首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Barcelona basic model (BBM) successfully explained many key features of unsaturated soils and received extensive acceptance. It is also one of the few elastoplastic constitutive models for unsaturated soils that have been implemented within finite element codes and applied to the analysis of real boundary value problems. The BBM was proposed in incremental forms according to theories of soil plasticity in which individual aspects of the isotropic virgin behavior are controlled by multiple parameters, whereas at the same time, a single parameter controls more than one aspect of soil behavior. Although a variety of methods have been recently developed for calibrating model parameters for elastoplastic soil models, at present, there are no well‐established, simple, and objective methods for selecting parameter values in the BBM from laboratory tests. This has been one of the major obstacles to the dissemination of this constitutive model beyond the research context. This article presents an optimization approach especially developed for simple and objective identification of material parameters in the BBM. This is achieved by combining a modified state surface approach, recently proposed to model the elastoplastic behavior of unsaturated soils under isotropic stress conditions, with the Newton or quasi‐Newton method to simultaneously determine the five parameters governing isotropic virgin behavior in the BBM. The comparison between results using the proposed method and an existing method for the same laboratory tests was discussed from which the simplicity and objectivity of the proposed method were evaluated. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Wheeler, Sharma and Buisson proposed an elasto‐plastic constitutive model for unsaturated soils that couples the mechanical and water retention behaviours. The model was formulated for isotropic stress states and adopts the mean Bishop's stress and modified suction as stress state variables. This paper deals with the extension of this constitutive model to general three‐dimensional stress conditions, proposing the generalized stress–strain relationships required for the numerical integration of the constitutive model. A characteristic of the original model is the consideration of a number of elasto‐plastic mechanisms to describe the complex behaviour of unsaturated soils. This work presents the three‐dimensional formulation of these coupled irreversible mechanisms in a generalized way including anisotropic loading. The paper also compares the results from the model with published experiments performed under different loading conditions. The response of the model is very satisfactory in terms of both mechanical and water retention behaviours. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
The behavior of a partially saturated soil during surface‐water infiltration is analyzed by means of an elasto‐plastic constitutive model formulated in terms of effective stress and extended to unsaturated conditions. The model is calibrated considering laboratory‐scale experimental results under suction‐controlled conditions. The wetting process in two collapsing soils, initially loaded at in situ stresses, is simulated by imposing two different boundary conditions: surface ponding and water flow. The stress paths resulting from the imbibition process are analyzed at different points inside the layer. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
The paper discusses some aspects of the Barcelona Basic Model (BBM), which is one of the most widely used elasto‐plastic models for unsaturated soils. In addition to modelling those unsaturated soils where the collapse potential increases with increasing net stress (as envisaged by the original authors), the BBM can also be used to model soils where the collapse potential decreases with increasing net stress, by selecting suitable values for the model parameters r and pc. A practical procedure is suggested for selecting a value for the important model parameter pc from laboratory test data. Problems with use of the BBM are discussed, including the difficulty of correctly matching the locations of the normal compression lines for different values of suction and the possibility of non‐convexity of the yield curve. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
A unified constitutive model for unsaturated soils is presented in a critical state framework using the concepts of effective stress and bounding surface plasticity theory. Consideration is given to the effects of unsaturation and particle crushing in the definition of the critical state. A simple isotropic elastic rule is adopted. A loading surface and a bounding surface of the same shape are defined using simple and versatile functions. The bounding surface and elastic rules lead to the existence of a limiting isotropic compression line, towards which the stress trajectories of all isotropic compression load paths approach. A non‐associated flow rule of the same general form is assumed for all soil types. Isotropic hardening/softening occurs due to changes in plastic volumetric strains as well as suction for some unsaturated soils, enabling the phenomenon of volumetric collapse upon wetting to be accounted for. The model is used to simulate the stress–strain behaviour observed in unsaturated speswhite kaolin subjected to three triaxial test load paths. The fit between simulation and experiment is improved compared to that of other constitutive models developed using conventional Cam‐Clay‐based plasticity theory and calibrated using the same set of data. Also, the model is used to simulate to a high degree of accuracy the stress–strain behaviour observed in unsaturated Kurnell sand subjected to two triaxial test load paths and the oedometric compression load path. For oedometric compression theoretical simulations indicate that the suction was not sufficiently large to cause samples to separate from the confining ring. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
