首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cold seeps are among the most heterogeneous of all continental margin habitats. Abiotic sources of heterogeneity in these systems include local variability in fluid flow, geochemistry, and substrate type, which give rise to different sets of microbial communities, microbial symbiont-bearing foundation species, and associated heterotrophic species. Biogenic habitats created by microbial mats and the symbiotic species including vesicomyid clams, bathymodiolin mussels, and siboglinid tubeworms add an additional layer of complexity to seep habitats. These forms of habitat heterogeneity result in a variety of macrofaunal and meiofaunal communities that respond to changes in structural complexity, habitat geochemistry, nutrient sources, and interspecific interactions in different ways and at different scales. These responses are predicted by a set of theoretical metacommunity models, the most appropriate of which for seep systems appears to be the 'species sorting' concept, an extension of niche theory. This concept is demonstrated through predictable patterns of community assembly, succession, and beta-level diversity. These processes are described using a newly developed analytical technique examining the change in the slope of the species accumulation curve with the number of habitats examined. The diversity response to heterogeneity has a consistent form, but quantitatively changes at different seep sites around the world as the types of habitats present and the size-classes of fauna analyzed change. The increase in beta diversity across seep habitat types demonstrates that cold seeps and associated biogenic habitats are significant sources of heterogeneity on continental margins globally.  相似文献   

2.
Assessing the relative contribution of local diversity to regional biodiversity may be the key to understanding large-scale and even global patterns in species diversity. Here, the contribution of habitat heterogeneity of cold seeps at three spatial scales [micro-scale (ms), macro-scale (10 to 100s of ms), and mega-scale (10 to 100s of km)] to the total nematode biodiversity (genus level) along the Norwegian continental margin is evaluated. Due to the development of higher resolution bathymetry and increased bottom sampling in recent years, continental margins, once regarded as monotonous landscapes, are now acknowledged to have a high degree of habitat complexity and diversity. By calculating the additive partitioning of gamma diversity in alpha and beta fractions, we examined to what extent habitat diversity of seep sites significantly increases the nematode genus composition and diversity at different spatial scales. Siboglinidae patches and control sediments yielded comparably high levels of nematode genus richness. They exhibited low turnover rates within and across the different seep sites. In contrast, the bacterial mats at Håkon Mosby Mud Volcano (HMMV) and the reduced sediments at the Nyegga pockmarks harboured genus-poor nematode communities with an equally high dominance of one or two species, which were different for each seep. Different habitats, in particular at the HMMV, contributed significantly to the seep nematode richness. This study demonstrates that the presence of distinct habitat types within multiple seep sites contributes to the high diversity of nematode communities inhabiting the seeps in the Norwegian deep sea.  相似文献   

3.
By creating novel habitats, habitat‐modifying species can alter patterns of diversity and abundance in marine communities. Many sea urchins are important habitat modifiers in tropical and temperate systems. By eroding rocky substrata, urchins can create a mosaic of urchin‐sized cavities or pits separated by exposed, often flat surfaces. These microhabitats appear to harbor distinct assemblages of species. We investigated how a temperate rocky intertidal community uses three small‐scale (<100 cm2) microhabitats created by or adjacent to populations of the purple sea urchin (Strongylocentrotus purpuratus): pits occupied by urchins, unoccupied pits, and adjacent flat spaces. In tidepools, flat spaces harbored the highest percent cover of algae and sessile fauna, followed by empty pits and then occupied pits. The Shannon diversity and richness of these sessile taxa were significantly higher in flat spaces and empty pits than in occupied pits. The composition of these primary space holders in the microhabitats also varied. Unlike primary space holders, mobile fauna exhibited higher diversity and richness in empty pits than in flat spaces and occupied pits, although results were not significant. The protective empty pit microhabitat harbored the highest densities of most trophic functional groups. Herbivores, however, were densest in flat spaces, concordant with high algal coverage. These results suggest the habitats created by S. purpuratus in addition to its biological activities alter community structure at spatial scales finer than those typically considered for sea urchins.  相似文献   

