首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
Reflection full waveform inversion can update subsurface velocity structure of the deeper part, but tends to get stuck in the local minima associated with the waveform misfit function. These local minima cause cycle skipping if the initial background velocity model is far from the true model. Since conventional reflection full waveform inversion using two‐way wave equation in time domain is computationally expensive and consumes a large amount of memory, we implement a correlation‐based reflection waveform inversion using one‐way wave equations to retrieve the background velocity. In this method, one‐way wave equations are used for the seismic wave forward modelling, migration/de‐migration and the gradient computation of objective function in frequency domain. Compared with the method using two‐way wave equation, the proposed method benefits from the lower computational cost of one‐way wave equations without significant accuracy reduction in the cases without steep dips. It also largely reduces the memory requirement by an order of magnitude than implementation using two‐way wave equation both for two‐ and three‐dimensional situations. Through numerical analysis, we also find that one‐way wave equations can better construct the low wavenumber reflection wavepath without producing high‐amplitude short‐wavelength components near the image points in the reflection full waveform inversion gradient. Synthetic test and real data application show that the proposed method efficiently updates the background velocity model.  相似文献   

2.
Extrapolating wavefields and imaging at each depth during three‐dimensional recursive wave‐equation migration is a time‐consuming endeavor. For efficiency, most commercial techniques extrapolate wavefields through thick slabs followed by wavefield interpolation within each thick slab. In this article, we develop this strategy by associating more efficient interpolators with a Fourier‐transform‐related wavefield extrapolation method. First, we formulate a three‐dimensional first‐order separation‐of‐variables screen propagator for large‐step wavefield extrapolation, which allows for wide‐angle propagations in highly contrasting media. This propagator significantly improves the performance of the split‐step Fourier method in dealing with significant lateral heterogeneities at the cost of only one more fast Fourier transform in each thick slab. We then extend the two‐dimensional Kirchhoff and Born–Kirchhoff local wavefield interpolators to three‐dimensional cases for each slab. The three‐dimensional Kirchhoff interpolator is based on the traditional Kirchhoff formula and applies to moderate lateral velocity variations, whereas the three‐dimensional Born–Kirchhoff interpolator is derived from the Lippmann–Schwinger integral equation under the Born approximation and is adapted to highly laterally varying media. Numerical examples on the three‐dimensional salt model of the Society of Exploration Geophysicists/European Association of Geoscientists demonstrate that three‐dimensional first‐order separation‐of‐variables screen propagator Born–Kirchhoff depth migration using thick‐slab wavefield extrapolation plus thin‐slab interpolation tolerates a considerable depth‐step size of up to 72 ms, eventually resulting in an efficiency improvement of nearly 80% without obvious loss of imaging accuracy. Although the proposed three‐dimensional interpolators are presented with one‐way Fourier extrapolation methods, they can be extended for applications to general migration methods.  相似文献   

3.
基于波动方程的广义屏叠前深度偏移   总被引:15,自引:7,他引:15       下载免费PDF全文
地震波传播算子的计算效率和精度是制约三维叠前深度偏移的关键因素. 广义屏传播算子(GSP, Generalized Screen Propagator)是一种在双域中实现的广角单程波传播算子. 这一方法略去了在非均匀体之间发生的交混回响,但它可以正确处理包括聚焦、衍射、折射和干涉在内的各种多次前向散射现象. 通过背景速度下的相移和扰动速度下的陡倾角校正,广义屏算子能够适应地层速度的强烈横向变化. 这种算子可以直接应用于炮集叠前偏移,通过将广义屏算子作用于双平方根方程,还可以获得一种高效率、高精度的炮检距域叠前深度偏移方法,用于二维共炮检距道集和三维共方位角道集的深度域成像. 本文首先简述了炮检距域广义屏传播算子的理论,进而讨论了共照射角成像(CAI, Common Angle Imaging)条件,由此给出各个不同照射角(炮检距射线参数)下的成像结果,进而得到共照射角像集. 由于照射角和炮检距的对应关系,共照射角像集又为偏移速度分析和AVO(振幅随炮检距变化)分析等提供了有力工具.  相似文献   

