首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
谭文辉  任奋华  苗胜军 《岩土力学》2007,28(Z1):616-618
现有的边坡加固方案中,基本上都是用岩土的峰值强度来确定边坡的临界滑面和锚固长度。实际上,边坡出现滑动后,滑面保持残余变形和抵抗外部载荷的能力出现了衰减,滑面上的强度只是残余强度,采用一种混合方法进行边坡加固,即用峰值强度来确定边坡的临界滑面,用残余强度来确定锚固长度。研究表明,采用混合方法对边坡进行加固可以提高边坡加固工程的安全性,具有较大的实际意义。  相似文献   

2.
李斌  许梦国  刘艳章 《岩土力学》2016,37(2):390-398
岩石强度准则一般是通过低围压岩石力学试验提出,这些准则在高围压下得到的岩石强度比实测强度偏大。为解决这一问题,提出岩石临界状态围压的概念,并推导得到当围压达到临界状态围压时,偏应力为常数,临界断裂角为45°,以广泛使用的Mohr-Coulomb和Hoek-Brown准则为例,将其应用到准则的改进中。通过完整岩石三轴试验数据对改进准则的准确性和适用性进行验证,分析结果表明:应用岩石临界状态围压改进的强度准则参数对围压变化的敏感度较低,其不仅保持了原准则在低围压时评估岩石强度的一致性、准确性,而且在高围压时其评估的强度与试验强度较一致,解决了高应力条件下原强度准则高估岩石强度的问题。  相似文献   

3.
The microscopic and macroscopic behaviors of assemblages of monodisperse ellipsoids with different particle shapes were studied using the discrete element method. Four samples were created with 1170 identical prolate ellipsoids. The samples were compressed isotropically to 100 kPa. Then triaxial compression tests were carried out to very large strains until the ultimate state was reached. This paper presents typical macroscopic result including stress–strain relationship and volumetric behavior. In addition, the fabric of the samples was examined at the initial state, at the peak shear strength state, and at the ultimate state. We studied the evolution of three vector‐typed micromechanical arguments with strain including the particle orientation, branch vector, and normal contact force. The normal contact force (micromechanical argument) was found to have a direct relationship with the principal stress ratio (macroscopic parameter). The angles between these vectors were also investigated. The maximum angle between vectors is related to particle shape. The results indicate that the distributions and the maximum values of these angles do not change with loading. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
The yield vertex non‐coaxial theory is implemented into a critical state soil model, CASM (Int. J. Numer. Anal. Meth. Geomech. 1998; 22 :621–653) to investigate the non‐coaxial influences on the stress–strain simulations of real soil behaviour in the presence of principal stress rotations. The CASM is a unified clay and sand model, developed based on the soil critical state concept and the state parameter concept. Without loss of simplicity, it is capable of simulating the behaviour of sands and clays within a wide range of densities. The non‐coaxial CASM is employed to simulate the simple shear responses of Erksak sand and Weald clay under different densities and initial stress states. Dependence of the soil behaviour on the Lode angle and different plastic flow rules in the deviatoric plane are also considered in the study of non‐coaxial influences. All the predictions indicate that the use of the non‐coaxial model makes the orientations of the principal stress and the principal strain rate different during the early stage of shearing, and they approach the same ultimate values with an increase in loading. These ultimate orientations are dependent on the density of soils, and independent of their initial stress states. The use of the non‐coaxial model also softens the shear stress evolutions, compared with the coaxial model. It is also found that the ultimate shear strengths by using the coaxial and non‐coaxial models are dependent on the plastic flow rules in the deviatoric plane. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
The strength parameter mi in the Hoek–Brown strength criterion is empirical and was developed by trial and error. To better understand the fundamental relationship between mi and the physical characteristics of intact rock, this paper presents a systematic study of mi by representing intact rock as a densely packed cemented particle material and simulating its mechanical behavior using particle flow modeling. Specifically, the three‐dimensional particle flow code (PFC3D) was used to conduct numerical true triaxial compression tests on intact rock and to investigate the effect of non‐spherical micro‐particle parameters on mi. To generate numerical intact rock specimens containing non‐spherical micro‐particles, a new genesis process was proposed, and a specific loop algorithm was used based on the efficiency of the process and the acceptability of generated specimens. Four main parameters—number, aspect ratio, size, and shape—of non‐spherical micro‐particles were studied, and the results indicated that they all have great effect on mi. The strength parameter mi increases when the number, aspect ratio, or size is larger or the shape becomes more irregular, mainly as a result of the higher level of interlocking between particles. This confirms the observations from engineering experience and laboratory experiments. To simulate the right strength parameter mi, it is important to use appropriate non‐spherical micro‐particles by controlling these four parameters. This is further demonstrated by the simulation of two widely studied rocks, Lac du Bonnet granite and Carrara marble. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
Experimental evidence has indicated that the critical state line determined from undrained compression tests is not identical to that determined from undrained extension tests. The purpose of this paper is to investigate a modelling method that accounts for the non‐uniqueness of critical state lines in the compression and the extension testing conditions. Conventional elastic–plastic cap models can predict only a unique critical state line for the compression and the extension tests. A new micromechanical stress–strain model is developed considering explicitly the location of critical state line. The model is then used to simulate undrained triaxial compression and extension tests performed on isotropically consolidated samples with different over‐consolidated ratios. The predictions are compared with experimental results as well as that predicted by models with kinematic hardening of yield surface. All simulations demonstrate that the proposed micromechanical approach is capable of modelling the undrained compression and the undrained extension tests. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
卸荷状态下粘性土强度特性试验研究   总被引:16,自引:6,他引:16  
通过大量的室内抗剪强度试验,提出了卸荷比、临界卸荷比、极限卸荷比和强度残留率概念。用卸荷比来衡量应力水平的变化,以探讨粘性土在卸荷状态下强度变化规律以及估算卸荷影响区的范围和影响区内强度的衰减规律,对基坑等卸荷类工程的设计和施工具有一定的指导意义。  相似文献   

