首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Gulf of Tonkin coastline migrated at an average rate of ca 60 m year?1 landward during Holocene sea‐level rise (20 to 8 ka). Due to a combination of rapid coastline migration and undersupply of sand, neither coastal barriers nor tidal sand bars developed at the mouth of the Red River incised valley. Only a 30 to 80 cm thick sandy interval formed at the base of full‐marine deposits. Thus, the river mouth represented a mud‐dominated open funnel‐shaped estuary during transgression. At the base of the valley fill, a thin fluvial lag deposit marks a period of lowered sea‐level when the river did not reach geomorphic equilibrium and was thus prone to erosion. The onset of base‐level rise is documented by non‐bioturbated to sparsely bioturbated mud that occasionally contains pyrite indicating short‐term seawater incursions. Siderite in overlying deposits points to low‐salinity estuarine conditions. The open funnel‐shaped river mouth favoured upstream incursion of seawater that varied inversely to the seasonal strongly fluctuating discharge: several centimetres to a few tens of centimetres thick intervals showing marine or freshwater dominance alternate, as indicated by bioturbational and physical sedimentary structures, and by the presence of Fe sulphides or siderite, respectively. Recurrent short‐term seawater incursions stressed the burrowing fauna. The degree of bioturbation increases upward corresponding to increasing marine influence. The uppermost estuarine sediments are completely bioturbated. The estuarine deposits aggraded on average rapidly, up to several metres kyr?1. Siphonichnidal burrows produced by bivalves, however, document recurrent episodes of enhanced deposition (>0·5 m) and pronounced erosion (<1 m) that are otherwise not recorded. The slope of the incised valley affected the sedimentary facies. In steep valley segments, the marine transgressive surface (equivalent to the onset of full‐marine conditions) is accentuated by the Glossifungites ichnofacies, whereas in gently sloped valley segments the marine transgressive surface is gradational and bioturbated. Marine deposits are completely bioturbated.  相似文献   

2.
Holocene deposits of the Hawkesbury River estuary, located immediately north of Sydney on the New South Wales coast, record the complex interplay between sediment supply and relative sea-level rise within a deeply incised bedrock-confined valley system. The present day Hawkesbury River is interpreted as a wave-dominated estuarine complex, divisible into two broad facies zones: (i) an outer marine-dominated zone extending 6 km upstream from the estuary mouth that is characterized by a large, subtidal sandy flood-tidal delta. Ocean wave energy is partially dissipated by this flood-tidal delta, so that tidal level fluctuations are the predominant marine mechanism operating further landward; (ii) a river-dominated zone that is 103 km long and characterized by a well developed progradational bayhead delta that includes distributary channels, levees, and overbank deposits. This reach of the Hawkesbury River undergoes minor tidal level fluctuations and low fluvial runoff during baseflow conditions, but experiences strong flood flows during major runoff events. Fluvial deposits of the Hawkesbury River occur upstream of this zone. The focus of this paper is the Hawkesbury River bayhead delta. History of deposition within this delta over the last c. 12 ka is interpreted from six continuous cores located along the upper reaches of the Hawkesbury River. Detailed sedimentological analysis of facies, whole-core X-ray analysis of burrow traces and a chronostratigraphic framework derived from 10 C-14 dates reveal four stages of incised-valley infilling in the study area: (1) before 17 ka BP, a 0–1 m thick deposit of coarse-grained fluvial sand and silt was laid down under falling-to-lowstand sea level conditions; (2) from 17 to 6·5 ka BP, a 5–10 m thick deposit composed of fine-grained fluvial sand and silt, muddy bayhead delta and muddy central-basin deposits developed as the incised valley was flooded during eustatic sea-level rise; (3) during early highstand, between 6·5 and 3 ka BP, a 3–8 m thick bed of interbedded muddy central-basin deposits and sandy river flood deposits, formed in association with maximum flooding and progradation of sandy distributary mouth-bar deposits commenced; (4) since 3 ka BP, fluvial deposits have prograded toward the estuary mouth in distributary mouth-bar, interdistributary-bay and bayhead-delta plain environments to produce a 5–15 m thick progradational to aggradational bayhead-delta deposit. At the mouth of the Hawkesbury estuary subaqueous fluvial sands interfinger with and overlie marine sands. The Hawkesbury River bayhead-delta depositional succession provides an example of the potential for significant variation of facies within the estuarine to fluvial segment of incised-valley systems.  相似文献   

