首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To date, published studies of alluvial bar architecture in large rivers have been restricted mostly to case studies of individual bars and single locations. Relatively little is known about how the depositional processes and sedimentary architecture of kilometre‐scale bars vary within a multi‐kilometre reach or over several hundreds of kilometres downstream. This study presents Ground Penetrating Radar and core data from 11, kilometre‐scale bars from the Río Paraná, Argentina. The investigated bars are located between 30 km upstream and 540 km downstream of the Río Paraná – Río Paraguay confluence, where a significant volume of fine‐grained suspended sediment is introduced into the network. Bar‐scale cross‐stratified sets, with lengths and widths up to 600 m and thicknesses up to 12 m, enable the distinction of large river deposits from stacked deposits of smaller rivers, but are only present in half the surface area of the bars. Up to 90% of bar‐scale sets are found on top of finer‐grained ripple‐laminated bar‐trough deposits. Bar‐scale sets make up as much as 58% of the volume of the deposits in small, incipient mid‐channel bars, but this proportion decreases significantly with increasing age and size of the bars. Contrary to what might be expected, a significant proportion of the sedimentary structures found in the Río Paraná is similar in scale to those found in much smaller rivers. In other words, large river deposits are not always characterized by big structures that allow a simple interpretation of river scale. However, the large scale of the depositional units in big rivers causes small‐scale structures, such as ripple sets, to be grouped into thicker cosets, which indicate river scale even when no obvious large‐scale sets are present. The results also show that the composition of bars differs between the studied reaches upstream and downstream of the confluence with the Río Paraguay. Relative to other controls on downstream fining, the tributary input of fine‐grained suspended material from the Río Paraguay causes a marked change in the composition of the bar deposits. Compared to the upstream reaches, the sedimentary architecture of the downstream reaches in the top ca 5 m of mid‐channel bars shows: (i) an increase in the abundance and thickness (up to metre‐scale) of laterally extensive (hundreds of metres) fine‐grained layers; (ii) an increase in the percentage of deposits comprised of ripple sets (to >40% in the upper bar deposits); and (iii) an increase in bar‐trough deposits and a corresponding decrease in bar‐scale cross‐strata (<10%). The thalweg deposits of the Río Paraná are composed of dune sets, even directly downstream from the Río Paraguay where the upper channel deposits are dominantly fine‐grained. Thus, the change in sedimentary facies due to a tributary point‐source of fine‐grained sediment is primarily expressed in the composition of the upper bar deposits.  相似文献   

2.
Climbing dune‐scale cross‐statification is described from Late Ordovician paraglacial successions of the Murzuq Basin (SW Libya). This depositional facies is comprised of medium‐grained to coarse‐grained sandstones that typically involve 0·3 to 1 m high, 3 to 5 m in wavelength, asymmetrical laminations. Most often stoss‐depositional structures have been generated, with preservation of the topographies of formative bedforms. Climbing‐dune cross‐stratification related to the migration of lower‐flow regime dune trains is thus identified. Related architecture and facies sequences are described from two case studies: (i) erosion‐based sandstone sheets; and (ii) a deeply incised channel. The former characterized the distal outwash plain and the fluvial/subaqueous transition of related deltaic wedges, while the latter formed in an ice‐proximal segment of the outwash plain. In erosion‐based sand sheets, climbing‐dune cross‐stratification results from unconfined mouth‐bar deposition related to expanding, sediment‐laden flows entering a water body. Within incised channels, climbing‐dune cross‐stratification formed over eddy‐related side bars reflecting deposition under recirculating flow conditions generated at channel bends. Associated facies sequences record glacier outburst floods that occurred during early stages of deglaciation and were temporally and spatially linked with subglacial drainage events involving tunnel valleys. The primary control on the formation of climbing‐dune cross‐stratification is a combination between high‐magnitude flows and sediment supply limitations, which lead to the generation of sediment‐charged stream flows characterized by a significant, relatively coarse‐grained, sand‐sized suspension‐load concentration, with a virtual absence of very coarse to gravelly bedload. The high rate of coarse‐grained sand fallout in sediment‐laden flows following flow expansion throughout mouth bars or in eddy‐related side bars resulted in high rates of transfer of sands from suspension to the bed, net deposition on bedform stoss‐sides and generation of widespread climbing‐dune cross‐stratification. The later structure has no equivalent in the glacial record, either in the ancient or in the Quaternary literature, but analogues are recognized in some flood‐dominated depositional systems of foreland basins.  相似文献   

