussed throughout the paper. It was found that combined Kezdi’s criterion and Kenney and Lau’s criterion is more reliable to evaluate internal stability of soil. The gap-graded soil with fine particle content higher than 35% is not necessarily internally stable. Finally, the energy-based method (erosion resistance index method) can effectively reproduce the total amount of erosion mass and the final spatial distribution of fine particles and identifies erosion. The review's outcome can be used as a basis to evaluate the internal erosion risk for gap-graded soils. The evaluation methods discussed here can help identify the zones of relatively high erosion potential.

  相似文献   

3.
The paper develops the stiffness relationship between the movements and forces among a system of discrete interacting grains. The approach is similar to that used in structural analysis, but the stiffness matrix of granular material is inherently nonsymmetric because of the geometrics of particle interactions and of the frictional behavior of the contacts. Internal geometric constraints are imposed by the particles' shapes, in particular, by the surface curvatures of the particles at their points of contact. Moreover, the stiffness relationship is incrementally nonlinear, and even small assemblies require the analysis of multiple stiffness branches, with each branch region being a pointed convex cone in displacement space. These aspects of the particle-level stiffness relationship give rise to three types of microscale failure: neutral equilibrium, bifurcation and path instability, and instability of equilibrium. These three pathologies are defined in the context of four types of displacement constraints, which can be readily analyzed with certain generalized inverses. That is, instability and nonuniqueness are investigated in the presence of kinematic constraints. Bifurcation paths can be either stable or unstable, as determined with the Hill–Bažant–Petryk criterion. Examples of simple granular systems of three, 16, and 64 disks are analyzed. With each system, multiple contacts were assumed to be at the friction limit. Even with these small systems, microscale failure is expressed in many different forms, with some systems having hundreds of microscale failure modes. The examples suggest that microscale failure is pervasive within granular materials, with particle arrangements being in a nearly continual state of instability.  相似文献   

4.
Internal erosion (IE) affects the stability of natural and reinforced materials by causing instability within their granular structure. The dislodgement and transport of eroded particles affect both the particulate concentration of eroding fluid and the pore network of eroded material. In this study, we examined these modifications using a transport model with a finite element code. First, IE tests on chemically reinforced sand columns were performed to obtain information about eroded material loss of mass, particulate concentration of effluent, porosity and permeability modifications, and existing IE stages. Second, based on experimental results, a mathematical one‐dimensional model has been formulated to monitor the evolution and spatial distribution of erodible solids, fluidized particles, porosity, permeability, and seepage stresses. The model consists of a set of coupled nonlinear differential equations solved in sequence. It provides valuable information about the extent and the dynamics of structural changes, which can be used to estimate an IE time for the hydraulic work to reach failure. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
颗粒配比对岩石力学特征影响的数值模拟研究   总被引:1,自引:1,他引:0  
岩石是矿物颗粒的集合体同时也是一种重要的非均质材料,了解它的力学特征对岩土工程及矿产开采都具有重要的指导作用。作为典型的颗粒材料,颗粒单元体的粒径分布配比必然影响着岩石的宏观力学表现。通过设置不同体积配比下的颗粒材料单元体,利用PCF2D软件模拟了相同颗粒材料单元体不同配比下岩石模型的力学特征。模拟结果表明颗粒单元体配比对岩石的力学特征有明显的影响。在模拟过程中大颗粒的配比显著影响着岩石的抗压强度,大颗粒含量相对越高,抗压强度越大。而细颗粒的配比影响着岩石的抗拉强度,细颗粒含量相对越高,抗拉强度越大,但是过多的细颗粒会降低岩石的抗拉强度。考虑岩石压缩过程中裂缝形态的影响。结果表明均匀分布、5:2:3、7:2:1的颗粒配比形成了贯穿裂缝,而1:2:7和3:2:5的颗粒配比未能形成贯穿裂缝,且细颗粒配比越高,裂缝数目出现高值的概率也越大。   相似文献   

6.
张超  展旭财  杨春和 《岩土力学》2013,34(7):2077-2083
粗粒料是一定级配的岩石颗粒集合体,具有独特的物理力学特性。以粗粒料室内三轴固结排水试验成果为基础,基于离散元颗粒流理论,从细观角度出发,以PFC3D为工具,通过自编程及二次开发,得到按级配生成的粗粒料三轴试验数值模型。引入clump颗粒考虑颗粒形状对粗粒料强度及变形的影响,分析剪胀、颗粒形状、颗粒重排的关系。结果表明:颗粒形状是影响粗粒料强度与变形的主要因素,在其他细观参数一定的情况下,改变颗粒形状,可以显著影响粗粒料的力学行为;BPM模型的应力-应变关系只在低围压下与试验值吻合,随着围压的增大,偏差越来越大;而引入clump颗粒的PFC3D数值模型能很好地模拟粗粒料室内三轴固结排水试验的应力-应变特性,但由于BPM及clump都是刚性颗粒,没有考虑颗粒变形及破碎,造成应变剪胀偏大。  相似文献   