3.
The Pleistocene Higashikanbe Gravel, which crops out along the Pacific coast of the Atsumi Peninsula, central Japan, consists of well‐sorted, pebble‐ to cobble‐size gravel beds with minor sand beds. The gravel includes large‐scale foreset beds (5–10 m high) and overlying subhorizontal beds (0·5–3 m thick), showing foreset and topset structure, from which the gravel has previously been interpreted as deposits of a Gilbert‐type delta. However, (1) the gravel beds lack evidence of fluvial activity, such as channels in the subhorizontal beds; (2) the foresets incline palaeolandwards; (3) the gravels fill a fluvially incised valley; and (4) the gravels overlie low‐energy deposits of a restricted environment, such as a bay or an estuary. The foresets generally dip towards the inferred palaeoshoreline, indicating landward accretion of gravel. Reconstruction of the palaeogeography of the peninsula indicates that the Higashikanbe Gravel was deposited as a spit similar to that developed at the western tip of the present Atsumi Peninsula, rather than as a delta. According to the new interpretation, the large‐scale foreset beds are deposits on the slopes of spit platforms and accreted in part to the sides of small islets that are fragments of the submerging spit during relative sea‐level rise. The subhorizontal beds include nearshore deposits on the spit platform topsets and deposits of gravel shoals or bars, which are reworked sediments of the spit beach gravels during a transgression. The lack of spit beach facies in the subhorizontal beds results from truncation by shoreface erosion. Dome structure, which is a cross‐sectional profile of a recurved gravel spit at its extreme point, and sandy tidal channel deposits deposited between the small islets were also identified in the Higashikanbe Gravel. The Higashikanbe Gravel fills a fluvially incised valley and occupies a significant part of a transgressive systems tract, suggesting that gravelly spits are likely to be well developed during transgressions. The large‐scale foreset beds and subhorizontal beds of gravelly spits in transgressive systems tracts contrast with the foreset and topset beds of deltas, characteristic of highstand, lowstand and shelf‐margin systems tracts.  相似文献   

4.
This study from the southern margin of the Gulf of Corinth documents a Late Pleistocene incised valley‐fill succession that differs from the existing facies models, because it comprises gravelly shoal‐water and Gilbert‐type deltaic deposits, shows strong wave influence and lacks evidence of tidal activity. The valley‐fill is at least 140 m thick, formed in 50 to 100 ka between the interglacials Marine Isotope Stage 9a and Marine Isotope Stage 7c. The relative sea‐level rise left its record both inside and outside the incised valley, and the age of the valley‐fill is estimated from a U/Th date of coral‐bearing deposits directly outside the palaeovalley outlet. Tectonic up‐warping due to formation of a valley‐parallel structural relay ramp contributed to the valley segmentation and limited the landward extent of marine invasions. The valley segment upstream of the ramp crest was filled with a gravelly alluvium, whereas the downstream segment accumulated fluvio‐deltaic deposits. The consecutive deltaic systems nucleated in the ramp‐crest zone, forming a bathymetric gradient that promoted the ultimate growth of thick Gilbert‐type delta. The case study contributes to the spectrum of conceptual models for incised valley‐fill architecture. Four key models are discussed with reference to the rates of sediment supply and accommodation development, and it is pointed out that not only similarity, but also all departures of particular field cases from these end‐member models may provide valuable information on the system formative conditions. The Akrata incised valley‐fill represents conditions of high sediment supply and a rapid, but stepwise development of accommodation that resulted from the spatiotemporal evolution of normal faulting at the rift margin and overprinted glacioeustatic signals. This study adds to an understanding of valley‐fill architecture and provides new insights into the Pleistocene tectonics and palaeogeography of the Corinth Rift margin.  相似文献   