3.
The Grès de Champsaur turbidite system, deposited in a distal setting in the Alpine Foreland Basin of south‐eastern France, exhibits a repeated upsection alternation in sand body geometry between incised channels and sheet sands. The channels form symmetric lenticular erosional features, of width 900–1000 m (measured between the lateral limits of incision) and depth 65–115 m, and can be traced axially for up to 5 km. In each case, the channel fill is capped by a laterally persistent sandy sheet‐form interval, which lies upon a fine‐grained substrate beyond the channel margins. No intrachannel elements have been traced into the substrate sequence, suggesting that, before infill, the channels acted as open sea‐floor conduits of essentially the same dimensions as the preserved channel deposits. The channels are vertically stacked, although axial erosion juxtaposes younger channel axis deposits against the fill of older channels and their channel‐capping sheet sandstones to produce an apparently well‐connected composite sandstone body geometry. The predominant channel‐fill facies comprises coarse‐grained, amalgamated sandstones, which are commonly parallel‐ or cross‐stratified. Subsidiary facies of finer grained sandstone–mudstone couplets and clast‐bearing muddy debrites are commonly preserved as erosional remnants, suggesting a complex channel history of aggradation and erosion. The repeated cycles of channel incision, infill and transition to sheet sandstone development indicate repetitive incision and healing of the palaeo‐sea floor. A model is proposed that links incision to the development of relatively steep axial gradients (parallel to the mean dispersal direction) and the return to sheet‐form deposition to the re‐establishment of lower axial gradients, with the repetitive switch between incisional channels and sheet sandstones driven by changes in sediment input rate against a background of ongoing sea‐floor tilting.  相似文献   

4.
Sandstone bodies in the Sunnyside Delta Interval of the Eocene Green River Formation, Uinta Basin, previously considered as point bars formed in meandering rivers and other types of fluvial bars, are herein interpreted as delta mouth‐bar deposits. The sandstone bodies have been examined in a 2300 m long cliff section along the Argyle and Nine Mile Canyons at the southern margin of the Uinta lake basin. The sandstone bodies occur in three stratigraphic intervals, separated by lacustrine mudstone and limestone. Together these stratigraphic intervals form a regressive‐transgressive sequence. Individual sandstone bodies are texturally sharp‐based towards mudstone substratum. In proximal parts, the mouth‐bar deposits only contain sandstone, whereas in frontal and lateral positions mudstone drapes separate mouth‐bar clinothems. The clinothems pass gradually into greenish‐grey lacustrine mudstone at their toes. Horizontally bedded or laminated lacustrine mudstone onlaps the convex‐upward sandstone bars. The mouth‐bar deposits are connected to terminal distributary channel deposits. Together, these mouth‐bar/channel sandstone bodies accumulated from unidirectional jet flow during three stages of delta advance, separated by lacustrine flooding intervals. Key criteria to distinguish the mouth‐bar deposits from fluvial point bar deposits are: (i) geometry; (ii) bounding contacts; (iii) internal structure; (iv) palaeocurrent orientations; and (v) the genetic association of the deposits with lacustrine mudstone and limestone.  相似文献   

5.
现代渭河西安段沉积体沉积相与岩相特征   总被引:1,自引:0,他引:1  
以渭河西安段草滩沉积体为例, 通过剖面和探槽的详细研究, 结合野外密集采样及样品的分析结果, 对现代渭河草滩沉积体的粒度特征、沉积相、岩相、地层层序及沉积模式进行了综合研究。结果表明, 现代渭河草滩河流沉积体主要由砂质、泥质和少量砾质沉积物组成, 是一个由三期沉积旋回组成的曲流河沉积体。在现代渭河草滩沉积体内部, 共识别出6种岩相, 即平行层理含细砾粗砂岩相、槽状交错层理中细砂岩相、平行层理中细砂岩相、块状层理含砾中砂岩相、交错层理含砾中砂岩和块状层理泥岩相;3种沉积微相, 即河床滞留沉积、边滩和泛滥平原, 这些沉积微相构成了草滩沉积体内部垂向上三套不同的沉积层序:下部为含砾粗砂和中砂组成的河床亚相层序, 砂质沉积厚度较大;中部为一个完整的曲流河沉积层序, 由滞留沉积、边滩和泛滥平原沉积构成;上部则主要为边滩和泛滥平原沉积层序。粒度分析结果表明河床滞留沉积物中的砂体粒径多分布在0.2~1.2 mm, 边滩沉积物中砂体粒径多分布在0.1~1.0 mm, 两者均是良好的砂矿体, 是建筑用砂的良好来源。  相似文献   