4.
Coastal ecosystems are complex and species rich, but are vulnerable to degradation from a variety of anthropogenic activities. Nevertheless, information on inter‐tidal community composition in the Caribbean Basin and at other oceanic sites is lacking. Such information is essential to developing a more comprehensive understanding of rocky inter‐tidal systems and their responses to global change. The goals of this study were to determine the relative importance of environmental (wave power density, wave height), habitat (e.g. algal cover, slope, complexity of rock surfaces) and anthropogenic (distance to roads, population density) factors associated with the structure of local assemblages at multiple shore heights and the regional metacommunity of mobile invertebrates on oceanic rocky inter‐tidal habitats. Environmental characteristics associated with habitat complexity (algal cover, rock surface complexity) and human population density were most strongly associated with abundance and biodiversity of invertebrates. Species richness was positively correlated with surface complexity, but abundance was negatively correlated with both surface complexity and per cent algal cover. By contrast, abundance of invertebrates was positively correlated with human population density, and diversity was negatively correlated with human population density. Abundance of invertebrates was greatest in the mid inter‐tidal zone, whereas diversity was greatest in the lower inter‐tidal zone. Metacommunity structure was Gleasonian, but the gradient along which species turnover occurred was correlated with measures of wave exposure, rather than anthropogenic activity. Unlike in previous studies, mostly at mainland sites, human activity primarily altered dominance patterns of communities, while having relatively little effect on species richness or composition.  相似文献   

5.
The spatial distribution, abundance, and assemblage structure of macrozoobenthos were examined at 45 stations in a brackish lagoon (Idoura Lagoon, Japan) to examine the animal–environmental relations in estuarine soft-bottom habitats. We found a total of 23 taxa; the polychaetes Heteromastus sp., Hediste spp., and Prionospio japonica and the isopod Cyathura muromiensis numerically dominated the community. Cluster analysis and one-way analysis of similarity (ANOSIM) identified seven groups of stations that had significantly different macrozoobenthic communities; these were subsequently consolidated into five habitat groups according to their association with environmental characteristics. Canonical correspondence analysis (CCA) showed that salinity, silt-clay content, and the oxidation–reduction potential (ORP) of the sediment strongly affected the macrozoobenthos distribution pattern in the lagoon, whereas other factors (e.g., relative elevation of the habitat and sediment organic content) had much weaker effects. Similarity percentages (SIMPER) procedures indicated that the polychaete Notomastus sp. and the bivalve Macoma contabulata were specific to habitats with low salinity and reduced mud, whereas the bivalve Nuttallia olivacea was specific to sandy bottoms. Heteromastus sp. and Hediste spp. achieved their highest densities in rather oxidized sediments. The acid-volatile sulfide (AVS) content in the sediment was suggested as another possible factor affecting macrozoobenthic density. Our results clearly demonstrate that macrozoobenthic assemblages in estuarine soft-bottoms have high spatial heterogeneity on a small scale (e.g., hundreds of meters) related to physical and chemical environmental changes. Our data also suggested the importance of sediment redox condition (e.g., ORP and AVS content) and sediment grain size as structuring factors in estuarine soft-bottom communities as well as the salinity in the habitat.  相似文献   

6.
7.
8.
The ecology and diversity of the shallow soft‐bottom areas adjacent to coral reefs are still poorly known. To date, the few studies conducted in these habitats dealing with macroinvertebrate fauna have focused on their abundance spatial patterns at high taxonomic levels. Thus, some aspects important to evaluate the importance and vulnerability of these habitats, such as species diversity or the degree of habitat specialization, have often been overlooked. In this study we compared the crustacean assemblages present in four different habitats at Magoodhoo Island coral reef lagoon (Maldives): coral rubble, sandy areas and two different seagrass species (Thalassia hemprichii and Cymodocea sp.). Forty‐two different crustacean species belonging to 30 families and four orders were found. ‘Site’ was a significant factor in all of the statistical analyses, indicating that tropical soft‐bottom habitats can be highly heterogeneous, even at a spatial scale between tens and hundreds of meters. Although traditionally it has been considered that seagrass beds host greater species diversity and abundance of organisms than adjacent unvegetated habitats, no differences in the univariate measures of fauna (abundance of organisms, number of species and Shannon diversity) were observed among habitats. However, sandy areas, coral rubble and seagrass beds exhibited different species composition of crustacean communities. The percentage of taxa considered as potential habitat specialists was 27% and the number of species exclusively occurring in one habitat was especially high in seagrass beds. Thus, degradation of this vegetated habitat would result in a great loss of biodiversity in tropical shallow soft‐bottom habitats.  相似文献   

