首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We propose a discrete element model for brittle rupture. The material consists of a bidimensional set of closed‐packed particles in contact. We explore the isotropic elastic behavior of this regular structure to derive a rupture criterion compatible to continuum mechanics. We introduce a classical criterion of mixed mode crack propagation based on the value of the stress intensity factors, obtained by the analysis of two adjacent contacts near a crack tip. Hence, the toughness becomes a direct parameter of the model, without any calibration procedure. We verify the consistency of the formulation as well as its convergence by comparison with theoretical solutions of tensile cracks, a pre‐cracked beam, and an inclined crack under biaxial stress. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
高地应力区地下岩体工程开挖常形成围岩拉-压应力状态,发生岩体张性破坏灾害。本文针对传统PFC平行黏结模型不能模拟脆性岩石高单轴压缩与拉伸强度比的问题,建立双抗拉强度参数的平行黏结强度准则,开展岩石拉-压数值模拟试验,得到了与物理试验接近的拉-压强度,实现了岩石高压拉强度比的模拟,并深入分析了破坏机制。研究结果表明随着围压的增加,破裂面倾角逐渐增大,由拉伸破裂转化为拉-剪破裂,发现了拉-压应力状态下破裂面处的雁行裂纹。根据细观颗粒位移场揭示了破裂面力学性质,随着围压的增加(破裂面倾角逐渐增大),破裂面张性逐渐减弱而剪性增强。可将拉-压应力状态下岩石损伤演化过程大致分为弹性变形阶段、稳定破裂发展阶段、不稳定破裂发展阶段和整体破裂阶段(峰后应力跌落及残余阶段)。围压较大时弹性变形和稳定破裂发展阶段相对较短,不稳定破裂发展阶段相对较长较剧烈,峰后残余阶段破裂面摩擦更强、应力波动较大。  相似文献   

3.
Bonded particle modelling (BPM) is nowadays being extensively used for simulating brittle material failure. In BPM, material is modelled as a dense assemblage of particles (grains) connected together by contacts (cement). This sort of modelling seriously depends on the mechanical properties of particle and contact, which are named here as micro‐parameters. However, a definite calibration methodology to obtain micro‐parameters has not been so far established; and many have reported some serious problems. In this research, a calibration procedure to find a unique set of micro‐parameters is established. To attain this purpose, discrete element code of UDEC is used to perform BPM. This code can be conveniently developed by the user. The proposed BPM is composed of rigid polygonal particles interacting at their contact points. These contacts can undergo a certain amount of tension, and their shear resistance is provided by cohesion and friction angle. The results demonstrate that each material macro‐property (i.e. Young's modulus, Poisson's ratio, internal friction angel, internal cohesion, and tensile strength) is directly originated from and distinctly related to the contact properties (i.e. normal and shear stiffness, friction angel, cohesion, and tensile strength). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
单轴压缩下含孔脆性材料的力学行为研究   总被引:3,自引:1,他引:2  
段进超  唐春安  常旭  陈奇栓 《岩土力学》2006,27(8):1416-1420
运用材料破裂过程分析MFPA2D系统,在单轴压缩条件下对含单孔和双孔脆性材料破坏过程进行数值模拟。结果表明:原始的萌生裂纹不一定是最后形成宏观贯通破坏的主裂纹。岩石等脆性材料破坏的局部化特征,说明非均匀性是岩石类脆性材料发生局部破裂的根本原因。分析了孔的分布对材料强度以及破坏模式的影响,并给出破坏过程的应力-应变关系。指出了有的孔洞分布会增加应力的集中程度,而有的孔洞分布可以降低应力集中。数值模拟与试验结果具有较好的一致性。  相似文献   