7.
离散态颗粒物质具有明显不同于普通固体的界面摩擦特性,而摩擦系数是界面摩擦特性的主要表征参数之一。通过倾斜仪开展不同级配条件下颗粒材料的滑动摩擦试验,基于视频图像解析以及函数拟合方法,建立滑动位移与滑动时间的最佳函数拟合关系,分析滑动过程的加速度并推算底面动摩擦系数,研究颗粒粒径、质量配比等级配因素对颗粒材料底面动摩擦系数的影响。研究结果表明:(1)各级配颗粒材料的平均底面动摩擦系数随着运动时间的增加均呈线性减小趋势;(2)对于单粒径材料,与粗颗粒相比,细颗粒具有较大的底面动摩擦系数;(3)对于双粒径材料,随着细颗粒含量的增加,颗粒材料的平均底面动摩擦系数先急剧降低至最小值(细颗粒含量≤40%),后急剧增加(细颗粒含量40% ~60%),最终增加趋势明显变缓(细颗粒含量≥60%)。  相似文献   

8.
Granular soils subjected to flow through their soil skeleton can show a behaviour in which fine particles migrate through the pore space between coarser particles. This process is called internal instability or suffusion. This contribution deals with the numerical analysis of the migration of fine particles in a soil column subjected to fluid flow with unresolved coupled computational fluid dynamics–discrete element method (CFD–DEM) with special regards to the used drag force correlation. The contribution investigates the influence of the Schiller–Naumann model and its extension with a voidage term on the migration behaviour of fine particles. The voidage term is further varied with a parameter, which controls the impact of the change of the void fraction on the drag force. It could be observed that the Schiller–Naumann model does not yield in a suffusive behaviour while the extended models show significant particle migration. Thereby, increasing the impact of the void fraction on the drag force results in stronger particle migration. These results reveal the need for good validation techniques. They indicate how the drag force correlation can be adapted to depict the correct particle migration behaviour.  相似文献   

9.
流态化运动是高速远程滑坡的主要运动形式,是揭示高速远程滑坡运动机理的重要基础。基于粒子图像测速(PIV)分析方法,采用物理模型试验对不同粒径组成条件下的颗粒流内部的速度分布、剪切变形及流态特征进行了研究,并对高速远程滑坡流态化运动特征进行了讨论分析。结果表明:碎屑流流态化运动特征与颗粒粒径呈显著的相关性,随着粒径的减小或细颗粒含量的增加,颗粒流底部相对于边界的滑动速度以及整体的运动速度均呈逐渐减小的趋势,颗粒流内部剪切变形程度增加,颗粒的运动形式由“滑动”向“流动”转变;当颗粒粒径较小或细颗粒含量较高时,颗粒流内部剪切速率增大的趋势在颗粒流底部更加显著,反映了粒径减小有助于促进颗粒流内部剪切向底部的集中;在同一颗粒流的不同运动阶段及不同纵向深度,其流态特征具有显著差别,颗粒流前缘及尾部主要呈惯性态,颗粒间以碰撞作用为主,而主体部分则主要呈密集态,颗粒间以摩擦接触作用为主;在颗粒流表面及底部,颗粒间相互作用方式主要是碰撞作用,中间部分则以摩擦作用为主;对于不同粒径的颗粒流,随着粒径的增大或粗颗粒含量的增加,颗粒流内部颗粒的碰撞作用加强,颗粒流整体趋于向惯性态转变。  相似文献   

10.
Internal erosion by suffusion can change dramatically the constitutive behavior of granular materials by modifying the fabric of granular materials. In this study, the effect of an internal fluid flow on granular materials is investigated at the material point scale using the numerical coupling between a discrete element method (DEM) and a pore-scale finite volume (PFV) coupling scheme. The influence of the stress state and the hydraulic loading (direction and intensity) on the occurrence of grain transport in dense widely graded granular samples is thus investigated and interpreted in terms of micromechanics. In particular, it is shown that grain transport is increased when the macroscopic flow direction is aligned with the privileged force chain orientation. The stress-induced microstructure modifications are shown to influence the transport distances by controlling the number of rattlers.  相似文献   