9.
Abstract. Much of the discussion of high deep‐sea diversity has assumed that asymmetric inter‐specific competition will rapidly lead to the elimination of many species unless restrained by extensive differentiation of niches, or the action of predation and/or environmental disturbance. This is true for some habitats, including rocky shores. However, experimental studies indicate that marine soft sediment communities do not function like this. In shallow‐water sediments, competition is usually symmetric and relatively weak. Asymmetric competition that leads to the elimination of one species by another on time scales shorter than one generation is rare, apart from interactions that involve large‐scale modification or disturbance of the sediment. Competition is therefore relatively unimportant as a process structuring communities and the impact of predation is usually to reduce rather than enhance diversity. These results have been largely ignored by the literature on deep‐sea diversity. If deep‐sea communities function in similar ways, coexistence of many species within small areas on short time scales does not need further explanation. We do , however, need to explain why abundances of all species remain bounded on large spatial scales and time scales of several generations. The model of diversity maintenance proposed by Huston (1979) and applied to the deep sea by Rex (1983) achieves this by implicit intra‐specific, density‐dependent processes that increase the population growth rate of species that have become locally rare. This would give robust maintenance of diversity, but there is no evidence for density dependence of this type in the deep sea, and no plausible mechanisms by which it could occur. Alternative models require either spatial heterogeneity on a scale much larger than that envisaged by the grain‐matching hypothesis or the placing of a cap on the abundance of common species, perhaps by frequency‐dependent predation. Arbitrating between these possibilities will require assessments of the population dynamics and spatial distribution of individual species on spatial and temporal scales much greater than those usually considered in the deep sea.  相似文献   

10.
Most habitat complexity–species diversity relationships are specific to the habitat type, taxonomic group and spatial scale investigated. There is a need for a biologically relevant metric of habitat complexity that is transferable across systems and scales. Here, we introduce a novel metric of landscape microhabitat complexity that may overcome such constraints. It is scaled to the size of individual organisms and it numerically captures structural elements of the habitat that are biologically relevant to individuals. Our model ecosystem to develop this metric was a rocky shore in Eastern Australia. Here species richness of invertebrates was linked to habitat complexity quantified by the new metric. Importantly, measurements made at the scale of the organism predicted species richness at the landscape scale. Testing the generality of this approach across different systems may prove useful in a broader conservation biology context.  相似文献   

11.
The EU Water Framework Directive is a Community legislative instrument in the field of environmental protection that establishes a common framework for keeping water quality at a favourable level. To implement the directive, classification systems need to be established that allow detection of human impacts at early stages and, thus, more effective management of coastal communities. Due to the spatial variability of communities, however, the results of any assessment are highly dependent on the selection of data. In this study we identified local spatial scales in which variability of macrophyte communities was maximised, quantified links between observed patterns of sediment types and communities and estimated how selection criteria impacted the outcome of the assessment of indicator class value in four different communities of the Northern Baltic Sea. The main findings of the study were that: (i) there were no clear local spatial scales in which the variability of benthic communities was maximised; (ii) hard-bottom communities were better predicted by the spatial arrangement of sediment characteristics than soft-bottom communities; (iii) the selection of method had no effect on the estimates of macrophyte cover and indicator class; but (iv) method impacted independently of habitat type on error estimates of macrophyte cover and indicator class. To conclude, in such homogeneous and low diversity macrophyte communities it is preferable to use methods that result in lower error estimates of algal coverage and, thus, result in lower uncertainties of estimates in the water quality class.  相似文献   