5.
The process of cutting homogeneous soft material has been investigated extensively. However, there are not so many studies on cutting heterogeneous brittle material. In this paper, R‐T2D (Rock and Tool interaction), based on the rock failure process analysis model, is developed to simulate the fracture process in cutting heterogeneous brittle material. The simulated results reproduce the process involved in the fragmentation of rock or rock‐like material under mechanical tools: the build‐up of the stress field, the formation of the crushed zone, surface chipping, and the formation of the crater and subsurface cracks. Due to the inclusion of heterogeneity in the model, some new features in cutting brittle material are revealed. Firstly, macroscopic cracks sprout at the two edges of the cutter in a tensile mode. Then with the tensile cracks releasing the confining pressure, the rock in the initially high confining pressure zone is compressed into failure and the crushed zone gradually comes into being. The cracked zone near the crushed zone is always available, which makes the boundary of the crushed zone vague. Some cracks propagate to form chipping cracks and some dip into the rock to form subsurface cracks. The chipping cracks are mainly driven to propagate in a tensile mode or a mixed tensile and shear mode, following curvilinear paths, and finally intersect with the free surface to form chips. According to the simulated results, some qualitative and quantitative analyses are performed. It is found that the back rake angle of the cutter has an important effect on the cutting efficiency. Although the quantitative analysis needs more research work, it is not difficult to see the promise that the numerical method holds. It can be utilized to improve our understanding of tool–rock interaction and rock failure mechanisms under the action of mechanical tools, which, in turn, will be useful in assisting the design of fragmentation equipment and fragmentation operations. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

6.
罗焕炎 《地质科学》1974,9(1):81-100
地质构造体和岩体是一种岩性和结构高度变化的非连续而且非均一的介质,在压力(包括岩体中的间隙水压力)和温度的作用下所产生的变形和破坏现象,不仅为非线性关系,并随空间和时间而变化。对某一点而言,这种关系会由于作用力的大小和时间的长短,由弹性过渡到塑性或粘性状态。对整体而言,在同一时间内,却会在不同的部位出现不同的应力状态和变形的程度。  相似文献   

7.
The influence of mineral grain and grain boundary strength is investigated using a calibrated intact (non-jointed) brittle rock specimen subjected to direct shear with a particle-based distinct element method and its embedded grain-based method. The adopted numerical approach allows one to independently control the grain boundary and mineral grain strength. The investigation reveals that, in direct shear, the normal stress (σ n) applied to a rock specimen relative to its uniaxial compressive strength (UCS) determines the resulting rupture mechanism, the ultimate rupture zone geometry, and thus its shear stress versus horizontal displacement response. This allows one to develop a rupture matrix based on this controlling parameter (i.e., σ n/UCS). Mineral grain strength reductions result in the lowering of the apparent cohesion intercept of the peak linear Coulomb strength envelope, while grain boundary strength reductions change the peak linear Coulomb strength envelope to a bi-linear or curved shape. The impact of grain boundary strength is only relevant at σ n/UCS ratios <0.17 where tensile and dilatant rupture mechanisms dominate. Once shear rupture begins to be the dominant rupture mechanism in a brittle rock (i.e., at σ n/UCS ratios >0.17), the influence of weakened grain boundaries is minimized and strength is controlled by that of the mineral grains.  相似文献   

8.
The microstructure of rock was numerically reproduced by a polygonal grain‐based model, and its mechanical behavior was examined by performing the uniaxial compression test and Brazilian tests via the Universal Distinct Element Code. The numerical results of the model demonstrated good agreement with the experimental results obtained with rock specimens in terms of the stress–strain behavior, strength characteristics, and brittle fracture phenomenon. An encouraging result is that the grain‐based model‐Universal Distinct Element Code model can reproduce a low ratio of tensile to compressive strength of 1/20 to 1/10 without the need for an additional process. This finding is ascribed to the fact that the geometrical features of polygons can effectively capture the effects of angularity, finite rotation, and interlocking of grains that exist in reality. A numerical methodology to monitor the evolution of micro‐cracks was developed, which enabled us to examine the progressive process of the failure and distinguish the contribution of tensile cracking to the process from that of shear cracking. From the observations of the micro‐cracking process in reference to the stress–strain relation, crack initiation stress, and crack damage stress, it can be concluded that the failure process of the model closely resembles the microscopic observations of rock. We also carried out a parametric study to examine the relationships between the microscopic properties and the macroscopic behavior of the model. Depending on the micro‐properties, the model exhibited a variety of responses to the external load in terms of the strength and deformation characteristics, the evolution of micro‐cracks, and the post‐peak behavior. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
A simplified model is presented to predict the strength variations of brittle matrix composites, reinforced by steel fibres, with the variations of fibre parameters—length, diameter and volume fraction. This model predicts that its tensile and flexural strength increase non‐linearly with the fibre volume fraction. It also predicts that similar non‐linear behaviour should be observed with the reduction of the fibre diameter when other parameters are kept constant. The experimental results support both these theoretical predictions. It is also explained why an increase in the fibre length does not always significantly increase the fracture toughness. The objective of this paper is not to explain and understand in great detail the science of all phenomena responsible for the strength increase of fibre reinforced brittle matrix composites, but to provide a simple engineering explanation as to why its strength increases with the fibre addition, and how this increase can be quantitatively related to the variations in fibre parameters—fibre volume fraction, fibre length and diameter. These simplifying steps are needed to provide a tool that the practicing engineers can use to predict the brittle matrix strength variation with the fibre parameters. In the area of geomechanics, the results presented here can be used to assess and predict the behaviour of fibre‐reinforced earth. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