5.
Joseph Bonaparte Gulf is a large embayment on the northwestern continental margin of Australia. It is approximately 300 km east‐west and 120 km north‐south with a broad continental shelf to seaward. Maximum width from the southernmost shore of Joseph Bonaparte Gulf to the edge of the continental shelf is 560 km. Several large rivers enter the gulf along its shores. The climate is monsoonal, sub‐humid, and cyclone‐prone during the December‐March wet season. A bedrock high (Sahul Rise) rims the shelf margin. The sediments within the gulf are carbonates to seaward, grading into clastics inshore. A seaward‐thinning wedge of highstand muds dominates the sediments of the inner shelf of Joseph Bonaparte Gulf. Mud banks up to 15m thick have developed inshore. Coarse‐grained sand ridges up to 15 m high are found off the mouth of the Ord River. These overlie an Upper Pleistocene transgressive lag of mixed carbonate and gravelly siliciclastic sand. Four drowned strandlines are present on the inner shelf at depths of 20, 25, 28 and 30 m below datum. These are interpreted as having formed during stillstands in the Late Pleistocene transgression. Older strandlines at great depths are inferred as having formed during the fall in sea‐level following the last highstand. For the most part the Upper Pleistocene‐Holocene marine sediments overlie an erosion surface cut into older Pleistocene sediments. Incised valleys cut into this erosion surface are up to 5 km wide and have a relief of at least 20 m. The largest valley is that cut by the Ord River. Upper Pleistocene sediments deposited in the incised valleys include interpreted lowstand fluvial gravels, early transgressive channel sands and floodplain silts, and late transgressive estuarine sands and gravels. Older Pleistocene sediments are inferred to have been deposited before and during the 120 ka highstand (isotope stage 5). They consist of sandy calcarenites deposited in high‐energy tide‐dominated shelf environments. Still older shelf and valley‐fill sediments underlie these. The contrast between the Holocene muddy clastic sediments and the sandy carbonates deposited by the 120 ka highstand suggests that either the climate was more arid in the past, with less fluvial transport, or that mud was more effectively trapped in estuaries, allowing development of carbonate depositional environments inshore.  相似文献   

6.
The literature on incised river valley sedimentology is dominated by studies of sediment‐rich systems in which the valley has been filled during and/or shortly after drowning. In contrast, the Holocene evolution of the Kosi Lagoon, South Africa (an incised coastal plain river valley) took place under very low sedimentation rates which have produced a distinctive stratigraphy and contemporary sedimentary environments. The findings are based on a synthesis of the results of studies of seismic stratigraphy, sediment distribution, morphodynamics and geomorphology. Barrier migration was prevented by a high pre‐Holocene dune barrier against which Holocene coastal deposits accumulated in an aggradational sequence. Holocene evolution of the back barrier involved: (i) drowning of the incised valley; (ii) wave‐induced modification of the back‐barrier shoreline leading to segmentation during the highstand; and (iii) marine sedimentation adjacent to the tidal inlet. Segmentation has divided the estuary into a series of geochemically and sedimentologically distinctive basins connected by channels in the estuarine barriers. The seismic stratigraphy of the back barrier essentially lacks a transgressive systems tract, shoreline modification and deposition having been accomplished during the highstand. The lack of historical geomorphological change suggests that the system has achieved morphological equilibrium with ambient energy conditions and low sediment supply. This study presents a classification for estuarine incised valley fills based on the balance between sea‐level rise and sedimentation in which Kosi represents a ‘give‐up’ estuary where much of the relict incised channel form is drowned and preserved. It exhibits a fundamentally different set of evolutionary processes and stratigraphic sequences to those of the better known incised valley systems in which sedimentation either keeps pace with sea‐level (‘keep‐up’ estuaries) or occurs after initial drowning (‘catch‐up’ estuaries).  相似文献   