A computational method, incorporating the finite element model (FEM) into data assimilation using the particle filter, is presented for identifying elasto‐plastic material properties based on sequential measurements under the known changing traction boundary conditions to overcome some difficulties in identifying the parameters for elasto‐plastic problems from which the existing inverse analysis strategies have suffered. A soil–water coupled problem, which uses the elasto‐plastic constitutive model, is dealt with as the geotechnical application. Measured data on the settlement and the pore pressure are obtained from a synthetic FEM computation as the forward problem under the known parameters to be identified for both the element tests and the ground behavior during the embankment construction sequence. Parameter identification for elasto‐plastic problems, such as soil behavior, should be made by considering the measurements of deformation and/or pore pressure step by step from the initial stage of construction and throughout the deformation history under the changing traction boundary conditions because of the embankment or the excavation because the ground behavior is highly dependent on the loading history. Thus, it appears that sequential data assimilation techniques, such as the particle filter, are the preferable tools that can provide estimates of the state variables, that is, deformation, pore pressure, and unknown parameters, for the constitutive model in geotechnical practice. The present paper discusses the priority of the particle filter in its application to initial/boundary value problems for elasto‐plastic materials and demonstrates a couple of numerical examples. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, the onset of mechanical instability in time‐sensitive elasto‐viscoplastic solids is theoretically analyzed at the constitutive level and associated with the occurrence of ‘spontaneous accelerations’ under stationary external perturbations. For this purpose, a second‐order form of Perzyna's constitutive equations is first derived by time differentiation, and a sufficient stability condition is identified for general mixed loading programs. These loading conditions are in fact the most general in both laboratory tests and real boundary value problems, where a combination of certain stress and strain components is known/prescribed. The theoretical analysis leads to find precise stability limits in terms of material hardening modulus. In the case of constitutive relationships with isotropic strain‐hardening, no instabilities are possible while the hardening modulus is larger than the so‐called ‘controllability modulus’ defined for (inviscid) elasto‐plastic materials. It is also shown that the current stress/strain rate may also directly influence the occurrence of elasto‐viscoplastic instability, which is at variance with elasto‐plastic inviscid media. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
This paper introduces an unconventional constitutive model for soils, which deals with a unified thermo‐mechanical modelling for unsaturated soils. The relevant temperature and suction effects are studied in light of elasto‐plasticity. A generalized effective stress framework is adopted, which includes a number of intrinsic thermo‐hydro‐mechanical connections, to represent the stress state in the soil. Two coupled constitutive aspects are used to fully describe the non‐isothermal behaviour. The mechanical constitutive part is built on the concepts of bounding surface theory and multi‐mechanism plasticity, whereas water retention characteristics are described using elasto‐plasticity to reproduce the hysteretic response and the effect of temperature and dry density on retention properties. The theoretical formulation is supported by comparisons with experimental results on two compacted clays. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
At present, several of the existing elastoplastic constitutive models are adapted for describing the stress–strain behavior of unsaturated soils. However, most of them present certain limitations in this field. These limitations can be related to the basic model and/or added unsaturated state variables and formulations. In this regard, inability to model the hydro‐mechanical behavior in constant water (CW) conditions is an example of these limitations. In this paper, an advanced version of CJS model is selected for adaptation to the unsaturated states. Adaptation to unsaturated states is achieved in the framework of effective stress approach. Effective stress equation and unsaturated state variables are selected based on the recent research existing in the literature. The developed model is capable of describing the complex behavior of unsaturated soil in the CW condition in addition to predicting the behavior at failure and post–failure, nonlinear elastoplastic behavior at low levels of stress and strain (by selecting a very small elastic domain), as well as wetting and collapse behaviors. In order to validate the model, results of triaxial tests in CD and CW conditions are used. The validation results indicate the good capability of the proposed model. Behavior of the unsaturated soils during wetting is an important issue. For this reason, the model is also evaluated based on the results of wetting and collapse triaxial tests. A comparison between the tests and simulation results shows that the model is able to predict the soil behavior under the wetting path. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
以饱和度与有效应力为状态变量,通过引入描述不饱和与饱和土孔隙比差的状态变量,将Zhang等提出的饱和土体应力诱导各向异性动弹塑性本构模型推广到不饱和土体中,使其可描述不饱和土在动力循环荷载作用下的力学特性行为。通过对已有不饱和土体在完全不排水条件下的动三轴试验进行理论模拟,验证了所提出不饱和土本构模型的正确性。最后基于所提出本构模型,讨论了在不排水条件下初始饱和度对不饱和土动力特性研究。结果表明,不饱和土在动力荷载作用下,土体的孔隙比将减少,导致饱和度增加;当初始饱和度较高时,不饱和土会转化为饱和土,从而发生液化现象。该研究成果对研究不饱和土在地震等动力荷载作用下的力学特性行为具有重要意义。  相似文献   