10.
Q3黄土的单轴拉伸试验表明,黄土的抗拉强度值很小,在拉张应力作用下会发生突发性的脆性破坏,断裂面粗糙,且基本垂直于拉应力方向。借助数值分析软件RFPA,对黄土的整个拉张破裂过程进行了仿真分析,捕捉到了黄土在拉张应力作用下内部裂纹的扩展与演化过程。结果表明,黄土的拉张破裂过程可以分为两个阶段,即线性变形阶段和裂纹的形成、扩展与贯通阶段。黄土体内部裂纹的萌生、扩展及贯通会在很短时间内完成,即黄土在拉伸应力作用下的破坏是突发性的,属于脆性断裂。单轴拉伸试验结果与数值仿真分析结果具有较好的一致性。  相似文献   

11.
The aim of this study is to investigate the effect of pre‐existing, or structural, cracks on dynamic fragmentation of granite. Because of the complex behavior of rock materials, a continuum approach is employed relying upon a plasticity model with yield surface locus as a quadratic function of the mean pressure in the principal stress space coupled with an anisotropic damage model. In particular, Bohus granite rock is investigated, and the material parameters are chosen based on previous experiments. The equation of motion is discretized using a finite element approach, and the explicit time integration method is employed. The pre‐existing cracks are introduced in the model by considering sets of elements with negligible tensile strength that leads to their immediate failure when loaded in tension even though they still carry compressive loads as crack closure occurs because of compressive stresses. Previously performed edge‐on impact tests are reconsidered here to validate the numerical model. Percussive drilling is simulated, and the influence of the presence of pre‐existing cracks is studied. The results from the analysis with different crack lengths and orientations are compared in terms of penetration stiffness and fracture pattern. It is shown that pre‐existing cracks in all investigated cases facilitate the drilling process. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
基于渐近展开法的脆性岩石双尺度方法初步研究   总被引:1,自引:0,他引:1  
将渐近展开法与细观统计模型相结合,研究了脆性岩石双尺度计算方法。该方法在细观尺度定义材料属性,假定材料参数符合Weibull分布,采用弹性-理想脆性本构模型,脆断标准采用修正的Mohr-Coulomb准则和最大拉应力准则,通过宏细观尺度耦合计算,得到细观尺度材料损伤演化及其对结构宏观性状的影响。方法包括确定材料统计参数、确定细观尺度代表性体积单元(RVE)及求解边值方程等步骤。数值模型采用商业软件ABAQUS及其内嵌的UMAT用户子程序实现。该方法适用于岩石单轴受压或低围压应力状态,考虑到计算效率,计算时宜采用混合尺度,即模型重点(关键)部位采用双尺度,而其他区域采用单尺度计算。宏观尺度材料软化后未采用正则化方法,此时的计算结果有网格依赖性。  相似文献   

13.
Rocks and other geomaterials are heterogeneous materials, with a well-recognized hierarchy of defects from micro-heterogeneities on the grain level to a large-scale network of cracks and layering structures. Their nature create a challenge for determining macroscopic properties, particularly for properties that are scale dependent, complicating both the property measurement and its appropriate application in modeling. This paper discusses the concept of a “representative volume”, which is commonly used in modeling microheterogeneous but statistically homogeneous material by an effective homogeneous continuum. The foundation of this concept is presented, along with its limitations in dealing with properties like strength and fracture toughness that exhibit a scale effect. This limitation is illustrated with a study of brittle fracture of a concrete where it is considered a model for statistically homogeneous rock. The study includes determining a scaling rule for the scale effect in fracture toughness, and shows that the fracture of brittle materials like rocks and concrete appears in the form of highly tortuous, stochastic paths. This reflects a complex interaction between a crack and pre-existing as well as newly formed micro-defects controlled by chance, and results in a large scatter of all fracture-related parameters. This behavior suggests a synthesis of fracture mechanics with probability and statistics, and so a brief exposition of statistical fracture mechanics (SFM) that addresses the statistical aspects of fracture is also presented. SFM is a formalism that combines fracture mechanics methods with probability theory and serves as the basis for an adequate modeling of brittle fracture.  相似文献   