6.
The Upper Cretaceous Cerro Toro Formation in the Silla Syncline, Parque Nacional Torres del Paine, Magallanes Basin, Chile, includes over 1100 m of mainly thin‐bedded mud‐rich turbidites containing three thick divisions of coarse conglomerate and sandstone. Facies distributions, stacking patterns and lateral relationships indicate that the coarse‐grained sandstone and conglomerate units represent the fill of a series of large south to south‐east trending deep‐water channels or channel complexes. The middle coarse division, informally named the Paine member, represents the fill of at least three discrete channels or channel complexes, termed Paine A, B and C. The uppermost of these, Paine C, represents a channel belt about 3·5 km wide and its fill displays explicit details of channel geometry, channel margins, and the processes of channel development and evolution. Along its northern margin, Paine C consists of stacked, laterally offset channels, each eroded into fine‐grained mudstone and thin‐bedded sandy turbidites. Along its southern margin, the Paine C complex was bounded by a single, deeply incised but stepped erosional surface. The evolution of the Paine C channel occurred through multiple cycles of activity, each involving: (i) an initial period of channel erosion into underlying fine‐grained sediments; (ii) deposition of coarse‐grained pebble to cobble conglomerate and sandstone within the channel; and (iii) waning of coarse sediment deposition and accumulation of a widespread sheet of fine‐grained, thin‐bedded turbidites inside and outside the channel. The thin‐bedded turbidites deposited within, and adjacent to, the channel along the northern margin of the Paine C complex do not appear to represent levée deposits but, rather, a separate fine‐grained turbidite system that impinged on the Paine C channel from the north. The Cerro Toro channel complex in the Silla Syncline may mark either an early axial zone of the Magallanes Basin or a local slope mini‐basin developed behind a zone of slope faulting and folding now present immediately east of the syncline. If the latter, flows moving downslope toward the basin axis further east were diverted to the south by this developing structural high, deposited part of their coarse sediment loads, and exited the mini‐basin at a point located near the south‐eastern edge of the present Silla Syncline.  相似文献   

7.
The Oligo‐Miocene Caspe Formation corresponds to the middle fluvial facies of the wider Guadalope‐Matarranya fluvial fan, located in the South‐east Ebro foreland basin (North‐east Spain). At the time of the Caspe Formation deposition, this sector of the Ebro basin underwent a very continuous, moderate sedimentation rate. Lithofacies comprise deposits from channellized and unchannellized flows. Channellized flow lithofacies form multi‐storey ribbon‐like sandstone bodies that crop out as extensive sandstone ridges belonging to exhumed channel networks. Width/thickness ratios of these channel‐fill bodies average close to six. Sinuosity is usually low (most common values around 1·1), although it can be high locally (up to 2). Thicknesses range from a few metres to 15 m. Unchannellized flow lithofacies form tabular bodies that can be ascribed to overbank deposits (levées, crevasse splays and fine‐grained floodplain deposits) and also to frontal lobes, although recognition of this last case requires exceptional outcrop conditions or geophysical subsurface studies. The unchannellized flow lithofacies proportion ranges from 75% to 97·8%. Methods applied to this study include detailed three‐dimensional architectural analysis in addition to sedimentological analysis. The architecture is characterized by an intricate network of highly interconnected ribbon‐like sandstone bodies. Such bodies are connected by three kinds of connections: convergences, divergences and cross‐cuttings. Although the Caspe Formation lithofacies and architecture resemble anastomosed channels (low topographic gradient, high preservation potential, moderate aggradation rate, high lateral stability of the channels, dominance of the ribbon‐like morphologies and high proportion of floodplain to channel‐fill sediments), an unambiguous interpretation of the channel networks as anastomosed or single threaded cannot be established. Instead, the observed architecture could be considered as the product of the complex evolution of a fluvial fan segment, where different network morphologies could develop. A facies model for aggrading ephemeral fluvial systems in tectonically active, endorheic basins is proposed.  相似文献   