12.
Habitat heterogeneity can influence biological communities by providing a diversity of areas that can be occupied by different species. Sandy beach surf zones are often considered homogenous environments; however, sand bars moved by currents and waves can produce trench‐like shapes or troughs that provide heterogeneity. The influence of habitat heterogeneity produced by sand movement is unclear despite the fact that surf zones are an important habitat for larval and juvenile fish and macrocrustaceans. To determine if, and how, the fish and macroinvertebrate communities present in trough and non‐trough or flat areas of Oregon surf zones differ, we compared species assemblages in both areas at three beaches adjacent to estuary mouths over 2 years. Troughs had different communities compared with flat areas, with higher total catch (mean ± SD = 123.2 ± 122.1 versus 43.6 ± 44.5 individuals × 100 m?2) and taxon richness (6.7 ± 2.7 versus 4.0 ± 2.3 taxa); these differences were potentially due to water movement, prey availability and sediment size. The fish and macroinvertebrate communities did not vary between years but there were significant differences among beaches, with the most distinct community present at the only beach adjacent to an estuary without a jetty at its mouth, which was possibly due to higher species movement between the surf zones and estuary. Fish and macrocrustacean surf zone communities varied spatially within and among beaches in relation to habitat heterogeneity provided by sand movement and, potentially, the influence of adjacent habitats.  相似文献   

13.
《Journal of Sea Research》2007,57(2-3):137-150
Flatfish distributions have traditionally been described in terms of depth, temperature, and sediment characteristics, but other environmental variables may be important depending upon spatial scale. Surveys for age-0 northern rock sole (Lepidopsetta polyxystra) were conducted in five near-shore nursery sites at Kodiak Island, Alaska, using a towed camera sled integrated with navigational data. The continuous record of fish density and habitat features made possible a spatially comprehensive analysis of fish-habitat associations at several spatial scales, ranging from tens of kilometres to less than 1 m. A combination of multivariate statistical interpretation and geographic information systems (GIS) revealed that the distribution of juvenile rock sole was associated with environmental variables and spatial scales that are not normally detectable with usual flatfish— and habitat—sampling methods (i.e., trawls and grabs). Generalized additive models (GAM) incorporating habitat variables determined from video provided large improvements over models using only the traditional variables such as depth and sediment type. At the broadest (regional) scale of analysis, combinations of sediment composition, surface bedform, temperature, and density of worm tubes provided the best model for rock sole density. Within-nursery variation in fish density was modelled best with depth, habitat structural complexity created by emergent fauna and macroalgae, and worm tube density. At the microhabitat scale (< 1 m), there was little evidence of direct contact between rock sole and structures such as shell or algae. Rather, they were loosely associated on a scale tens of metres. This study showed that spatially comprehensive surveys can be conducted with towed camera systems and without the need for sediment grab samples. This approach yields detailed habitat information for fishes and the opportunity for landscape analysis of spatial patterns that will be important in conserving critical habitats for flatfishes and other fish species.  相似文献   

14.
Distinctions are rarely made between vertical and horizontal surfaces when assessing reef community composition, yet physical differences are expected because of hydrodynamic differences and sediment accumulation on flat surfaces. As sand often diminishes biotic cover, we hypothesised that vertical surfaces will support a greater biomass but have lower diversity due to domination by a few species. To test this, we quantified sessile communities on vertical and horizontal surfaces at three sites in the Delagoa Bioregion on the east coast of South Africa. Community composition consistently differed: vertical communities were dominated by various filter feeders, especially the ascidian Pyura stolonifera, whereas those on horizontal reef comprised a mixture of filter feeders and various algae. The total number of species and all diversity metrics were significantly greater for horizontal reef surfaces. Contrastingly, Simpson’s dominance and biomass were significantly greater for vertical reef surfaces. Percentage cover of sand explained much of the variation in community composition whereas depth did not. Small-scale topographic differences in substratum orientation associated with differences in sand inundation will therefore influence both α and β diversity. Coastal developments and activities that alter sand movements and delivery to the coastal zone are therefore likely to have a profound influence on the maintenance and diversity of shallow subtidal communities.  相似文献   

