首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 797 毫秒
1.
煤层含气量是煤层气勘探开发的重要参数之一,其影响因素很多。通过韩城煤层气三维地震勘探区煤心实测含气量数据和测井数据的分析,得到煤层密度和纵波阻抗是与11#煤层含气量相关性高的关键影响因素。以多因素线性拟合分析,优选出煤层密度和纵波时差为预测11~#煤层含气量最佳多因素组合。充分利用韩城煤层气三维地震数据,使用叠前同时反演技术得到纵波阻抗、纵波时差和密度数据,进而利用多因素煤层含气量预测方法对11~#煤层含气量横向展布规律进行了预测,预测结果为研究区煤层气"甜点区"评价和煤层气的开发提供了依据。  相似文献   

2.
煤层中的含气量不仅是煤矿生产的重要灾害因子之一(Wang,2001),也是决定一个地区煤层气资源能否进行商业化勘探开发的先决条件.因此,无论是为了煤矿生产安全,还是为了煤层气资源而准确地评价和预测煤层气开发前景以及制定开发方案,煤层气含量都是一个至关重要的参数.通过煤岩取样测试和试井分析,可获分析点附近煤层的含气量.但由于取样和测试的费用高,样品分析数量有限,且煤层含气量分布不均衡,导致难以掌握工区煤层含气量的分布特征.测井技术是煤层气勘探开发中的重要手段,所需要的费用较低,测井资料覆盖面较广.由于测井信息相对丰富且分辨率较高,具有弥补取心、试井及煤心分析等方面的不足的优点,可用来预测煤层的含气量(王敦则等,2003;潘和平,2005;周尚忠,2006).基于测井信息的煤层含气量预测方法主要有模型法和统计学方法.  相似文献   

3.
煤层含气量计算的准确与否直接关系到煤层气开发方案的有效制定。在简要介绍了现有煤层含气量评价方法的基础上,利用测井资料和煤岩心含气量分析化验资料,采用统计回归方法优选了煤层含气量的敏感性测井参数,并基于优选的测井参数,运用多元回归和神经网络两种数学方法构建了鄂东气田的煤层含气量测井预测模型。利用所构建的模型对研究区内的煤层含气量进行了预测,预测结果与煤岩心含气量室内分析数据对比表明,多元回归法和神经网络法均能较好地对煤层含气量进行预测,但神经网络法的预测精度更高。  相似文献   

4.
煤层含气量对煤层气开发有直接影响。柿庄南区块煤层含气量相对较高,但开发过程中存在较多低效井,开展含气量三维地质建模有助于厘定含气性对煤层气井产量的影响。以沁水盆地柿庄南区块3号煤层为研究对象,运用多元回归分析方法依次建立基于埋深、灰分、挥发分及固定碳含量等参数的含气量预测公式及基于测井数据的煤岩工业分析各组分含量预测公式,最终得出柿庄南区块基于测井数据的含气量预测模型并应用于全区,与实测值对比表明预测结果较好。运用Petrel软件基于预测结果构建含气量模型,探讨3号煤层含气量三维分布特征。研究表明,区内3号煤层含气量介于11~20 m3/t,其主控因素为煤层埋深和构造部位。该模型对研究区煤层气井低产因素厘定和煤层气开发生产具有指导意义。移动阅读   相似文献   

5.
随着煤层气勘探的不断深入,对煤层含气量预测精度提出了更高的要求。基于煤层含气量测井响应特征,分析测井参数与含气量的相关性,提出MIV(Mean Impact Value)技术与LSSVM(Least Squares Support Vector Machine)结合的测井参数优选策略,优选最优测井参数作为网络建模的输入自变量组合,通过粒子群算法优化LSSVM网络核心参数,最后构建一套适用于煤层含气量预测的MIV-PSO-LSSVM模型。在此基础上,分别对比分析LSSVM、PSO-LSSVM、MIV-LSSVM和MIV-PSO-LSSVM模型对煤层含气量的预测性能,并与传统多元回归方法进行了对比,利用拟合优度和均方根误差对此5类模型进行评价。结果表明:PSO优化下的LSSVM模型预测精度得到有效提升,结合MIV方法优选测井参数可大幅度改善神经网络建模性能,MIV-PSO-LSSVM模型可实现煤层含气量高精度预测,为煤层气勘探及其储层评价提供新的技术支撑,且本研究的建模策略及思想可广泛应用于其他机器学习建模研究领域。   相似文献   