8.
野外地质露头为精细刻画沉积体内部结构、建立准确地下地质模型发挥着重要作用。以鄂尔多斯盆地延河剖面长7段为例,采用岩石学、野外露头沉积学方法,详细剖析了湖泊细粒沉积的岩相类型、特征、垂向组合及沉积环境。研究结果表明,延河剖面长7段发育平行层理细砂岩相、流水交错层理细砂岩相、浪成交错层理粉砂岩相、沙纹层理粉砂岩相、变形层理粉砂岩相、水平层理(泥质)粉砂岩相、块状泥岩相、水平层理(砂质)泥岩相、水平纹层页岩相9种岩相类型。在结合区域地质特征基础上,研究认为长7段为远源的曲流河三角洲前缘和浅湖-半深湖沉积,进一步细分出7类沉积单元,其中水下分支河道、支流间湾较为发育,水下天然堤、远砂坝、席状砂发育规模较小,浅湖-半深湖沉积只在长72段下部发育,河口坝基本不发育,仅局部可见。对各沉积单元的垂向分布特征进行深入研究,识别出Ⅰ、Ⅱ、Ⅲ、Ⅳ 4类垂向分布形式,其中Ⅰ、Ⅱ组合主要分布在研究区长71、长73亚段,Ⅲ、Ⅳ组合主要分布在研究区长72亚段。剖面相分析表明,长7沉积期整体为一套先变细、再变粗的细粒沉积序列,为曲流河三角洲前缘沉积—浅湖-半深湖沉积—曲流河三角洲前缘沉积。  相似文献   

9.
Abstract The Panther Tongue of the Star Point Formation in central Utah contains a variety of transgressive lag deposits that, when mapped regionally, show a sensitive dependence upon pre‐existing topography of the palaeoshoreline. The Panther Tongue consists of a coarsening‐upward sandstone wedge that prograded into the Western Interior Seaway during Late Cretaceous (Santonian) time. High‐resolution sequence stratigraphic analysis revealed that this member was deposited during the long‐distance (>50 km) regression and transgression of a delta into shallow‐marine environments, containing basal highstand, forced regression, lowstand and transgressive systems tracts. Based on grain size, clast composition, lateral extent and stratigraphic position, the coarse sandstones on top of the Panther Tongue were classified into four types: (1) simple; (2) dispersed; (3) oxidized; and (4) local lags. The simple lag is composed of dark grey coarse sandstone with oyster fragments and shark teeth. This lag is typically extensively bioturbated and massive. Laminated and cross‐bedded units are also common. This type of coarse sandstone is interpreted as a typical transgressive lag. The dispersed lag differs in that it contains abundant mud and commonly occurs as multiple beds in thick intervals of muddy sandstone. Mixing of bay/estuarine and shallow ‐ marine mud with simple lag sand may be responsible for deposition of this type of coarse sandstone. The oxidized lag is distinctive in its reddish colour with extensive bioturbation and is commonly overlain by a simple lag. The local lag is composed of thin‐bedded, dark grey, coarse sandstone, occurring locally between the mouth bar and distributary channel. The variation in types, grain size and bed thickness of the coarse‐grained lags was mainly controlled by antecedent topography as suggested by immediately underlying lithofacies. Relatively thick (≈30 cm) simple lags are present on top of mouth‐bar sandstones, whereas dispersed lags are common on top of the distributary channel sandstone and in bay/estuarine and shallow‐marine mudstones. Erosion of topographic highs (mouth bar) resulted in relatively thick accumulation of simple lags. In topographic low areas such as distributary channel, estuary, bay and shallow‐marine environments, fine‐grained muddy sands that were eroded from the nearby topographic highs were redeposited. Intermittent storm waves transported coarse sands both landward and seaward, forming a dispersed lag. The net effect was reworking of local topographic relief during overall transgression, forming an apparently planar transgressive surface of erosion.  相似文献   

10.
11.