15.
Long term macrobenthos data together with physical habitat parameters were analysed to investigate spatial and temporal changes at an estuary under different anthropogenic pressures, mainly increasing shellfish farming. The aim was to assess the possible impacts of these pressures on the macrobenthic communities by comparing a period before and after changes in these pressures. Benthic samples were seasonally collected in 1990 (before major anthropogenic changes), 2000 and 2005 at the same sampling stations located on three different habitats in the Eo estuary (Northern Spanish coast). Multivariate and univariate methods were used to assess spatial variability of benthic assemblages and to compare community changes over time. Data from 1990 was assumed as the reference situation to appraise the subsequent impacts. We observed a significant spatial variability of the benthic assemblages in the system as a function of habitat heterogeneity in relation to sediment composition, presence/absence and density of seagrasses, and hydrodynamic regime. Changes were detected in the community composition at all sites during this 15 year period. The extent of changes was related to initial community conditions, rather than the intensity of the pressure. The results suggest that the responses of the benthic communities to human induced perturbations occurring in the system are largely dependent on its intrinsic buffer capacity, and that these communities have been able to cope with an increasing environmental stress (organic enrichment). In conclusion, to keep shellfish farming at a sustainable level without undesirable impacts, the disturbance intensity must be kept below the system carrying capacity. This will allow natural communities to cope with pressures and thus avoid further deterioration in ecological quality.  相似文献   

16.
We investigated the diversity of patterns of habitat use by juveniles of coral reef fishes according to seasons and at two spatial scales (10–100 m and 1–10 km). We conducted underwater visual censuses in New Caledonia's Lagoon between 1986 and 2001. Co-inertia analyses highlighted the importance of mid-shelf habitats at large spatial scale (1–10 km) and of sandy and vegetated habitats at small spatial scale (10–100 m) for most juveniles. Among all juvenile species, 53% used different habitats across seasons (e.g. Lutjanus fulviflamma and Siganus argenteus) and 39% used different habitats as they grow (e.g. Lethrinus atkinsoni and Scarus ghobban). During their ontogeny, at large and small scales, respectively, 21% and 33% of the species studied showed an increase in the number of habitats used (e.g. L. fulviflamma, L. atkinsoni), 10% and 3% showed a decrease in the number of habitats used (e.g. Amphiprion melanopus, Siganus fuscescens), 23% and 3% showed a drastic change of habitat used (e.g. S. ghobban, Scarus sp.) whereas 46% and 61% showed no change of habitat used (e.g. Lethrinus genivittatus, Ctenochaetus striatus). Changes in habitat use at both small and large spatial scales occurred during the ontogeny of several species (e.g. S. ghobban, Scarus sp.). Results pointed out the different spatial and temporal scales of juvenile habitat use to account for in conservation decisions regarding both assemblage and species-specific levels.  相似文献   

17.
Biological structures exert a major influence on species diversity at both local and regional scales on deep continental margins. Some organisms use other species as substrates for attachment, shelter, feeding or parasitism, but there may also be mutual benefits from the association. Here, we highlight the structural attributes and biotic effects of the habitats that corals, sea pens, sponges and xenophyophores offer other organisms. The environmental setting of the biological structures influences their species composition. The importance of benthic species as substrates seems to increase with depth as the complexity of the surrounding geological substrate and food supply decline. There are marked differences in the degree of mutualistic relationships between habitat-forming taxa. This is especially evident for scleractinian corals, which have high numbers of facultative associates (commensals) and few obligate associates (mutualists), and gorgonians, with their few commensals and many obligate associates. Size, flexibility and architectural complexity of the habitat-forming organism are positively related to species diversity for both sessile and mobile species. This is mainly evident for commensal species sharing a facultative relationship with their host. Habitat complexity is enhanced by the architecture of biological structures, as well as by biological interactions. Colony morphology has a great influence on feeding efficiency for suspension feeders. Suspension feeding, habitat-forming organisms modify the environment to optimize their food uptake. This environmental advantage is also passed on to associated filter-feeding species. These effects are poorly understood but represent key points for understanding ecosystems and biodiversity on continental margins. In this paper we explore the contributions of organisms and the biotic structures they create (rather than physical modifications) to habitat heterogeneity and diversity on the deep continental margins.  相似文献   