6.
在煤层气的研究中,测井具有快速、高效、低成本等优势。以陕西省榆林市红石桥煤田为对象,将研究区测井资料、煤芯实验测试资料相结合,利用固定碳与补偿密度、固定碳与灰分、固定碳与挥发分以及灰分与挥发分的相关性分析,成功建立煤层工业组分预测模型,通过反算骨架密度法,构成孔隙度预测模型,应用多元回归分析法,建立含气量预测模型,开展煤层气储层测井精细评价。结果表明:研究区煤层变质程度低、镜质组组分含量较低,煤层的生气能力较差,煤层含气量偏低,不具有商业开采价值。研究结果可为后期煤层气是否具有开发价值提供理论依据。  相似文献   

7.
豫西地区煤层含气性分析   总被引:1,自引:0,他引:1  
龙胜祥  樊生利 《地质论评》1998,44(2):213-218
煤层含气性是煤层气资源评价的的重要参数。豫西地区石炭系二叠系煤层发育,本文依据大量的煤田地质资料和含气量测试、瓦斯涌出量等数据,分析了含气量测试数据的可信度,深入解剖了煤变质程度、埋深、构造、上覆连续沉积地层厚度、煤层厚度及煤层顶底板岩性等主要控制因素对煤层含气性的影响,进而建立了煤层含气量与煤级、埋深的拟合曲线及其函数关系,并对全区二_1煤层含气量空间分布规律进行了总结,得出了本区煤层含气量高、煤层气勘探开发前景十分广阔的结论。  相似文献   

8.
含气量预测的准确性对于煤层气开发至关重要。测井曲线作为含气量表征的最常用资料,不同测井资料对于含气量变化的响应灵敏程度不一样,单一的测井曲线预测含气量稳定性差。为了研究煤层含气量的精确预测方法,以澳大利亚S区块的煤层气为研究对象,以实验室分析数据、测井资料为基础,通过测井资料响应特征分析,实现测井资料的扩径校正以及含气量数据深度归位处理。在此基础上,根据含气量与测井资料相关性分析结果,选择煤层埋藏深度、声波时差、自然伽马和长源距密度等相关性好的测井数据作为含气量预测的基础参数。以基础参数对含气量的敏感性分析结果为依据,构建含气量预测的复合参数,建立基于测井资料的含气量复合参数预测模型。通过软件中编写含气量计算的外挂模块实现煤层气井含气量批量计算。复合参数预测模型在实际应用中,可以克服传统煤层含气量计算准确率低、稳定性差的缺点,同时可以实现批量化计算,极大地加快含气量计算进度,能够为S区块的后续煤层气开发奠定地质基础。   相似文献   

9.
鄂尔多斯盆地煤层气含量丰富,是我国煤层气勘探开发的重要区块。为搞清该区煤层气的富集规律,通过现场解吸等手段研究了该区煤层气地质特征;通过分析不同煤层气井的含气量、煤岩特征、煤层特征,煤的孔隙特征及渗透性特征,认为本区具有煤层气勘探和开发潜力的煤层2号煤层及10号煤层。并根据其中一口井所获得工业气流的实际情况得出,延川南区块具有良好的煤层气勘探和开发的潜力。  相似文献   

10.
鄂尔多斯盆地东部深层煤层气成藏地质条件分析   总被引:2,自引:0,他引:2  
       鄂尔多斯盆地东部目前的煤层气开发深度浅于1200 m,丰富的深部煤层气资源有待勘探开发。鉴于此,本文分析了 区内深部煤层赋存特征、热演化程度、煤层含气量及其分布规律。认为上古生界埋深的总体分布格局与两个向西凸出浅埋 带的叠加,可能导致煤层含气性和渗透性区域分布格局的进一步复杂化。发现上古生界煤阶区域分布格局与煤层埋深类似, 指示深成变质作用对区域煤阶分布起着主要控制作用。预测了深部煤层含气量的分布格局,认为煤层埋藏一旦超过临界深 度时煤层含气量随深度的加大反而有所降低。建立了自生自储、内生外储两类煤成气藏模式,认为吸附型煤层气藏与游离 型煤成气藏的共生为合采提供了丰厚的资源条件。  相似文献   