The Upper Cambrian Owen Conglomerate of the West Coast Range, western Tasmania, comprises two upward‐fining successions of coarse‐grained siliciclastic rocks that exhibit a characteristic wedge‐shaped fill controlled by the basin‐margin fault system. Stratigraphy is defined by the informally named basal lower conglomerate member, middle sandstone member, middle conglomerate member and upper sandstone member. The lower conglomerate member has a gradational basal contact with underlying volcaniclastics of the Tyndall Group,while the upper sandstone member is largely conformable with overlying Gordon Group marine clastics and carbonates. The lower conglomerate member predominantly comprises high flow regime, coarse‐grained, alluvial‐slope channel successions, with prolonged channel bedload transport exhibited by the association of channel‐scour structures with upward‐fining packages of pebble, cobble and boulder conglomerate and sandstone, with abundant large‐scale cross‐beds derived from accretion in low‐sinuosity, multiply active braided‐channel complexes. While the dipslope of the basin is predominantly drained by west‐directed palaeoflow, intrabasinal faulting in the southern region of the basin led to stream capture and the subsequent development of axial through drainage patterns in the lower conglomerate member. The middle sandstone member is characterised by continued sandy alluvial slope deposition in the southern half of the basin, with pronounced west‐directed and local axial through drainage palaeoflow networks operating at the time. The middle sandstone member basin deepens considerably towards the north, where coarse‐grained alluvial‐slope deposits are replaced by coarse‐grained turbidites of thick submarine‐fan complexes. The middle conglomerate member comprises thickly bedded, coarse‐grained pebble and cobble conglomerate, deposited by a high flow regime fluvial system that focused deposition into a northern basin depocentre. An influx of volcanic detritus entered the middle conglomerate member basin via spatially restricted footwall‐derived fans on the western basin margin. Fluvial systems continued to operate during deposition of the upper sandstone member in the north of the basin, facilitated by multiply active, high flow regime channels, comprising thick, vertically stacked and upward‐fining, coarse‐grained conglomerate and sandstone deposits. The upper sandstone member in the south of the basin is characterised by extensive braid‐delta and fine‐grained nearshore deposits, with abundant bioturbation and pronounced bimodal palaeocurrent trends associated with tidal and nearshore reworking. An increase in base‐level in the Middle Ordovician culminated in marine transgression and subsequent deposition of Gordon Group clastics and carbonates.  相似文献   

12.
Coarse‐grained deep‐water strata of the Cerro Toro Formation in the Cordillera Manuel Señoret, southern Chile, represent the deposits of a major channel belt (4 to 8 km wide by >100 km long) that occupied the foredeep of the Magallanes basin during the Late Cretaceous. Channel belt deposits comprise a ca 400 m thick conglomeratic interval (informally named the ‘Lago Sofia Member’) encased in bathyal fine‐grained units. Facies of the Lago Sofia Member include sandy matrix conglomerate (that show evidence of traction‐dominated deposition and sedimentation from turbulent gravity flows), muddy matrix conglomerate (graded units interpreted as coarse‐grained slurry‐flow deposits) and massive sandstone beds (high‐density turbidity current deposits). Interbedded sandstone and mudstone intervals are present locally, interpreted as inner levée deposits. The channel belt was characterized by a low sinuousity planform architecture, as inferred from outcrop mapping and extensive palaeocurrent measurements. Laterally adjacent to the Lago Sofia Member are interbedded mudstone and sandstone facies derived from gravity flows that spilled over the channel belt margin. A levée interpretation for these fine‐grained units is based on several observations, which include: (i) palaeocurrent measurements that indicate flows diverged (50° to 100°) once they spilled over the confining channel margin; (ii) sandstone beds progressively thin, away from the channel belt margin; (iii) evidence that the eroded channel base was not very well indurated, including a stepped margin and injection of coarse‐grained channel material into surrounding fine‐grained units; and (iv) the presence of sedimentary features common to levées, including slumped units inferring depositional slopes dipping away from the channel margin, lenticular sandstone beds thinning distally from the channel margin, soft sediment deformation and climbing ripples. The tectonic setting and foredeep architecture influenced deposition in the axial channel belt. A significant downstream constriction of the channel belt is reflected by a transition from more tabular units to an internal architecture dominated by lenticular beds associated with a substantially increased degree of scour. Differential propagation of the fold‐thrust belt from the west is speculated to have had a major control on basin, and subsequently channel, width. The confining influence of the basin slopes that paralleled the channel belt, as well as the likelihood that numerous conduits fed into the basin along the length of the active fold‐thrust belt to the west, suggest that proximal–distal relationships observed from large channels in passive margin settings are not necessarily applicable to axial channels in elongate basins.  相似文献   