7.
Tampa Bay, a large, microtidal, clastic-filled estuary incised into Tertiary carbonate strata, is the largest estuary on Florida’s west coast. A total of 250 surface sediment samples and 17 cores were collected in Tampa Bay in order to determine the patterns and controlling factors governing the recent infilling and modern sediment distribution, and to examine the results in terms of current models of estuarine sedimentation and development. Surficial sediments in Tampa Bay consist of three facies types, each occurring in a distinct zone: modern terrigenous clastic muds occurring in the upper bay and around the bay periphery; relict, reworked-fluvial, quartz-rich sands occupying the open portion of the middle bay; and modern carbonate-rich, marine-derived sands and gravels occupying the lower bay. Factors controlling sediment distribution include: sediment source and supply rate; bathymetry, which is a function of the antecedent topography; and the winnowing effect of wind-generated waves that prohibits modern accumulation in the shallow middle bay. These factors also play a major role in the recent infilling history of Tampa Bay, which has progressed in four stages during the Holocene sea-level rise. Recently developed models of estuarine sedimentation are based primarily on mesotidal to macrotidal estuaries in terrigenous clastic settings in which sedimentation patterns and infilling history are a result of the relative contribution of marine and fluvial processes. Tampa Bay differs in that it was originally incised into carbonate strata, and neither fluvial or marine processes are interpreted to be major contributors to modern sediment distribution. Tampa Bay, therefore, provides an example of an unusual estuary type, which should be considered in future modeling efforts. *** DIRECT SUPPORT *** A01BY083 00004  相似文献   

8.
Interpretation of the recent high-resolution survey, CANADOU 2000, in the Bay of Douarnenez (Finistère, France) allowed us to restore the morphology of the substratum and the sedimentary filling of the bay. The Brioverian and Palaeozoic substratum reveals a well-defined network of incised valleys as results of successive emergence stages of the Bay during the Quaternary. Valleys join in a westward-widened mean valley, called Ys Valley. The present-day sedimentary fill of the bay of Douarnenez appears mainly controlled by the Holocene rise and the consecutive highstand. It comprises fluvial and estuarine deposits filling up incised valleys and marine sedimentation extending out of the incised valleys. To cite this article: G. Jouet et al., C. R. Geoscience 335 (2003).To cite this article: G. Jouet et al., C. R. Geoscience 335 (2003).  相似文献   

9.
Eighteen coastal-plain depositional sequences that can be correlated to shallow- to deep-water clinoforms in the Eocene Central Basin of Spitsbergen were studied in 1 × 15 km scale mountainside exposures. The overall mud-prone (>300 m thick) coastal-plain succession is divided by prominent fluvial erosion surfaces into vertically stacked depositional sequences, 7–44 m thick. The erosion surfaces are overlain by fluvial conglomerates and coarse-grained sandstones. The fluvial deposits show tidal influence at their seaward ends. The fluvial deposits pass upwards into macrotidal tide-dominated estuarine deposits, with coarse-grained river-dominated facies followed further seawards by high- and low-sinuosity tidal channels, upper-flow-regime tidal flats, and tidal sand bar facies associations. Laterally, marginal sandy to muddy tidal flat and marsh deposits occur. The fluvial/estuarine sequences are interpreted as having accumulated as a series of incised valley fills because: (i) the basal fluvial erosion surfaces, with at least 16 m of local erosional relief, are regional incisions; (ii) the basal fluvial deposits exhibit a significant basinward facies shift; (iii) the regional erosion surfaces can be correlated with rooted horizons in the interfluve areas; and (iv) the estuarine deposits onlap the valley walls in a landward direction. The coastal-plain deposits represent the topset to clinoforms that formed during progradational infilling of the Eocene Central Basin. Despite large-scale progradation, the sequences are volumetrically dominated by lowstand fluvial deposits and especially by transgressive estuarine deposits. The transgressive deposits are overlain by highstand units in only about 30% of the sequences. The depositional system remained an estuary even during highstand conditions, as evidenced by the continued bedload convergence in the inner-estuarine tidal channels.  相似文献   