8.
Mechanical properties of methane hydrate‐bearing soils are complex. Their behavior undergoes a significant change when hydrates dissociate and become methane gas. On the other hand, methane hydrates are ice‐like compounds and, depending on the hydrate accumulation habits and the degree of hydrate saturation, may cement soil particles into stronger and stiffer soils. A new constitutive model is proposed that is capable of capturing essential characteristics of hydrate‐bearing soils. The core of the model includes the spatial mobilized plane concept; a transformed stress, tij; the critical state; and the subloading framework. The proposed model gives soil responses due to stress changes or hydrate saturation changes or both. The performance of the model has been found satisfactory, over a range of hydrate saturation and confining pressures, using triaxial test data from laboratory‐synthesized samples and from field samples extracted from Nankai Trough, Japan. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
王秋生 《岩土力学》2008,29(12):3179-3185
临界状态土力学中孔隙比-平均有效压力 坐标下 压缩线和临界状态线可以简化为平行的直线,倾斜的椭圆屈服面是能够考虑土体各向异性的数学表达最简单的屈服面形式。结合临界状态土力学理论和倾斜的椭圆屈服面方程,给出了轴对称和平面应变情况下 固结软黏土的临界不排水强度比的解析式,通过一些试验数据对这些解析式进行了验证,最后给出了便于工程应用的临界不排水强度比关于有效内摩擦角的简易表达式。  相似文献   

10.
边坡稳定临界破坏状态的动力学评判方法   总被引:7,自引:1,他引:7  
针对目前用有限单元法分析边坡稳定时,对临界状态判别存在的一些问题和不足,提出了边坡稳定临界破坏状态的动力学评判方法。该方法以加速度是否为零作为边坡是否稳定的判据,同静力方法相比,具有物理意义明确,计算易收敛等优点。在分析滑动本质的基础上,提出通过搜索剪应变最大的点以确定临界滑裂面的方法。算例证明了临界状态动力学评判方法的可靠性。  相似文献   

11.
吴越  杨仲轩  徐长节 《岩土力学》2016,37(9):2569-2576
采用离散元方法,利用半径扩展法和重力沉积法分别生成具有初始各向同性和各向异性内结构的试样,并开展三轴不排水压缩和拉伸试验,研究不同制样方法产生的初始各向异性对砂土宏微观力学特性及其临界状态的影响。运用组构张量对砂土的各向异性进行量化,分析不同初始组构各向异性对组构张量演化的影响并确定了组构张量的临界值。试验结果表明:初始组构各向异性对试样的剪胀性有重要影响,由于受重力影响形成初始各向异性,其各向异性程度越大、组构方向与加载方向越一致,剪胀性越显著;初始组构各向异性对试样的临界状态没有影响,砂土的组构张量具有唯一的临界状态值。  相似文献   

12.
The aim of this paper is to formulate a micromechanics‐based approach to non‐aging viscoelastic behavior of materials with randomly distributed micro‐fractures. Unlike cracks, fractures are discontinuities that are able to transfer stresses and can therefore be regarded from a mechanical viewpoint as interfaces endowed with a specific behavior under normal and shear loading. Making use of the elastic‐viscoelastic correspondence principle together with a Mori‐Tanka homogenization scheme, the effective viscoelastic behavior is assessed from properties of the material constituents and damage parameters related to density and size of fractures. It is notably shown that the homogenized behavior thus formulated can be described in most cases by means of a generalized Maxwell rheological model. For practical implementation in structural analyses, an approximate model for the isotropic homogenized fractured medium is formulated within the class of Burger models. Although the approximation is basically developed for short‐term and long‐term behaviors, numerical applications indicate that the approximate Burger model accurately reproduce the homogenized viscoelastic behavior also in the transient conditions.  相似文献   