13.
The Upper Cretaceous Twentymile Sandstone of the Mesaverde Group in NW Colorado, USA, has been analysed with respect to its pinch‐out style and the stratigraphic position of tidally influenced facies within the sandstone tongue. Detailed sedimentological analysis has revealed that the Twentymile Sandstone as a whole is a deltaic shoreface sandstone tongue up to 50 m thick proximally. Facies change character vertically from very fine‐grained, storm wave‐dominated shelf sandstones and mudstones to fine‐grained, wave‐dominated sandstones and, finally, to fine‐ to coarse‐grained tidally dominated sandstones. The pinch‐out style is characterized by a basinward splitting of the massive proximal sandbody into seven coarsening‐upward fourth‐order sequences consisting of a lower shaly part and an upper sandy part (sandstone tongue). These are stacked overall to reflect the regressive‐to‐transgressive development of the tongue. Each of the lower sandstone tongues 1–3 are gradationally based, very fine‐grained and dominated by hummocky cross‐stratification and were deposited on the lower to upper shoreface. Sandstone tongues 4 and 5 prograded further basinwards than the underlying tongues, are erosively based, fine‐ to coarse‐grained and mainly hummocky, herringbone and trough cross‐stratified. Especially in tongue 5, tidal indicators, such as bipolar foresets and double mud drapes, are common. These tongues were deposited as upper shoreface and tidal channel sandstones respectively. Sandstone tongues 6 and 7 retrograded in relation to tongue 5, are very fine‐ to fine‐grained and hummocky cross‐stratified. These tongues were deposited in lower shoreface to offshore transition environments. The two lower fourth‐order sequences were deposited during normal regressions during slowly rising or stable relative sea level and represent the highstand systems tract. The three succeeding fourth‐order sequences, which show succeedingly increasing evidence of tidal influence, were deposited during falling and lowstand of relative sea level and represent the falling stage (forced regressive) and lowstand systems tracts. The uppermost two fourth‐order sequences were deposited during rapidly rising sea level in the transgressive systems tract. The maximum tidal influence occurred during lowstand progradation, in contrast to most other published examples reporting maximum tidal influence during transgression.  相似文献   

14.
Channel‐scale sedimentary units associated with bedrock‐controlled riffle‐pool morphology are examined in detail along Sandy Creek gorge, an ephemeral stream in arid south‐eastern central Australia. Pool‐fills comprise cut‐and‐fill assemblages of poorly sorted sediments ranging in texture from muds to boulders. Five unit types are defined based on particle size, sedimentary structures, geometry and bounding surface character: (1) coarse‐grained bar platform; (2) fine‐grained bar supraplatform; (3) fine‐grained pool‐fill; (4) fine‐grained bench; and (5) modern pool‐fill. The last coarse‐grained unit currently lining the pools suggests an altered sedimentation style over the post‐settlement period (post‐ad 1860s). Situated at bedrock valley constrictions, pool‐fills are compared with other sedimentary units associated with recirculating currents: eddy bars and slackwater deposits. But only the fine‐grained bench units reflect eddy recirculation; the pool‐fills are principally forced‐bars associated with bedrock‐controlled or ‘forced’ riffle‐pool morphology. A late Holocene palaeoflood history is proposed based on radiocarbon ages from the pool‐fills: multiple phases of cut‐and‐fill activity were preceded by a superflood 3400–1900 years ago that eroded the pool‐fills to bedrock. The resilience of the pool‐fills was illustrated by the passage of a 1‐in‐100‐year flood in 1992, which caused only minor erosion. The presence of pool‐fills may provide a window to past phases of river activity that cannot be extracted from either historical records/observations or palaeoflood slackwater sediment analyses. The formation and sedimentary preservation potential of these landforms reflect a combination of hydraulic and structural influences, but the occurrence of high‐magnitude floods exerts the dominant control.  相似文献   

15.
Field investigation and laboratory research on flysch of the Liufengguan Group in Qinling indicate the following: (1) Sandstone of the Liufengguan Group is categorized as feldspathic lithic graywacke with a minor amount of lithic graywacke in the QFR triangular diagram. Grain size≤0.3 mm. Bedding plane structures such as groove casts and suspected flute casts can be found at the bottom of the sandstone. It is inferred that currents may have come from the southeast during deposition. Bedding structures such as ripple marks, graded bedding, parallel bedding, small-scale cross bedding, climbing bedding, suspected convolute bedding, microlamination and sliding structures have also been observed, which are of indicative significance. It is thought that the Liufengguan Group has the sedimentary characteristics of bedding, bedding plane structures and lithological assemblages of deep-sea low-density turbidity current deposits. The vertical succession of the Bouma sequence in the inner fan subfacies zone is generally incomplete: the assemblage of Ta and Tabc is commonly seen; the succession of the middle fan subfacies zone is relatively complete; and divisions Te and Tb are common in the outer fan subfacies zone. (2) The flysh of the Liufengguan Group is a sequence of deep-sea argillaceous-arenaceous submarine fan deposits, in which the authors recognize the inner, middle and outer fan subfacies and also nine types of lithofacies: normal graded sandstone (A1), medium- to thick-bedded, fine-grained sandstone (A2), medium- to thick-bedded and massive siltstone (A3), thin-bedded, fine-grained sandstone and mudstone (B1), irregular interbeds of thin-bedded, fine-grained sandstone and siltstone (B2), thin-bedded, fine-grained sandstone (C1), very thin-bedded, fine-grained sandstone (D1), olistostromes (E1) and deep-sea mudstone (F). The inner fan consists of four microfacies: natural levee (A1), water channel (A2, A3) and olistostrome (E1); in the middle fan there also occur four microfacies, i.e., branch channel (B1), branch channel (B2), interdistributary bay (D1) and olistostrome. The outer fan is made up of the branch channel (C1) and sheet sand (D1) microfacies, which alternate vertically with sediments of deep-sea plain subfacies (F). There occur fining- and thinning-upward channel deposits in the outer-fan subfacies zone of the submarine fan of the Liufengguan Group observed in this study. The quartz content of the graywacke of the deposits is all higher than 40% and may reach as high as 60%. Therefore, on the basis of the aforementioned features, this flysh should be formed in a passive continental-margin tectonic environment.  相似文献   