11.
庆阳—黄陵地区是鄂尔多斯盆地重要的低煤阶含煤区,是近几年煤层气勘探的热点地区之一。但该区煤层气钻探效果并不理想,急切需要认清该地区煤层气富集规律,以便有效指导煤层气的勘探开发。通过对该区煤层的展布特征、沉积环境、煤岩煤质特征、物性特征及含气性等进行综合分析,查明该区煤岩演化程度低,煤层厚5~30m,大部分地区煤层埋深小于1500m且分布稳定,延9煤层为该区的主力煤层,煤岩类型主要为半亮煤和半暗煤,煤岩煤质特征好,孔隙度、渗透率较高,灰分含量低,具有较高的煤层气勘探潜力。钻井资料揭示该区煤层含气性变化大,含气量介于0~8m~3/t之间。进一步分析构造和沉积作用对煤层气富集的影响,提出了煤层气保存条件好、含气量高、勘探潜力大的四个有利目标区。  相似文献   

12.
官寨勘探区位于贵州织纳煤田北部,煤层发育具有"层数多、厚度薄、成群分布"的特点。采用气含量测试、注入/压降试井、钻孔煤层和煤体结构频度统计以及煤岩裂隙观测等方法,对煤储层含气性、渗透性、储层压力和地应力等进行了系统分析。采用体积法估算了官寨勘探区煤层气资源量,初步评价了煤层气可采性和资源潜力。煤层气地质、储层条件分析和开发工程实践表明,官寨勘探区煤层气保存条件好,气含量高,资源量和资源丰度大,可采性较好,具有较大的开发利用潜力;将煤层群作为目标产层,进行单井、多产层合层开发是今后官寨勘探区乃至西南地区煤层气开发的重要发展方向。  相似文献   

13.
庆阳—黄陵地区是鄂尔多斯盆地重要的低煤阶含煤区,是近几年煤层气勘探的热点地区之一。但该区煤层气钻探效果并不理想,急切需要认清该地区煤层气富集规律,以便有效指导煤层气的勘探开发。通过对该区煤层的展布特征、沉积环境、煤岩煤质特征、物性特征及含气性等进行综合分析,查明该区煤岩演化程度低,煤层厚5~30m,大部分地区煤层埋深小于1500m且分布稳定,延9煤层为该区的主力煤层,煤岩类型主要为半亮煤和半暗煤,煤岩煤质特征好,孔隙度、渗透率较高,灰分含量低,具有较高的煤层气勘探潜力。钻井资料揭示该区煤层含气性变化大,含气量介于0~8m3/t之间。进一步分析构造和沉积作用对煤层气富集的影响,提出了煤层气保存条件好、含气量高、勘探潜力大的四个有利目标区。  相似文献   

14.
庆阳—黄陵地区是鄂尔多斯盆地重要的低煤阶含煤区,是近几年煤层气勘探的热点地区之一。但该区煤层气钻探效果并不理想,急切需要认清该地区煤层气富集规律,以便有效指导煤层气的勘探开发。通过对该区煤层的展布特征、沉积环境、煤岩煤质特征、物性特征及含气性等进行综合分析,查明该区煤岩演化程度低,煤层厚5~30m,大部分地区煤层埋深小于1500m且分布稳定,延9煤层为该区的主力煤层,煤岩类型主要为半亮煤和半暗煤,煤岩煤质特征好,孔隙度、渗透率较高,灰分含量低,具有较高的煤层气勘探潜力。钻井资料揭示该区煤层含气性变化大,含气量介于0~8m~3/t之间。进一步分析构造和沉积作用对煤层气富集的影响,提出了煤层气保存条件好、含气量高、勘探潜力大的四个有利目标区。  相似文献   

15.
煤层含气量是一个受多因素影响的反映煤层含气性的定量指标。以晋城矿区为例,根据煤层气地质基本理论,利用改进的斜率关联度法,分析了煤层气含量的影响因素;进而,由灰色多变量静态模型GM(0,N)预测了煤层气含量,并与多元回归分析的结果进行比较。结果表明,用改进斜率关联度进行灰色关联分析所确定的煤层气含量的主要影响因素是可信的;由GM(0,N)模型预测煤层含气量所需样本数据少,原理简单,计算方便,且预测精度较高。   相似文献   