13.
陈琛  冷伍明  杨奇  金子豪  聂如松  邱鋆 《岩土力学》2018,39(7):2461-2472
为研究泥皮、粗糙度对桩-土接触面力学特性的影响规律,根据灌注桩成孔后的孔径-深度曲线,应用统计分析法获得了桩侧凸出尺寸和粗糙度的分布频率规律,以此构建了表面光滑和梯形凹槽混凝土板来模拟实际桩侧表面粗糙度。在此基础上,开展了不同泥皮厚度、粗糙度条件下的混凝土-砂土接触面大型直剪试验。其研究结果表明:无泥皮条件下粗糙接触面,其剪切应力-切向位移关系曲线呈软化型;泥皮厚度为5、10 mm条件下,呈硬化型。剪切模量G0.02随泥皮厚度增加而衰减。对光滑混凝土板,其接触面峰值剪切强度和峰值摩擦角随泥皮厚度的增加呈指数关系衰减;对粗糙混凝土板,峰值剪切强度和峰值摩擦角随泥皮厚度的增加近似呈线性衰减。初始泥皮越厚,试验后的泥皮土和泥皮越厚,接触面剪切强度越低。无泥皮条件下粗糙度对接触面峰值剪切强度的影响规律:存在一个临界粗糙度Icr =10 mm,当混凝土板的粗糙度I< Icr时,接触面峰值剪切强度和峰值摩擦角随粗糙度的增大而增大;当I≥Icr时,二者随着接触面粗糙度的增大而减小,泥皮存在会影响改变这一规律。  相似文献   

14.
According to classical critical state theory (CST) of granular mechanics, two analytical conditions on the ratio of stress invariants and the void ratio are postulated to be necessary and sufficient for reaching and maintaining critical state (CS). The present work investigates the sufficiency of these two conditions based on the results of a virtual three-dimensional discrete element method experiment, which imposes continuous rotation of the principal axes of stress with fixed stress principal values at CS. Even though the fixity of the stress principal values satisfies the two analytical CST conditions at the initiation of rotation, contraction and abandonment of CS occur, which proves that these conditions may be necessary but are not sufficient to maintain CS. But if fixity of stress and strain rate directions in regard to the sample is considered at CS, the two analytical conditions of CST remain both necessary and sufficient. The recently proposed anisotropic critical state theory (ACST) turned this qualitative requirement of fixity into an analytical condition related to the CS value of a fabric anisotropy variable A defined in terms of an evolving fabric tensor and the plastic strain rate direction, thus, enhancing the two CST conditions by a third. In this way, the three analytical conditions of ACST become both necessary and sufficient for reaching and maintaining CS. In addition, the use of A explains the observed results by relating the stress-strain response, in particular the dilatancy, to the evolution of fabric by means of the relevant equations of ACST.  相似文献   

15.
百色重塑膨胀土抗剪强度的试验研究   总被引:3,自引:0,他引:3  
赵文建  湛文涛  倪啸  杨和平 《岩土力学》2009,30(Z2):244-248
通过对不同初始含水率、不同干密度下百色重塑膨胀土直剪试验,研究了百色击实重塑膨胀土在不同垂直压力下的峰值强度和残余强度,分析了其抗剪强度的作用机制。研究表明:随着干密度的增加,土体的峰值强度增大,残余强度变化不大;随着上覆荷载的增加,土体的抗剪强度明显增加,表明物理处治技术填筑膨胀土路堤能保证其强度和稳定性;干密度对重塑膨胀土的峰值强度影响较大,而对残余强度影响很小;重塑膨胀土的残余强度与它的结构、应力历史、起始含水率没有关系,而只取决于黏土颗粒的形态、大小、含量和矿物成分等因素。  相似文献   