4.
Extracting true amplitude versus angle common image gathers is one of the key objectives in seismic processing and imaging. This is achievable to different degrees using different migration techniques (e.g., Kirchhoff, wavefield extrapolation, and reverse time migration techniques) and is a common tool in exploration, but the costs can vary depending on the selected migration algorithm and the desired accuracy. Here, we investigate the possibility of combining the local‐shift imaging condition, specifically the time‐shift extended imaging condition, for angle gathers with a Kirchhoff migration. The aims are not to replace the more accurate full‐wavefield migration but to offer a cheaper alternative where ray‐based methods are applicable and to use Kirchhoff time‐lag common image gathers to help bridge the gap between the traditional offset common image gathers and reverse time migration angle gathers; finally, given the higher level of summation inside the extended imaging migration, we wish to understand the impact on the amplitude versus angle response. The implementation of the time‐shift imaging condition along with the computational cost is discussed, and results of four different datasets are presented. The four example datasets, two synthetic, one land acquisition, and a marine dataset, have been migrated using a Kirchhoff offset method, a Kirchhoff time‐shift method, and, for comparison, a reverse time migration algorithm. The results show that the time‐shift imaging condition at zero time lag is equivalent to the full offset stack as expected. The output gathers are cleaner and more consistent in the time‐lag‐derived angle gathers, but the conversion from time lag to angle can be considered a post‐processing step. The main difference arises in the amplitude versus offset/angle distribution where the responses are different and dramatically so for the land data. The results from the synthetics and real data show that a Kirchhoff migration with an extended imaging condition is capable of generating subsurface angle gathers. The same disadvantages with a ray‐based approach will apply using the extended imaging condition relative to a wave equation angle gather solution. Nevertheless, using this approach allows one to explore the relationship between the velocity model and focusing of the reflected energy, to use the Radon transformation to remove noise and multiples, and to generate consistent products from a ray‐based migration and a full‐wave equation migration, which can then be interchanged depending on the process under study.  相似文献   

5.
Elastic full waveform inversion of seismic reflection data represents a data‐driven form of analysis leading to quantification of sub‐surface parameters in depth. In previous studies attention has been given to P‐wave data recorded in the marine environment, using either acoustic or elastic inversion schemes. In this paper we exploit both P‐waves and mode‐converted S‐waves in the marine environment in the inversion for both P‐ and S‐wave velocities by using wide‐angle, multi‐component, ocean‐bottom cable seismic data. An elastic waveform inversion scheme operating in the time domain was used, allowing accurate modelling of the full wavefield, including the elastic amplitude variation with offset response of reflected arrivals and mode‐converted events. A series of one‐ and two‐dimensional synthetic examples are presented, demonstrating the ability to invert for and thereby to quantify both P‐ and S‐wave velocities for different velocity models. In particular, for more realistic low velocity models, including a typically soft seabed, an effective strategy for inversion is proposed to exploit both P‐ and mode‐converted PS‐waves. Whilst P‐wave events are exploited for inversion for P‐wave velocity, examples show the contribution of both P‐ and PS‐waves to the successful recovery of S‐wave velocity.  相似文献   

6.
In this paper, source‐receiver migration based on the double‐square‐root one‐way wave equation is modified to operate in the two‐way vertical traveltime (τ) domain. This tau migration method includes reasonable treatment for media with lateral inhomogeneity. It is implemented by recursive wavefield extrapolation with a frequency‐wavenumber domain phase shift in a constant background medium, followed by a phase correction in the frequency‐space domain, which accommodates moderate lateral velocity variations. More advanced τ‐domain double‐square‐root wave propagators have been conceptually discussed in this paper for migration in media with stronger lateral velocity variations. To address the problems that the full 3D double‐square‐root equation prestack tau migration could meet in practical applications, we present a method for downward continuing common‐azimuth data, which is based on a stationary‐phase approximation of the full 3D migration operator in the theoretical frame of prestack tau migration of cross‐line constant offset data. Migrations of synthetic data sets show that our tau migration approach has good performance in strong contrast media. The real data example demonstrates that common‐azimuth prestack tau migration has improved the delineation of the geological structures and stratigraphic configurations in a complex fault area. Prestack tau migration has some inherent robust characteristics usually associated with prestack time migration. It follows a velocity‐independent anti‐aliasing criterion that generally leads to reduction of the computation cost for typical vertical velocity variations. Moreover, this τ‐domain source‐receiver migration method has features that could be of help to speed up the convergence of the velocity estimation.  相似文献   