16.
《Sedimentology》2018,65(3):702-720
Gravel‐bed rivers can accommodate changes in sediment supply by adjusting their bed topography and grain size in both the downstream and cross‐stream directions. Under high supply aggradational conditions, this can result in spatially non‐uniform stratigraphic patterns, and the morphodynamic influence of heterogeneous stratigraphy during subsequent degradational periods is poorly understood and has not been studied through physical modelling. A flume experiment was conducted to analyse channel response where alternate bars were developed in a gravel–sand mixture under constant discharge and sediment supply before two supply increases led to the development of heterogeneous stratigraphy beneath alternate bars. The supply was then reduced back to the initial supply rate, causing degradation through that self‐formed stratigraphy. Stratigraphic samples were collected, and the bed topography and flow depth were measured frequently, which were used with a two‐dimensional hydrodynamic model to characterize flow conditions. Migrating alternate bars stabilized during the first equilibrium phase, creating bed surface sorting patterns of coarse bar tops and fine pools. During the first supply increase, the bars remained stable as the pools aggraded. During the second supply increase, the pools aggraded further, causing the boundary shear stress over the bar tops to increase until the bars gained the capacity to migrate and eventually stabilize in new locations. As aggradation occurred, the original sediment sorting patterns were preserved in the subsurface. During the degradational phase, the pools experienced incision and the bars eroded laterally, but this lateral erosion ceased when coarse sediment previously deposited during the bar‐building phase became exposed. The results suggest that if a sediment supply increase is capable of filling the pools, it can cause stable bars to migrate and the bed to be reworked. These findings also show that heterogeneous stratigraphy can play an important role in determining whether bars persist or disappear after a sediment supply reduction.  相似文献   

17.
Facies models that adequately represent the diverse range of fine‐grained fluvial systems are currently lacking from the literature. In this paper, the spectrum of these systems on the arid plains of western equatorial Pangea is explored, as well as the source and nature of the fine‐grained sediments. Eight fluvial elements in the Early Permian Clear Fork Formation of north‐central Texas represent channel systems up to 7 m deep with coarse basal deposits, three types of lateral‐accretion deposits and sandstone sheets, with laminated, disrupted and massive mudstones laid down in abandoned channels and on floodplains. The three fine‐grained fluvial styles represent a continuum between two end‐members: sustained lateral accretion of bedload composed of quartzose sediments and mud aggregates on point bars, and oblique accretion of suspended sediment on steep accretionary benches and banks with limited lateral migration. This spectrum is controlled, in part, by grain size and the proportion of suspended to bedload sediments. The presence of rarely documented swept ripples on exhumed accretion surfaces is attributed to rapid decline in water levels and downstream re‐entry of overbank floodwaters into the channel. Rill casts, roots and disrupted mudstones low down in channel bodies indicate periods of near‐dryness. Laterally extensive sheet sandstones were formed by episodic flows in broad, sandbed channels. The fluvial sediments were primarily intrabasinally sourced with extrabasinal sediments brought in during major floods from upland source areas or reworked from local storage in the basin, representing a supply limited system. The upward change in cement composition from mainly calcite and ankerite to dolomite and gypsum with minor celestine implies increasingly saline groundwater and progressive aridification, supporting Late Palaeozoic palaeoclimatic models. By integrating petrographic data with sedimentology, a plethora of information about ancient landscapes and climate is provided, allowing a fuller comparison between the Clear Fork Formation and modern dryland alluvial plains.  相似文献   