14.
The cohesive‐frictional nature of cementitious geomaterials raises great interest in the discrete element method (DEM) simulation of their mechanical behavior, where a proper bond failure criterion is usually required. In this paper, the failure of bond material between two spheres was investigated numerically using DEM that can easily reproduce the failure process of brittle material. In the DEM simulations, a bonded‐grain system (composed of two particles and bond material in between) was discretized as a cylindrical assembly of very fine particles connecting two large end spheres. Then, the bonded‐grain system was subjected to compression/tension, shear, rolling and torsion loadings and their combinations until overall failure (peak state) was reached. Bonded‐grain systems with various sizes were employed to investigate bond geometry effects. The numerical results show that the compression strength is highly affected by bond geometry, with the tensile strength being dependent to a lesser degree. The shear, rolling and torsion strengths are all normal force dependent; i.e., with an increase in the normal force, these strengths first increase at a declining rate and then start to decrease upon the normal force exceeding a critical value. The combined actions of shear force, rolling moment and torque lead to a spherical failure envelope in a normalized loading space. The fitted bond geometry factors and bond failure envelopes obtained numerically in this three‐dimensional study are qualitatively consistent with those in previous two‐dimensional experiments. The obtained bond failure criterion can be incorporated into a future bond contact model. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
As technologies for deep underground development such as tunneling underneath mountains or mass mining at great depths (>1,000 m) are implemented, more difficult ground conditions in highly stressed environments are encountered. Moreover, the anticipated stress level at these depths easily exceeds the loading capacity of laboratory testing, so it is difficult to properly characterize what the rock behavior would be under high confinement stress conditions. If rock is expected to fail in a brittle manner, behavior changes associated with the relatively low tensile strength, such as transition from splitting to the shear failure, have to be considered and reflected in the adopted failure criteria. Rock failure in tension takes place at low confinement around excavations due to tensile or extensional failure in heterogeneous rocks. The prospect of tensile-dominant brittle failure diminishes as the confinement increases away from the excavation boundary. Therefore, it must be expected that the transition in the failure mechanism, from tensile to shear, occurs as the confinement level increases and conditions for extensional failure are prevented or strongly diminished. However, conventional failure criteria implicitly consider only the shear failure mechanism (i.e., failure envelopes touching Mohr stress circles), and thus, do not explicitly capture the transition of failure modes from tensile to shear associated with confinement change. This paper examines the methodologies for intact rock strength determination as the basic input data for engineering design of deep excavations. It is demonstrated that published laboratory test data can be reinterpreted and better characterized using an s-shaped failure criterion highlighting the transition of failure modes in brittle failing rock. As a consequence of the bi-modal nature of the failure envelope, intact rock strength data are often misinterpreted. If the intact rock strength is estimated by standard procedures from unconfined compression tests (UCS) alone, the confined strength may be underestimated by as much as 50 % (on average). If triaxial data with a limited confinement range (e.g., σ3 ? 0.5 UCS due to cell pressure limitations) are used, the confined strength may be overestimated. Therefore, the application of standard data fitting procedures, without consideration of confinement-dependent failure mechanisms, may lead to erroneous intact rock strength parameters when applied to brittle rocks, and consequently, by extrapolation, to correspondingly erroneous rock mass strength parameters. It follows that the strength characteristics of massive rock differ significantly in the direct vicinity of excavation from that which is remote with higher confinement. Therefore, it is recommended to adopt a differentiated approach to obtain intact rock strength parameters for engineering problems at lower confinement (near excavation; e.g., excavation stability assessment or support design), and at elevated confinement (typically, when the confinement exceeds about 10 % of the UCS) as might be encountered in wide pillar cores.  相似文献   