7.
地震波传播算子的计算效率和精度是制约三维叠前深度偏移的关键因素. 广义屏传播算子(GSP, Generalized Screen Propagator)是一种在双域中实现的广角单程波传播算子. 这一方法略去了在非均匀体之间发生的交混回响,但它可以正确处理包括聚焦、衍射、折射和干涉在内的各种多次前向散射现象. 通过背景速度下的相移和扰动速度下的陡倾角校正,广义屏算子能够适应地层速度的强烈横向变化. 这种算子可以直接应用于炮集叠前偏移,通过将广义屏算子作用于双平方根方程,还可以获得一种高效率、高精度的炮检距域叠前深度偏移方法,用于二维共炮检距道集和三维共方位角道集的深度域成像. 本文首先简述了炮检距域广义屏传播算子的理论,进而讨论了共照射角成像(CAI, Common Angle Imaging)条件,由此给出各个不同照射角(炮检距射线参数)下的成像结果,进而得到共照射角像集. 由于照射角和炮检距的对应关系,共照射角像集又为偏移速度分析和AVO(振幅随炮检距变化)分析等提供了有力工具.  相似文献   

8.
Gaussian beam migration is a versatile imaging method for geologically complex land areas, which overcomes the limitation of Kirchhoff migration in imaging multiple arrivals and has no steep‐dip limits of one‐way wave‐equation migration. However, its imaging accuracy depends on the geometry of Gaussian beam that is determined by the initial parameter of dynamic ray tracing. As a result, its applications in exploration areas with strong variations in topography and near‐surface velocity are limited. Combined with the concept of Fresnel zone and the theory of wave‐field approximation in effective vicinity, we present a more robust common‐shot Fresnel beam imaging method for complex topographic land areas in this paper. Compared with the conventional Gaussian beam migration for irregular topography, our method improves the beam geometry by limiting its effective half‐width with Fresnel zone radius. Moreover, through a quadratic travel‐time correction and an amplitude correction that is based on the wave‐field approximation in effective vicinity, it gives an accurate method for plane‐wave decomposition at complex topography, which produces good imaging results in both shallow and deep zones. Trials of two typical models and its application in field data demonstrated the validity and robustness of our method.  相似文献   

9.
The Fourier finite‐difference propagator and the generalized‐screen propagator are two general high‐order forms of one‐way dual‐domain methods. We compare these two propagators mainly on phase accuracy, computational efficiency and 3D extension. A comparison of phase accuracy shows that the high‐order generalized‐screen propagator is preferable to the Fourier finite‐difference propagator for heterogeneous media with a weak velocity contrast and wide dip angle. With increasing velocity contrast, the accuracy improvement gained by the high‐order generalized‐screen propagator declines rapidly. The Fourier finite‐difference propagator is more robust and flexible to lateral velocity variations than the generalized‐screen propagator. The 2D Fourier finite‐difference propagator is superior to the 2D generalized‐screen propagator when the velocity contrast is stronger than 23%. Despite the two‐way splitting error, the 3D Fourier finite‐difference propagator is more accurate than the second‐order generalized‐screen propagator when the velocity contrast is stronger than 20% and is more accurate than the fourth‐order generalized‐screen propagator when the velocity contrast is stronger than 40%. Numerical experiments on the SEG/EAGE salt model demonstrate that the Fourier finite‐difference propagator behaves better than the generalized‐screen propagator when imaging steep salt boundary and faults beneath the salt body. Under the same hardware and software conditions, the computational cost of the Fourier finite‐difference propagator in our implementation is greater than that of the second‐order generalized‐screen propagator but smaller than that of the third‐order generalized‐screen propagator. Compared with the Fourier finite‐difference propagator, the generalized‐screen propagator requires fewer grid points per wavelength and has more potential to improve running speed in the presence of a much faster Fourier transform. These analyses are applicable for both forward modelling and depth migration.  相似文献   