10.
Spatial and quantitative analysis of infilling processes of the tide‐dominated incised valleys beneath the Tokyo Lowland during the last 14 kyr was undertaken by using data from 18 sediment cores, 467 radiocarbon dates and 6100 borehole logs. The post‐Last Glacial Maximum valley fills consist of braided river, meandering river, estuary, spit and delta systems in ascending order. The boundary between the estuary and delta systems is regarded as the maximum flooding surface. The maximum flooding surface beneath the Tokyo Lowland is dated at 8 ka in the Arakawa Valley and 7 ka in the Nakagawa Valley. This age difference is due to the migration of the Tone River from the Arakawa Valley to the Nakagawa Valley at 5 ka, and suggests that the widely held view that the global initiation of deltas coincided with the abrupt rise of sea‐level at 9 to 8 ka is true only where there has been steady sediment supply from major rivers. The meandering river system is dominated by sheet‐like sands that were deposited during lateral migration of channels during the Younger Dryas and isolated vertical sands within muds that reflect vertical aggradation of channels before and after the Younger Dryas. The transition between these channel geometries is controlled by a threshold sea‐level rise of 4 to 7 mm yr?1. Before migration of the Tone River at 5 ka, the tide‐dominated bay in the Nakagawa Valley was filled by upward‐fining laterally accreting muds. The muds accreted from the margin to the axis of the bay. Such lateral accretion of suspended particles derived from outside the bay has been documented in other tide‐dominated coastal environments and is probably common in other similar settings. After the migration of the Tone River, the bay was filled by upward‐coarsening deltaic sediments.  相似文献   

11.
Submarine groundwater discharges (SGDs) are an important source of freshwater as well as nutrients and other chemicals to bays and estuaries. SGDs are particularly important for coastal bodies in arid and semi-arid regions that are not fed by perennial streams. The Baffin Bay, TX is a shallow coastal water body that is weakly connected to the Gulf of Mexico and has no major rivers or streams draining into it. A year-long submarine groundwater discharge measurement study was carried out at the Loyola Beach of the Baffin Bay during the months of July 2005–June 2006. A total of 23 synoptic SGD sampling events were carried out with most events collecting SGD data continuously over a period of 24 h at a 1-min temporal resolution using an ultrasonic seepage meter. The median SGD was noted to be 3.83 cm/d with an inter-quartile range (IQR) of 11.36 cm/d. Four sampling events had anomalously high SGD values (~27–48 cm/d) which are hypothesized to be due to the geologic heterogeneity of the sea bed and meteorological effects. Eight of the 23 sampling events had a negative average SGD flux indicating landward flow. The short-term diurnal variability of SGD was comparable or sometimes higher than the longer-term and between-events variability. No long-term trend could be inferred. In the short-term, SGD measurements showed considerable persistence and the effective sample size analysis indicated each sampling event (consisting of over 1,000 samples) yielded only a handful of statistically independent measurements of SGD. The measured SGD values exhibited both negative (hydraulically controlled) and positive (wave set-up controlled) correlations with the bay water levels. Marine controls appeared to be the most significant SGD drivers and are in turn controlled by prevailing aeolian forcings. The salinity of the SGDs were estimated from measured sonic velocities and used in conjunction with the end-member mixing models to estimate fresh (meteoric) and re-circulated pore-water fractions. The freshwater fraction of the SGD was estimated to vary between nearly 4 and 89 % with a median value of 9.96 % and an IQR of 7.16 %. Three events were noted to have abnormally high freshwater fractions (~28, 50 and 84 %) which are likely artifacts caused by bay water freshening from rainfall and plausible thermal expansion. The meteoric and pore-water partitioning was sensitive to the assumed end-member concentrations. This study provides preliminary estimates for SGDs along the South Texas coast line and is useful for calibrating groundwater flow models and understanding the relative importance of terrestrial and marine controls on SGD. However, the heterogeneous nature of the sedimentary geology of the Texas Gulf Coast implies the SGD fluxes are likely to exhibit considerable spatial variation that has not been characterized yet. Therefore, the study provides useful insights for such future data collection and monitoring activities. The measured SGD values at Baffin Bay, TX are comparable to those reported at other parts of the Gulf of Mexico.  相似文献   

12.
青岛唐岛湾的形成机制与海岸演化   总被引:1,自引:0,他引:1  
        通过野外地质调查,结合区域地质背景,探讨分析了青岛唐岛湾的形成机制与海岸演化过程。结果表明,唐岛湾的 形成机制主要涉及三个方面:NNE-NE向断裂的活动奠定构造格局并控制其岸线的延伸方向;第四纪冰川的侵蚀作用塑造 中间低洼、两岸较高的基底地形;约10 ka BP 前的大规模海侵使海水突破口门的阻挡进入湾内,唐岛湾正式形成。其海岸 形态自全新世以来可分为三个演化阶段,主控因素为海平面变化、海浪和潮汐作用,宋代时刘家岛与石岭子之间连岛沙坝 的形成标志着唐岛湾成为半封闭性海湾,清代时其海岸形态接近现今面貌。  相似文献   