16.
本文主要研究花岗岩和砂岩两种脆性岩石的详细声发射特征。通过对花岗岩和砂岩样品进行单轴压缩试验,并在试验过程中监测样品破裂全程的声发射信号。对试验结果的分析包含了力学特性分析和声发射特性分析,声发射特性分析使用了多种参数:累积声发射计数、累积声发射能量、AF值、RA值、b值。研究主要获得了如下结果:(1)获取了岩石样品的变形参数与强度参数,并分析了其离散性;(2)岩石样品内部颗粒的胶结强度与结构的均匀性对累积声发射计数、累积声发射能量的影响;(3)需要通过进一步试验研究来确认采用AF和RA值来区分岩石类材料张拉和剪切裂纹模式的合理性及其阈值;(4)砂岩样品在接近破坏时,微裂缝活动仍然占据主导地位。文章对脆性岩石样品在单轴压缩条件下的力学特性和声发射特性进行了详尽细致的分析,发现了单轴压缩条件下脆性岩石的一些重要特性,为进一步的试验研究工作提供了基础。  相似文献   

17.
Liu  Guang  Sun  WaiChing  Lowinger  Steven M.  Zhang  ZhenHua  Huang  Ming  Peng  Jun 《Acta Geotechnica》2019,14(3):843-868

We present a numerical analysis on injection-induced crack propagation and coalescence in brittle rock. The DEM network coupling model in PFC is modified to capture the evolution of fracture geometry. An improved fluid flow model for fractured porous media is proposed and coupled with a bond-based DEM model to simulate the interactions among cracks induced by injecting fluid in two nearby flaws at identical injection rates. The material parameters are calibrated based on the macro-properties of Lac du Bonnet granite and KGD solution. A grain-based model, which generates larger grains from assembles of particles bonded together, is calibrated to identify the microscopic mechanical and hydraulic parameters of Lac du Bonnet granite such that the DEM model yields a ratio between the compressive and tensile strength consistent with experiments. The simulations of fluid injection reveal that the initial flaw direction plays a crucial role in crack interaction and coalescence pattern. When two initial flaws are aligned, cracks generally propagate faster. Some geometrical measures from graph theory are used to analyze the geometry and connectivity of the crack network. The results reveal that initial flaws in the same direction may lead to a well-connected crack network with higher global efficiency.

  相似文献   

18.
19.
压实黏土的脆性断裂模型及有限元算法   总被引:4,自引:0,他引:4  
利用弥散裂缝理论,提出了压实黏土拉伸状态下的脆性断裂模型.当压实黏土达到其极限抗拉强度后,通过建立单元的各向异性刚度矩阵,将土体裂缝弥散于实体单元,构造了平面应变条件下考虑压实黏土脆性开裂的有限元计算模式.通过对某压实黏土单轴拉伸试验成果的模拟计算,验证了构建的脆性断裂模型和有限元算法对土体拉伸破坏特性和裂缝发展过程的适用性.本文还进行了模拟软弱面水压“楔劈效应”的简单数值试验,表明压实黏土脆性开裂模型和算法可较好地模拟裂缝扩展行为.  相似文献   

20.
Shale, as a kind of brittle rock, often exhibits different nonlinear stress-strain behavior, failure and time-dependent behavior under different strain rates. To capture these features, this work conducted triaxial compression tests under axial strain rates ranging from 5×10?6 s?1 to 1×10?3 s?1. The results show that both elastic modulus and peak strength have a positive correlation relationship with strain rates. These strain rate-dependent mechanical behaviors of shale are originated from damage growth, which is described by a damage parameter. When axial strain is the same, the damage parameter is positively correlated with strain rate. When strain rate is the same, with an increase of axial strain, the damage parameter decreases firstly from an initial value (about 0.1 to 0.2), soon reaches its minimum (about 0.1), and then increases to an asymptotic value of 0.8. Based on the experimental results, taking yield stress as the cut-off point and considering damage variable evolution, a new measure of micro-mechanical strength is proposed. Based on the Lemaitre’s equivalent strain assumption and the new measure of micro-mechanical strength, a statistical strain-rate dependent damage constitutive model for shale that couples physically meaningful model parameters was established. Numerical back-calculations of these triaxial compression tests results demonstrate the ability of the model to reproduce the primary features of the strain rate dependent mechanical behavior of shale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号