18.
“Coarsening upward” successions typical of subtidal sand bars have been recognised in the NE-trending linear sandstone bodies which occur within marine shale in the Eze-Aku Formation (Upper Cretaceous) of southeastern Nigeria.The ideal succession, 15–20 m thick, consists of the following units from bottom to top: (1) bioturbated grey siltstone (offshore mud); (2) wave-ripple-laminated, fine-grained well-sorted sandstone (offshore sands); (3) trough and tabular, cross-bedded medium-grained sandstone with channelled base (subtidal channel complex); (4) trough cross-bedded, medium-grained sandstone with bimodal-bipolar paleocurrent pattern (subtidal bar); (5) coarse, pebbly trough cross-bedded sandstone with wave-rippled top, rare burrows and a bimodal-bipolar paleocurrent pattern (subtidal bar). A sixth facies, not a part of the normal sequence, consists of coarse, carbonate-cemented pebbly sandstone grading into pure shell-limestone (bar margin).The sand bars seem to have grown on a shallow mud-bottomed, wave-worked inland sea inhabited by burrowers. A model for the stages of the vertical growth of the bar is presented.  相似文献   

19.
Evolution and deposits of a gravelly braid bar, Sagavanirktok River, Alaska   总被引:2,自引:0,他引:2  
The evolution, migration and deposits of a gravelly braid bar in the Sagavanirktok River, northern Alaska, are described in unprecedented detail using annual aerial photographs, ground‐penetrating radar (GPR) profiles, trenches and cores. Compound braid bars in the Sagavanirktok River form by chute cut‐off of point bars and by growth of mid‐channel unit bars. Subsequent growth is primarily by accretion of unit bars onto their lateral and downstream margins. The upstream ends of braid bars may be sites of erosion or unit bar deposition. Compound braid bar deposits vary in thickness laterally and are thickest in medial sections and near cut banks. Compound bar deposits are typically composed of three to seven sets of simple large‐scale inclined strata, each simple set formed by a unit bar. The simple large‐scale strata contain medium‐scale cross‐strata (from dune migration) and planar strata (from migration of bedload sheets). The upstream and medial parts of compound braid bar deposits show very little vertical variation in grain size, but downstream and lateral margins tend to fine upwards. The deposits are mostly poorly sorted sands and gravels, although sands tend to be deposited at the top of the braid bar, and open‐framework gravels preferentially occur near the top and base of the braid bar. The patterns of braid bar growth and migration, and the nature of the deposits, described from the Sagavanirktok River are generally similar to other sandy and gravelly braided rivers, and consistent with the theoretical braid bar model of Bridge (1993).  相似文献   

20.
The alluvial architecture of fine‐grained (silt‐bed) meandering rivers remains poorly understood in comparison to the extensive study given to sand‐bed and gravel‐bed channels. This paucity of knowledge stems, in part, from the difficulty of studying such modern rivers and deriving analogue information from which to inform facies models for ancient sediments. This paper employs a new technique, the parametric echosounder, to quantify the subsurface structure of the Río Bermejo, Argentina, which is a predominantly silt‐bed river with a large suspended sediment load. These results show that the parametric echosounder can provide high‐resolution (decimetre) subsurface imaging from fine‐grained rivers that is equivalent to the more commonly used ground‐penetrating radar that has been shown to work well in coarser‐grained rivers. Analysis of the data reveals that the alluvial architecture of the Río Bermejo is characterized by large‐scale inclined heterolithic stratification generated by point‐bar evolution, and associated large‐scale scour surfaces that result from channel migration. The small‐scale and medium‐scale structure of the sedimentary architecture is generated by vertical accretion deposits, bed sets associated with small bars, dunes and climbing ripples and the cut and fill from small cross‐bar channels. This style of alluvial architecture is very different from other modern fine‐grained rivers reported in the literature that emphasize the presence of oblique accretion. The Río Bermejo differs from these other rivers because it is much more active, with very high rates of bank erosion and channel migration. Modern examples of this type of highly active fine‐grained river have been reported rarely in the literature, although ancient examples are more prevalent and show similarities with the alluvial architecture of the Río Bermejo, which thus represents a useful analogue for their identification and interpretation. Although the full spectrum of the sedimentology of fine‐grained rivers has yet to be revealed, meandering rivers dominated by lateral or oblique accretion probably represent end members of such channels, with the specific style of sedimentation being controlled by grain size and sediment load characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号