16.
用数字测井资料预测煤储层渗透率和储层压力   总被引:1,自引:0,他引:1  
煤层是煤层气的生、储层。利用数字测井资料采用多种方法与钻井煤层渗透率、储层压力的试井资料进行回归分析,建立回归方程,进而运用到勘探区,解释煤层渗透率及储层压力,找出其分布规律,为煤层气开发和生产提供可靠的资料。   相似文献   

17.
煤层含气性是决定煤层气勘探开发的重要参数,煤层气甲烷碳同位素能有效反映煤层气的赋存条件。根据煤层气井实测含气量数据,剖析了山西沁水盆地煤层含气量分布特征,建立了煤层含气量与煤层埋深、地质构造之间的相关关系和模型,探讨了煤层甲烷碳同位素分布特征及其对含气性分布的指示作用。研究表明:西山区块2号煤层平均含气量6.87 m3/t,8号煤层平均含气量8.4 m3/t,9号煤层平均含气量7.6 m3/t,煤层含气量主要受煤层埋深和构造形态的影响。研究区8号煤层甲烷碳同位素为–65.33‰~–40.94‰,平均–45.88‰,煤层含气量与甲烷碳同位素之间成正相关关系,随着含气量的增加,甲烷碳同位素也逐渐变重。煤层甲烷碳同位素主要受控于煤层气解吸–扩散–运移效应和地下水动力作用等。   相似文献   

18.
向旻 《地质与勘探》2020,56(6):1305-1312
将常规储层测井解释方法应用于煤层气储层测井解释,其效果存在一定的折扣。为了改善传统方法在煤层气测井解释中出现的问题,将深度学习的思想引入测井解释,提出受限玻尔兹曼机的数量、受限玻尔兹曼机隐含层神经元数量、分类阈值的确定方法,利用深度信念网络进行煤层识别及煤层气含气量的预测。实验结果表明:首先,在交会图法效果不好的情况下,通过深度信念网络进行煤层识别,继而对识别结果进行适当校正,煤层识别成功率可达到90%以上;其次,经过多种方法的对比,利用深度信念网络进行煤层气含气量预测的效果,要好于BP神经网络、多元回归统计以及Langmuir方程三种方法。深度学习改进了传统的BP神经网络,具备更强的复杂函数泛化能力,适用于煤层气测井解释,并具有进一步的推广价值。  相似文献   

19.
煤层气含量是评价煤储层的一个重要参数。本文将灰色系统用于煤层测井曲线,利用改进的斜率关联度法,分析了对煤层气含量敏感的测井曲线序列;对正关联相关的测井曲线序列利用灰色多变量静态模型GM(0,N)预测煤层气含量。并以沁水煤田为例,将预测结果与多元回归模型分析的结果进行比较并对本文方法模型的实用性进行研究分析。结果表明,应用改进的斜率关联度对测井曲线与煤层气含量进行灰色关联分析能更充分开发测井曲线与煤层气含量的关系;用GM(0,N)模型预测煤层气含量比多元回归模型预测的结果更精确,且本文模型更为强健,可在样本数据相对较少的情况下有效预测煤层气含量曲线,结果可信度高,具有实际应用价值。  相似文献   

20.
随着美国粉河盆地煤层气商业开发的成功,褐煤盆地煤层气资源受到广泛关注。我国昭通褐煤盆地蕴藏着丰富的煤层气资源,开发潜力巨大。在分析煤层气分布规律的基础上,厘定了煤层气富集的主控地质因素,对煤层气资源开发潜力进行了评价。研究表明:昭通盆地褐煤演化程度低,煤层生气量少,且大量孔裂隙被水充填,煤层含气量低,预测埋深150 m煤层气含量为1.45 m3/t,埋深500 m煤层气含量为2.00 m3/t。研究区煤层气富集的主控地质因素包括煤层厚度、煤层埋藏深度、构造地质特征、煤层顶板岩性及封闭条件等。由于褐煤煤化程度低,煤层生气量少,加之盆地内煤层埋藏深度不大,易遭受氧化,致使煤层含气量较低,但盆地内煤层厚,赋存的煤炭资源量大,单位面积内煤层气资源丰度高,为煤层气富集提供了良好的内部条件;同时盆地沉积后期构造相对稳定,煤层顶板为粘土及砂质粘土,封闭条件较好,有利于煤层气的保存。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号