10.
波动方程的高阶广义屏叠前深度偏移   总被引:19,自引:0,他引:19       下载免费PDF全文
不同于常规广义屏传播算子的推导中使用散射理论,本文利用单平方根算子的渐近展开,推导出了单程波方程广义屏传播算子的高阶表达式.高阶广义屏传播算子不仅可提高常规广义屏传播算子的计算精度,而且还能改善广义屏传播算子对速度强横向变化介质的适应性.把高阶广义屏传播算子应用于波动方程叠前深度偏移,可得到比常规广义屏传播算子更好的效果.高阶广义屏传播算子的阶数越高,计算精度越高,但计算量也越多.以SEG-EAGE二维盐丘模型数据的波动方程叠前深度偏移为例,二阶广义屏传播算子相对于常规(一阶)广义屏传播算子增加了30%的计算量.高阶广义屏传播算子是常规广义屏传播算子理论的发展和完善.  相似文献   

11.
双平方根单程波动方程叠前τ偏移方法   总被引:1,自引:0,他引:1       下载免费PDF全文
本文将常规双平方根(DSR)单程波动方程从深度域变换到双程垂直走时(τ)域,由此推导出可从数学上实现“沉降观测”的单程波DSR传播算子. 其递归波场延拓算法包含波数域针对常速背景的相移处理和空间域针对横向速度扰动的相位校正,可以应对上覆地层速度横向变化对构造成像的影响. 结合零炮检距、零时间成像条件,提出了在τ域进行波场延拓与成像的DSR方程叠前偏移新方法. 为了克服其全三维偏移算法在实际应用中可能面临的困难,本文采用稳相近似,在crossline常炮检距偏移理论基础上推导了实用的共方位角叠前τ偏移方法. 数值试验表明,DSR方程叠前τ偏移在强横向非均匀介质中的成像精度与分辨率优于传统的时间域成像技术.  相似文献   

12.
本文将常规双平方根(DSR)单程波动方程从深度域变换到双程垂直走时(τ)域,由此推导出可从数学上实现“沉降观测”的单程波DSR传播算子. 其递归波场延拓算法包含波数域针对常速背景的相移处理和空间域针对横向速度扰动的相位校正,可以应对上覆地层速度横向变化对构造成像的影响. 结合零炮检距、零时间成像条件,提出了在τ域进行波场延拓与成像的DSR方程叠前偏移新方法. 为了克服其全三维偏移算法在实际应用中可能面临的困难,本文采用稳相近似,在crossline常炮检距偏移理论基础上推导了实用的共方位角叠前τ偏移方法. 数值试验表明,DSR方程叠前τ偏移在强横向非均匀介质中的成像精度与分辨率优于传统的时间域成像技术.  相似文献   

13.
局部角度域波传播步进算法研究   总被引:4,自引:2,他引:2       下载免费PDF全文
本文从非均匀介质中波动方程出发,提出了基于一般标架的相空间(局部角度域)波传播的步进算法. 该方法在构造单程波的步进算法时,在选择标架或正交基等方面有更大的自由度. 我们以不随频率及深度变化且具有变尺度特性的Gabor_Daubechies紧标架为例,给出了单程波传输算子的具体形式及相应的波场步进算法;详细讨论了基于Gabor_Daubechies标架的传输算子的高频渐近展开问题,得出了在高频、小传输步长条件下传输算子的近似解析表达式,并给出使用条件. 通过模型算例,比较了精确传输算子与高频近似传输算子用于非均匀介质中波传播的结果,说明在一定条件下由两者得出的波场几乎是相同的.  相似文献   