11.
This paper presents an elasto‐plastic model for unsaturated compacted soils and experimental results obtained from a series of suction‐controlled triaxial tests on unsaturated compacted clay with different initial densities. The initial density dependency of the compacted soil behaviour is modelled by establishing experimental relationships between the initial density and the corresponding yield stress and thereby between the initial density and the location and slope of normal compression line. The model is generalized to three‐dimensional stress states by assuming that the shapes of the failure surface and the yield surface in the deviatoric plane are given by the extended SMP criterion. A considerable number of the isotropic compression, triaxial compression and extension tests on unsaturated compacted clay with different initial densities were performed using a suction‐controllable triaxial apparatus, to measure the stress–strain–volume change in different stress paths and wetting paths. The model has well‐predicting capabilities to reproduce the mechanical behaviour of specimens compacted under different conditions not only in isotropic compression but also in triaxial compression and triaxial extension. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

12.
The Barcelona basic model cannot predict the mechanical behaviour of unsaturated expansive soils, whereas the Barcelona expansive model (BExM) can only predict the stress–strain behaviour of unsaturated expansive soils without the water‐retention behaviour being incorporated. Moreover, the micro‐parameters and the coupling function between micro‐structural and macro‐structural strains in the BExM are difficult to determine. Experimental data show that the compression curves for non‐expansive soils under constant suctions are shifted towards higher void ratios with increasing suction, whereas the opposite is true for expansive soils. According to the observed water‐retention behaviour of unsaturated expansive soils, the air‐entry value increases with density, and the relationship between the degree of saturation and void ratio is linear at constant suction. According to the above observation, an elastoplastic constitutive model is developed for predicting the hydraulic and mechanical behaviour of unsaturated expansive soils, based on the existing hydro‐mechanical model for non‐expansive unsaturated soil. The model takes into consideration the effect of degree of saturation on the mechanical behaviour and that of void ratio on the water‐retention behaviour. The concept of equivalent void ratio curve is introduced to distinguish the plastic potential curve from the yield curve. The model predictions are compared with the test results of an unsaturated expansive soil, including swelling tests under constant net stress, isotropic compression tests and triaxial shear tests under constant suction. The comparison indicates that the model offers great potential for quantitatively predicting the hydraulic and mechanical behaviour of unsaturated expansive soils. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
Xiong  Yong-lin  Ye  Guan-lin  Xie  Yi  Ye  Bin  Zhang  Sheng  Zhang  Feng 《Acta Geotechnica》2019,14(2):313-328