11.
土体渗透稳定性判定准则   总被引:1,自引:0,他引:1  
常东升  张利民 《岩土力学》2011,32(Z1):253-259
土体的渗透稳定性是指在渗流条件下宽级配土体内粗颗粒阻止细颗粒流失的能力,土体的渗透稳定性受几何条件、水力条件和物理条件的影响。从几何条件出发,通过对收集的167种土的室内渗透侵蚀试验结果的分析,基于对土体渗透稳定性控制变量地研究,将土分成良好级配土和间断级配土两大类;基于细粒(小于0.063 mm)含量的不同,将每类土又细分为3类,针对不同细类土提出了不同的渗透稳定性几何判定准则。从水力条件出发,研究了应力状态对土体渗透侵蚀起动及破坏水力梯度的影响。试验结果表明,起动水力梯度和破坏水力梯度都随着围压的增大而增大,是由于增大围压使得颗粒间的摩擦力增大的结果。  相似文献   

12.

Empirical evidence has shown that particle breakage affects the mechanical behaviour of granular materials. The source of this mechanism takes place at the particle scale, and the main consequence on the macromechanical behaviour is increasing compressibility. Due to the inverse correlation between particle size and particle crushing strength, coarse rockfill materials are particularly vulnerable to mechanical degradation due to particle breakage. However, such coarse materials do not fit in standard laboratory devices, and the alternative of large sample testing is usually unavailable or too expensive. Alternatively, recent works have proposed multi-scale approaches using the discrete element method (DEM) to carry out numerical testing of coarse crushable materials, although few studies have focused on size effects. This article presents the application of a DEM bonded-cell model to study particle size-strength correlation on angular rock aggregates. Each particle is modelled by a cluster of perfectly rigid polyhedral cells with Mohr–Coulomb contact law. Constant cell density within particles implies that the presence of potential fragmentation planes increases with size. Therefore, particle strength decreases with size. A comprehensive sensitivity analysis was carried out through 1477 particle crushing simulations in a given particle size. Based on published experimental data on calcareous rock aggregates, part of the simulations were used for calibration, and 97 additional simulations of a coarser size fraction were performed for validation. The results show a good agreement with the empirical data in terms of size effect and data scatter through Weibull statistics.

  相似文献   

13.
马刚  常晓林  刘嘉英  周伟 《岩土力学》2015,36(Z1):181-186
由地下水引起的静力液化可能是边坡失稳的隐含机制之一,松砂在不排水剪切条件下可能发生静力液化,密实的颗粒集合体在特定的应变路径下也会出现相似的现象,即试样整体发生急剧的失稳,应力状态尚处于峰值强度线以内。该种失稳模式称为分散性失稳,是为了强调失稳模式中没有出现应变局部化或者剪切带。采用连续-离散耦合分析方法,研究由不规则形状颗粒组成的密实集合体在等比例应变加载路径下的力学特性。根据Hill的材料失稳理论,当试样的应力增量 和应变增量 对应的2阶功 为负时,试样即发生不可逆的整体失稳破坏。以根据不同等比例应变路径得到 曲线为界,在 平面内将试样的应力状态分为剪缩区、剪胀-稳定区和剪胀-非稳定区,连接不同围压下试样发生分散性失稳时的应力状态形成失稳线发现,峰值强度线高于临界状态线,临界状态线高于失稳线。  相似文献   

14.
Field tests are widely used for soil characterization in geotechnical applications in spite of implementation difficulties. The light penetrometer is a well-known testing tool for fine soils, but the physical interpretation of the output data in the case of coarse granular materials is far less evident. Indeed, the data are considerably more sensitive in this case to various parameters such as fabric structure, particle shapes or the applied impact energy. In order to achieve a better understanding of the penetration process into a coarse granular material, a numerical study was performed by means of contact dynamics simulations. The penetration of a moving tip in a sample composed of irregular grain shapes was studied and the influence of the driving velocity and input energy on the penetration strength was analyzed. The results show that the latter grows with both the penetration rate and energy, despite the strong fluctuations occur due to a jamming–unjamming process in which the contact network connectivity evolves intermittently in correlation with the penetration strength. This analysis suggests that the time-averaged data provided by a penetrometer is reliable information from which the bulk strength properties of coarse granular materials can be evaluated.  相似文献   