14.
Most amplitude versus offset (AVO) analysis and inversion techniques are based on the Zoeppritz equations for plane‐wave reflection coefficients or their approximations. Real seismic surveys use localized sources that produce spherical waves, rather than plane waves. In the far‐field, the AVO response for a spherical wave reflected from a plane interface can be well approximated by a plane‐wave response. However this approximation breaks down in the vicinity of the critical angle. Conventional AVO analysis ignores this problem and always utilizes the plane‐wave response. This approach is sufficiently accurate as long as the angles of incidence are much smaller than the critical angle. Such moderate angles are more than sufficient for the standard estimation of the AVO intercept and gradient. However, when independent estimation of the formation density is required, it may be important to use large incidence angles close to the critical angle, where spherical wave effects become important. For the amplitude of a spherical wave reflected from a plane fluid‐fluid interface, an analytical approximation is known, which provides a correction to the plane‐wave reflection coefficients for all angles. For the amplitude of a spherical wave reflected from a solid/solid interface, we propose a formula that combines this analytical approximation with the linearized plane‐wave AVO equation. The proposed approximation shows reasonable agreement with numerical simulations for a range of frequencies. Using this solution, we constructed a two‐layer three‐parameter least‐squares inversion algorithm. Application of this algorithm to synthetic data for a single plane interface shows an improvement compared to the use of plane‐wave reflection coefficients.  相似文献   

15.
单程波算子地震波入射角计算   总被引:1,自引:1,他引:0       下载免费PDF全文
基于单程波深度延拓方法,发展了一种地震波入射角度计算方法.入射角度的计算仅利用简谐波场,可得到整个成像区域内所有点的入射波波前面方向.该方法具有较高的计算效率,可服务于合成角道集等深度偏移方法;与偏移算法相比,其计算量几乎可以忽略.与射线法或基于走时梯度的入射角度计算方法相比,本文方法更稳健,避免了速度场的微小变化导致的入射角较大变化,因此更适用于实际偏移速度模型,也与波动方程深度偏移方法更匹配.数值算例表明,本文方法既有较高的计算效率又有很好的精度,且有很好的稳定性.  相似文献   

16.
We present preserved‐amplitude downward continuation migration formulas in the aperture angle domain. Our approach is based on shot‐receiver wavefield continuation. Since source and receiver points are close to the image point, a local homogeneous reference velocity can be approximated after redatuming. We analyse this approach in the framework of linearized inversion of Kirchhoff and Born approximations. From our analysis, preserved‐amplitude Kirchhoff and Born inverse formulas can be derived for the 2D case. They involve slant stacks of filtered subsurface offset domain common image gathers followed by the application of the appropriate weighting factors. For the numerical implementation of these formulas, we develop an algorithm based on the true amplitude version of the one‐way paraxial approximation. Finally, we demonstrate the relevance of our approach with a set of applications on synthetic datasets and compare our results with those obtained on the Marmousi model by multi‐arrival ray‐based preserved‐amplitude migration. While results are similar, we observe that our results are less affected by artefacts.  相似文献   

17.
Fluid depletion within a compacting reservoir can lead to significant stress and strain changes and potentially severe geomechanical issues, both inside and outside the reservoir. We extend previous research of time‐lapse seismic interpretation by incorporating synthetic near‐offset and full‐offset common‐midpoint reflection data using anisotropic ray tracing to investigate uncertainties in time‐lapse seismic observations. The time‐lapse seismic simulations use dynamic elasticity models built from hydro‐geomechanical simulation output and a stress‐dependent rock physics model. The reservoir model is a conceptual two‐fault graben reservoir, where we allow the fault fluid‐flow transmissibility to vary from high to low to simulate non‐compartmentalized and compartmentalized reservoirs, respectively. The results indicate time‐lapse seismic amplitude changes and travel‐time shifts can be used to qualitatively identify reservoir compartmentalization. Due to the high repeatability and good quality of the time‐lapse synthetic dataset, the estimated travel‐time shifts and amplitude changes for near‐offset data match the true model subsurface changes with minimal errors. A 1D velocity–strain relation was used to estimate the vertical velocity change for the reservoir bottom interface by applying zero‐offset time shifts from both the near‐offset and full‐offset measurements. For near‐offset data, the estimated P‐wave velocity changes were within 10% of the true value. However, for full‐offset data, time‐lapse attributes are quantitatively reliable using standard time‐lapse seismic methods when an updated velocity model is used rather than the baseline model.  相似文献   