This study presents a sophisticated elastoplastic constitutive model for unsaturated soil using Bishop-type skeleton stress and degree of saturation as state variables in the framework of critical state soil mechanism. The model is proposed in order to describe the coupled hydromechanical behavior of unsaturated soil irrespective of what kind of the loadings or the drainage conditions may be. At the same time, a water retention characteristic curve considering the influence of deformation on degree of saturation is also proposed. In the model, the superloading and subloading concepts are introduced to consider the influences of overconsolidation and structure on deformation and strength of soils. The proposed model only employs nine parameters, among which five parameters are the same as those used in Cam-Clay model. The other four parameters have the clear physical meanings and can be easily determined by conventional soil tests. The capability and accuracy of the proposed model have been validated carefully through a series of laboratory tests such as isotropic loading tests and triaxial monotonic and cyclic compression tests under different mechanical and hydraulic conditions.

  相似文献   

14.
An objective of this paper is to demonstrate that the small strain model developed by the authors can be incorporated into the conventional kinematic hardening plasticity framework to predict pre‐failure defor mations. The constitutive model described in this paper is constituted by three elliptical yield surfaces in triaxial stress space. Two inner surfaces are rotated ellipses of the same shape, representing the boundaries of the linear elastic and small strain regions, while the third surface is the modified Cam clay large‐scale yield surface. Within the linear elastic region, the soil behaviour is elastic with cross‐coupling between the shear and volumetric stress–strain components. Within the small strain region, the soil behaviour is elasto‐plastic, described by the kinematic hardening rule with an infinite number of loading surfaces defined by the incremental energy criterion. Within the large‐scale yield surface, the soil behaviour is elasto‐plastic, described by kinematic and isotropic hardening of the small strain region boundary. Since the yield surfaces have different shapes, the uniqueness of the plastic loading condition imposes a restriction on the ratio between their semi‐diameters. The model requires 12 parameters, which can be determined from a single consolidated undrained triaxial compression test. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

15.
A rotational kinematic hardening constitutive model with the capability of predicting the behavior of soil during three‐dimensional stress reversals has been developed. An existing elasto‐plastic constitutive model, the Single Hardening Model, utilizing isotropic hardening serves as the basic framework in these formulations. The framework of the kinematic hardening model was discussed in a companion paper. The previously proposed cross‐anisotropic Single Hardening Model is added to the present kinematic hardening mechanism to capture inherent anisotropy of sands in addition to the stress reversals. This model involves 13 parameters, which can be determined from simple laboratory experiments, such as isotropic compression, drained triaxial compression and triaxial extension tests. The results from a series of true triaxial tests with large three‐dimensional stress reversals performed on medium dense cross‐anisotropic Santa Monica Beach sand are employed for comparison with predictions. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
徐晗  程展林  泰培  潘家军  黄斌 《岩土力学》2015,36(5):1322-1327
岩土工程数值计算中粗粒土常采用邓肯-张本构模型,为了验证该模型在轴向加载、卸载、侧向加载等复杂应力路径条件下的适用性,进行了粗粒土的三轴试验获取其力学特性及本构模型参数;根据相似性原理制作了堆石坝的离心模型试样,并采用与三轴试验同样级配与粒径的粗粒土进行复杂应力路径的堆石坝离心模型试验,试验中通过改变离心加速度模拟加载、卸载,利用上游蓄水模拟坝体的侧向加载;采用ABAQUS对离心模型试验进行三维数值模拟,并研究了模型箱侧壁摩擦系数与土体的初始应力对数值结果的影响。通过比较离心模型试验与数值模拟成果,表明土体的初始弹性模量对计算结果影响较大,初始应力应选择自重作用下的应力场;邓肯-张本构模型能较好地描述堆石坝的加载应力路径,而模拟卸载应力路径有一定的差异,需要改进邓肯-张本构模型中卸载模量的确定方法。  相似文献   