16.
孙翔  郭晓霞  邵龙潭 《岩土力学》2015,36(Z1):85-93
相对于其他临界状态模型,基于热力学的临界状态(TCS)模型不需要引入塑性势假设,能够自动满足热力学定律。通过对TCS的修正,使其能够模拟初始K0固结的影响,利用了返回映射算法进行了TCS模型的ABAQUS本构二次开发,通过与ABAQUS内嵌的修正剑桥模型(MCC)计算结果的对比,证实了该程序的可靠性。对模型中的2个控制屈服面形状的参数进行了讨论,分析了它们对应力-应变关系与剪胀关系的影响,修改TCS模型参数可以实现非椭圆的屈服面,进而拓展了模型的适用范围,不同的参数对于屈服面形状和大小的影响也有所不同。同时还比较了采用考虑K0固结及旋转硬化的TCS模型与不考虑K0固结及旋转硬化的MCC模型所得到的应力-应变关系与剪胀关系的差异。对于真实土体,K0固结及旋转硬化是土体的基本力学特性。最后证明了TCS模型较MCC模型(模型中没有考虑旋转硬化与K0固结对硬化规律的影响)可以很好地模拟该特性,所以更加有效。  相似文献   

17.
Barodesy is a new approach to constitutive modelling of soil. It is based on Goldscheider's principles and maps stretching directions onto corresponding stress directions with the help of a simple exponential function. This mapping also determines a critical state surface in principal stress space. The article investigates this surface and relates it to the well‐known Matsuoka–Nakai failure criterion. It turns out that the difference between these two surfaces is negligible for practical applications. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
膨胀土具有胀缩性、多裂隙性和超固结性,在自然条件下极易受到降雨和蒸发的干湿循环效应,土的抗剪强度会随着时间的延续而衰减,造成边坡失稳。以荆门弱膨胀土为研究对象,对经历不同干湿循环次数的荆门弱膨胀土开展环剪试验,并探讨分析其峰值强度和残余强度的变化规律。试验结果表明,试样的抗剪强度与法向压力的大小有关,无论是峰值强度还是残余强度均随着法向压力的增大而增大,同时法向压力越大,试样达到残余强度时所需要的剪切位移也会越小;随着干湿循环次数的增加,膨胀土的峰值强度明显衰减,残余强度虽略有变化但并不明显,可近似认为稳定;经历3次干湿循环后膨胀土的峰值黏聚力和残余黏聚力指标已经近乎一致,峰值内摩擦角和残余内摩擦角之间始终保持在2o左右的差异,基本不受循环次数的影响。  相似文献   

19.
Artificial ground freezing (AGF) is a commonly used technique in geotechnical engineering for ground improvement such as ground water control and temporary excavation support during tunnel construction in soft soils. The main potential problem connected with this technique is that it may produce heave and settlement at the ground surface, which may cause damage to the surface infrastructure. Additionally, the freezing process and the energy needed to obtain a stable frozen ground may be significantly influenced by seepage flow. Evidently, safe design and execution of AGF require a reliable prediction of the coupled thermo‐hydro‐mechanical behavior of freezing soils. With the theory of poromechanics, a three‐phase finite element soil model is proposed, considering solid particles, liquid water, and crystal ice as separate phases and mixture temperature, liquid pressure, and solid displacement as the primary field variables. In addition to the volume expansion of water transforming into ice, the contribution of the micro‐cryo‐suction mechanism to the frost heave phenomenon is described in the model using the theory of premelting dynamics. Through fundamental physical laws and corresponding state relations, the model captures various couplings among the phase transition, the liquid transport within the pore space, and the accompanying mechanical deformation. The verification and validation of the model are accomplished by means of selected analyses. An application example is related to AGF during tunnel excavation, investigating the influence of seepage flow on the freezing process and the time required to establish a closed supporting frozen arch. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
The conventional interpretation methods of pressuremeter testing effectively approximate pressuremeter membranes as infinitely long. As a result, the effects of the two‐dimensional geometry of pressuremeters are ignored, leading to an overestimation of soil shear strength by pressuremeter testing, as demonstrated in several previous studies. This paper presents results of a numerical study of two‐dimensional geometry effects on self‐boring pressuremeter tests in undrained clay. The results are obtained using critical state soil models with an effective stress formulation. This is in contrast to most (if not all) existing studies on pressuremeter geometry effects, which were based on perfectly plastic soil models (e.g. Yu (Cavity expansion theory and its application to the analysis of pressuremeters. DPhil Thesis, The University of Oxford, 1990), Yeung and Carter (Proc. 3rd Int. Symp. on Pressuremeters, 1990), and Houlsby and Carter (Géotechnique, 1993; 43 (4):567–576)). The present study suggests that the overestimation of soil strength due to the neglect of finite pressuremeter length is significantly affected by the soil model used in the calculations. It is found that for clays with a high overconsolidation ratio (OCR) the strength overestimation predicted using critical state soil models could be considerably smaller than that predicted using perfectly plastic soil models. The main conclusion of this numerical study is that care must be exercised before directly applying any numerically determined pressuremeter geometry correction factors in practice. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号