15.
戴北冰  杨峻 《岩土力学》2015,36(Z1):619-623
针对含细颗粒砂土的反常剪切行为,开展了双轴剪切试验的数值模拟,从宏细观角度分析了其反常剪切行为发生的内在机制。数值模拟结果表明,增加围压能提高含细颗粒砂土的抗剪切液化能力,该反常行为的根本原因在于围压上升使得粗细颗粒更有效地参与了力链传递,增加了颗粒间的接触,增强了土体的密实度。细颗粒在土骨架中的移动对砂土的液化起着至关重要的作用,而粗颗粒仅起次要作用。研究表明,细颗粒在剪切过程中会持续从有效土骨架中移出成为无效颗粒,而部分粗颗粒也因失去细颗粒的支撑作用会脱离土骨架,直至试样最终液化。细颗粒一般参与土骨架中的弱力链,而粗颗粒则一般参与强力链,导致细颗粒较粗颗粒更容易在土骨架中移动。  相似文献   

16.
The effectiveness of filters to counteract internal erosion in earth structures is particularly related to their ability to capture fine particles moving under seepage flow through the porous material. More precisely, fine particles are likely to be trapped by the narrowest paths between pores: the constrictions. This paper proposes a methodology to compute the constriction size distribution of model granular filters taking into account the relative density of the material. The approach is based upon probabilistic methods which adopt stated simple geometric packing arrangements to represent the solid structure in the extreme density states. Two new models are proposed for the design of the constriction size distribution according to the type of filter grading: continuously graded or gap-graded materials. The models require the usual material characteristics: the grading curve, and the minimum and maximum void ratios for this material. Calibrated on the basis of statistical analyses over numerical assemblies of spheres generated by a discrete element method, the proposed new models constitute a promising tool to significantly improve the modeling of filtration processes in granular materials.  相似文献   

17.
18.
堆石料级配缩尺方法对其室内试验结果的影响   总被引:2,自引:0,他引:2  
傅华  韩华强  凌华 《岩土力学》2012,33(9):2645-2649
对同一条现场级配曲线通过缩尺方法缩制成不同的试验模拟级配,进行了密度、力学和渗流特性的对比试验。试验结果显示:全采用等量替代法缩尺后由于小于5 mm含量保持不变,粗、细颗粒充填关系不理想,对应于密度和力学特性最差,渗透系数最大,随着混合法中相似级配法的使用,小于5 mm含量逐渐增加,粗、细颗粒充填关系得到明显改善,缩尺后的密度和力学特性逐渐增加,却带来渗透系数的逐渐减小。目前国内相关规程、规范对级配缩尺方法并没有做具体、明确的规定,有必要通过大量室内和现场对比试验,总结出室内科学的缩尺方法并建立反映缩尺效应的经验公式。  相似文献   

19.
Shi  X. S.  Zeng  Yiwen  Shi  Congde  Ma  Zhanguo  Chen  Wenbo 《Acta Geotechnica》2022,17(9):3839-3854

Gap-graded granular soils are used as construction materials worldwide, and their hydraulic conductivity depends on their relative content of coarse and fine grains, initial conditions, and particle shape. In this study, a series of constant head hydraulic conductivity tests were performed on gap-graded granular soils with different initial relative densities, fine contents, and particle shapes. The test results show that the hydraulic conductivity decreases with an increase in fine fraction and then remains approximately constant beyond the “transitional fine content.” The role of the structural effect on the hydraulic conductivity is different from that on the mechanical properties (such as stiffness and shear strength). This can be attributed to the degree of filling within inter-aggregate voids, disturbance of soil structure, and densified fine bridges between coarse aggregates. The equivalent void ratio concept was introduced into the Kozeny–Carman formula to capture the effect of fines (aggregates) on the “coarse-dominated” (“fine-dominated”) structure, and a simple model is proposed to capture the change of hydraulic conductivity of gap-granular soils. The model incorporates a structural variable to capture the effect of fines on “coarse-dominated” structure and coarse aggregates on “fine-dominated” structure. The performance of the model was verified with experimental data from this study and previously reported data compiled from the literature. The results reveal that the proposed model is simple yet effective at capturing the hydraulic conductivity of gap-graded granular soils with a wide range of fine contents, initial conditions, and particle shapes.

  相似文献   

20.
The transport and filtration behaviour of fine particles (silt) in columns packed with sand was investigated under saturated conditions by using step-input injections. Three samples of different particle size distributions (coarse medium, fine medium and a mixture of both) were used in order to highlight the influence of the pore size distribution on particle retention and size selection of recovered particles. The main parameters of particle transport and deposition were derived from the adjustment of the experimental breakthrough curves by an analytical model. The higher particle retention occurs in the mixture medium, owing to its large pore size distribution, and the filtration coefficient decreases with increasing flow velocity. Particle size distribution of recovered particles shows a thorough size selection: (i) the first recovered particles are the coarser ones; (ii) the size of the recovered particles increases with increasing flow velocity and enlarger pore distribution of the medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号