17.
非饱和土弹塑性模型参数的试验确定及有限元法   总被引:1,自引:0,他引:1  
陈勇  刘德富  王世梅 《岩土力学》2009,30(2):542-546
简要介绍广泛应用的非饱和土Alonso模型的原理与发展,并通过3组共7个试样的非饱和土三轴试验,得到模型的11个参数。在饱和土Cam本构关系的基础上,推导出一个基于非饱和土Alonso模型的应力-应变增量方程的计算公式,该方程与饱和土的本构方程形式相同。编制了能够考虑净应力和吸力二者对土体硬化规律影响的有限元程序,从而为非饱和土弹塑性计算提供一条途径,便于进一步应用于实际工程。  相似文献   

18.
非饱和土广义有效应力原理   总被引:4,自引:1,他引:3  
赵成刚  蔡国庆 《岩土力学》2009,30(11):3232-3236
综述了非饱和土有效应力的沿革,并就非饱和土有效应力的研究和发展中存在的问题进行了讨论。基于多相孔隙介质理论推导得到的变形功的表达式,提出了非饱和土广义有效应力原理。该原理认为,由非饱和土中的单应力变量的有效应力或双应力变量理论很难唯一地确定非饱和土的变形和强度。广义有效应力原理实质上就是要综合考虑影响非饱和土变形和强度的三种广义应力以及与其对偶的广义变形,给出考虑因素更为全面、理论基础更为坚实的广义有效应力原理。它为非饱和土基本性质的研究和本构方程的建立奠定了坚实而科学的理论基础。  相似文献   

19.
非饱和土水-力本构模型及其隐式积分算法   总被引:1,自引:0,他引:1  
刘艳  韦昌富  房倩 《岩土力学》2014,299(2):365-370
在已有工作基础上建立了水力-力学耦合的非饱和土本构模型,在硬化方程中考虑饱和度的影响,同时在土水特征曲线中考虑了塑性体变的影响,从而使模型可以反映非饱和土中的毛细现象与土中弹塑性变形现象的耦合行为。采用隐式积分方法,建立了非饱和土耦合模型的数值模型,并推导了得到了水力-力学耦合的非饱和土的一致切线模量。利用该算法编制了本构模型计算的子程序,使其能向外输出切线刚度矩阵,用于有限元计算。为了验证该算法和程序的正确性,用所编制程序对不同路径下的土体行为进行了预测。通过预测结果与试验结果相对比,表明程序预测结果与试验数据相吻合,模型可以较好地模拟土体的水力-力学耦合行为特性。  相似文献   

20.
Effective capabilities of combined chemo‐elasto‐plastic and unsaturated soil models to simulate chemo‐hydro‐mechanical (CHM) behaviour of clays are examined in numerical simulations through selected boundary value problems. The objective is to investigate the feasibility of approaching such complex material behaviour numerically by combining two existing models. The chemo‐mechanical effects are described using the concept of chemical softening consisting of reduction of the pre‐consolidation pressure proposed originally by Hueckel (Can. Geotech. J. 1992; 29 :1071–1086; Int. J. Numer. Anal. Methods Geomech. 1997; 21 :43–72). An additional chemical softening mechanism is considered, consisting in a decrease of cohesion with an increase in contaminant concentration. The influence of partial saturation on the constitutive behaviour is modelled following Barcelona basic model (BBM) formulation (Géotech. 1990; 40 (3):405–430; Can. Geotech. J. 1992; 29 :1013–1032). The equilibrium equations combined with the CHM constitutive relations, and the governing equations for flow of fluids and contaminant transport, are solved numerically using finite element. The emphasis is laid on understanding the role that the individual chemical effects such as chemo‐elastic swelling, or chemo‐plastic consolidation, or finally, chemical loss of cohesion have in the overall response of the soil mass. The numerical problems analysed concern the chemical effects in response to wetting of a clay specimen with an organic liquid in rigid wall consolidometer, during biaxial loading up to failure, and in response to fresh water influx during tunnel excavation in swelling clay. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号