18.
Rare species, habitat diversity and functional redundancy in marine benthos   总被引:1,自引:0,他引:1  
Macro-ecological theories relating species richness, abundance, range size, biological traits and environmental tolerance have rarely been tested in marine soft-sediments, despite the spatial extent of these habitats and the inherent richness of resident communities. This study examines the contribution of rare species to marine soft-sediment communities from New Zealand, focussing on the relationships of range size with abundance, environment, habitat diversity and life history traits. 54% of the 351 species sampled exhibited restricted ranges (found at ≤ 2 sites). In contrast to many terrestrial systems, we observed only a weak positive relationship between abundance and frequency of occurrence. Restricted-range species were not randomly distributed, with their distribution related to habitat characteristics, suggesting an important link between habitat diversity and rarity. They exhibited a similar range of traits to the total observed species pool, suggesting that they are not only important to biodiversity but could play a role in stability. Restricted range species were generally not small and this, together with the number of different biological traits represented, suggests that rare species are important to the functioning of marine systems. Thus, our results highlight the importance of considering rare species in habitat-based approaches to conservation.  相似文献   

19.
In the present study we review datasets available for the Chilean margin to assess the relationship between environmental (or habitat) heterogeneity and benthic diversity. Several factors, such as the presence of different water masses, including the oxygen-deficient Equatorial Sub-surface Waters (ESSW) at the continental shelf and upper slope, and the Antarctic Intermediate Waters (AIW) at mid slope depths appear to control the bathymetric distribution of benthic communities. The presence of methane seeps and an extended oxygen minimum zone (OMZ) add complexity to the benthic distribution patterns observed. All these factors generate environmental heterogeneity, which is predicted to affect the diversity patterns both along and across the Chilean continental margin. The response to these factors differs among different faunal size groups: meio-, macro-, and megafauna. Physiological adaptations to oxygen deficiency and constraints related to body size of each group seem to explain the larger-scale patterns observed, while sediment/habitat heterogeneity ( e.g. at water mass boundaries, hardgrounds, biogeochemical patchiness, sediment organic content, grain size) may influence the local fauna diversity patterns.  相似文献   

20.
The spread of human activities into the deep sea may pose a high risk to benthic communities and affect ecosystem integrity. The deep sea is characterized by physical and biological heterogeneity and different habitat types are likely to differ in their vulnerability to anthropogenic impacts. However, across‐habitat comparisons are rare, and no comprehensive ecological risk assessment has yet been developed. To address this gap in our knowledge, we compared macro‐infaunal community structure in four habitats (slope, canyons, seamounts and methane seeps) at depths between 700 and 1500 m in the Hikurangi Margin and Bay of Plenty regions off New Zealand. The most striking contrast in community structure was between the two study regions, due to an order of magnitude difference in macro‐infaunal abundance that we believe was caused by differences in surface productivity and food availability at the sea bed. We found differences in structural and functional attributes of macro‐infaunal communities among some habitats in the Hikurangi Margin (slope, canyon and seep), but not in the Bay of Plenty. We posit that differences between canyon and slope communities on the Hikurangi Margin are due to enhanced food availability inside canyons compared with adjacent slope habitats. Seep communities were characterized by elevated abundance of both symbiont‐bearing and heterotrophic taxa, and were the most distinct, and variable, among the habitats that we considered on the Hikurangi Margin. Communities of seamounts were not distinct from slope or canyon communities on the Hikurangi Margin, probably reflecting similar environmental conditions in these habitats. The communities of deep‐sea canyon and seep habitats on the Hikurangi Margin were sufficiently dissimilar from each other and from slope habitats to warrant separate management consideration. By contrast, the low dissimilarity between communities of canyon and slope habitats in the Bay of Plenty suggests that habitat‐based management is not required in this region, for macro‐infauna at least. Although the two study regions share similar species pools, populations of the Hikurangi Margin region may be less vulnerable than the sparser populations of the Bay of Plenty due to the higher availability of potential colonizers and faster population growth. Thus regions, and habitats in some regions, should be subject to separate ecological risk assessment to help identify the key risks and consequences of human activities, and to inform options for reducing or mitigating impacts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号