18.
Seismic inversion plays an important role in reservoir modelling and characterisation due to its potential for assessing the spatial distribution of the sub‐surface petro‐elastic properties. Seismic amplitude‐versus‐angle inversion methodologies allow to retrieve P‐wave and S‐wave velocities and density individually allowing a better characterisation of existing litho‐fluid facies. We present an iterative geostatistical seismic amplitude‐versus‐angle inversion algorithm that inverts pre‐stack seismic data, sorted by angle gather, directly for: density; P‐wave; and S‐wave velocity models. The proposed iterative geostatistical inverse procedure is based on the use of stochastic sequential simulation and co‐simulation algorithms as the perturbation technique of the model parametre space; and the use of a genetic algorithm as a global optimiser to make the simulated elastic models converge from iteration to iteration. All the elastic models simulated during the iterative procedure honour the marginal prior distributions of P‐wave velocity, S‐wave velocity and density estimated from the available well‐log data, and the corresponding joint distributions between density versus P‐wave velocity and P‐wave versus S‐wave velocity. We successfully tested and implemented the proposed inversion procedure on a pre‐stack synthetic dataset, built from a real reservoir, and on a real pre‐stack seismic dataset acquired over a deep‐water gas reservoir. In both cases the results show a good convergence between real and synthetic seismic and reliable high‐resolution elastic sub‐surface Earth models.  相似文献   

19.
Reverse‐time migration gives high‐quality, complete images by using full‐wave extrapolations. It is thus not subject to important limitations of other migrations that are based on high‐frequency or one‐way approximations. The cross‐correlation imaging condition in two‐dimensional pre‐stack reverse‐time migration of common‐source data explicitly sums the product of the (forward‐propagating) source and (backward‐propagating) receiver wavefields over all image times. The primary contribution at any image point travels a minimum‐time path that has only one (specular) reflection, and it usually corresponds to a local maximum amplitude. All other contributions at the same image point are various types of multipaths, including prismatic multi‐arrivals, free‐surface and internal multiples, converted waves, and all crosstalk noise, which are imaged at later times, and potentially create migration artefacts. A solution that facilitates inclusion of correctly imaged, non‐primary arrivals and removal of the related artefacts, is to save the depth versus incident angle slice at each image time (rather than automatically summing them). This results in a three‐parameter (incident angle, depth, and image time) common‐image volume that integrates, into a single unified representation, attributes that were previously computed by separate processes. The volume can be post‐processed by selecting any desired combination of primary and/or multipath data before stacking over image time. Separate images (with or without artifacts) and various projections can then be produced without having to remigrate the data, providing an efficient tool for optimization of migration images. A numerical example for a simple model shows how primary and prismatic multipath contributions merge into a single incident angle versus image time trajectory. A second example, using synthetic data from the Sigsbee2 model, shows that the contributions to subsalt images of primary and multipath (in this case, turning wave) reflections are different. The primary reflections contain most of the information in regions away from the salt, but both primary and multipath data contribute in the subsalt region.  相似文献   

20.
Wave equation–based migration velocity analysis techniques aim to construct a kinematically accurate velocity model for imaging or as an initial model for full waveform inversion applications. The most popular wave equation–based migration velocity analysis method is differential semblance optimization, where the velocity model is iteratively updated by minimizing the unfocused energy in an extended image volume. However, differential semblance optimization suffers from artefacts, courtesy of the adjoint operator used in imaging, leading to poor convergence. Recent findings show that true amplitude imaging plays a significant role in enhancing the differential semblance optimization's gradient and reducing the artefacts. Here, we focus on a pseudo-inverse operator to the horizontally extended Born as a true amplitude imaging operator. For laterally inhomogeneous models, the operator required a derivative with respect to a vertical shift. Extending the image vertically to evaluate such a derivative is costly and impractical. The inverse operator can be simplified in laterally homogeneous models. We derive an extension of the approach to apply the full inverse formula and evaluate the derivative efficiently. We simplified the implementation by applying the derivative to the imaging condition and utilize the relationship between the source and receiver wavefields and the vertical shift. Specifically, we verify the effectiveness of the approach using the Marmousi model and show that the term required for the lateral inhomogeneity treatment has a relatively small impact on the results for many cases. We then apply the operator in differential semblance optimization and invert for an accurate macro-velocity model, which can serve as an initial velocity model for full waveform inversion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号