13.
Spencer Gulf is a large (ca 22 000 km2), shallow (<60 m water depth) embayment with active heterozoan carbonate sedimentation. Gulf waters are metahaline (salinities 39 to 47‰) and warm‐temperate (ca 12 to ?28°C) with inverse estuarine circulation. The integrated approach of facies analysis paired with high‐resolution, monthly oceanographic data sets is used to pinpoint controls on sedimentation patterns with more confidence than heretofore possible for temperate systems. Biofragments – mainly bivalves, benthic foraminifera, bryozoans, coralline algae and echinoids – accumulate in five benthic environments: luxuriant seagrass meadows, patchy seagrass sand flats, rhodolith pavements, open gravel/sand plains and muddy seafloors. The biotic diversity of Spencer Gulf is remarkably high, considering the elevated seawater salinities. Echinoids and coralline algae (traditionally considered stenohaline organisms) are ubiquitous. Euphotic zone depth is interpreted as the primary control on environmental distribution, whereas seawater salinity, temperature, hydrodynamics and nutrient availability are viewed as secondary controls. Luxuriant seagrass meadows with carbonate muddy sands dominate brightly lit seafloors where waters have relatively low nutrient concentrations (ca 0 to 1 mg Chl‐a m?3). Low‐diversity bivalve‐dominated deposits occur in meadows with highest seawater salinities and temperatures (43 to 47‰, up to 28°C). Patchy seagrass sand flats cover less‐illuminated seafloors. Open gravel/sand plains contain coarse bivalve–bryozoan sediments, interpreted as subphotic deposits, in waters with near normal marine salinities and moderate trophic resources (0·5 to 1·6 mg Chl‐a m?3) to support diverse suspension feeders. Rhodolith pavements (coralline algal gravels) form where seagrass growth is arrested, either because of decreased water clarity due to elevated nutrients and associated phytoplankton growth (0·6 to 2 mg Chl‐a m?3), or bottom waters that are too energetic for seagrasses (currents up to 2 m sec?1). Muddy seafloors occur in low‐energy areas below the euphotic zone. The relationships between oceanographic influences and depositional patterns outlined in Spencer Gulf are valuable for environmental interpretations of other recent and ancient (particularly Neogene) high‐salinity and temperate carbonate systems worldwide.  相似文献   

14.
Quaternary incised valley systems are usually characterized by the preservation of a single valley-fill attributed to the last post-glacial period. Moreover, there are very few cases of correlation between incised valley system developed on inner shelf and sedimentary units observed on the mid to outer shelf, mainly forced regressive wedges. The Roussillon shelf, in the western part of the Gulf of Lion, is a particular example of preserved Quaternary compound incised valley system also characterized by a direct correlation with the forced regressive lowstand wedges on the mid-outer shelf. High-resolution seismic data and a borehole, 60 m deep, located on the beach barrier permit an accurate study of the geometry and lithology of the system. Six imbricated and more or less preserved incised valleys and valley-fills are observed up to the inner to mid-shelf. The key surfaces associated to the incised valleys are correlated to the boundaries of the forced regressive wedges. They are assumed to be reworked surfaces. At the borehole location, only few thin layers, less than 1 m thick, of coarse grain and/or floating pebbles, are observed and should correspond to preserved fluvial lowstand deposits reworked under marine influence. The valley fills are mainly composed of estuarine muddy silts. From AMS 14C age dating it is inferred that the uppermost incised valley system is younger than 45 ky cal BP. Based on those observations, the six preserved incised valley systems are assumed to be controlled by the last six 4th order sea-level cycles — 100 ky — of the middle to late Quaternary. The paleo-topography of the underlying Plio-Quaternary deposits controls the compound incised valley system location. The deep topography of the Messinian Erosionnal Surface is a controlling factor at a lower degree. The partial preservation of the successive valley fill is attributed not only to the differential subsidence but also to the lateral migration of each incision and to the hydrodynamic regime.  相似文献   

15.
In this paper we present Quaternary stratigraphy of the area around Chennai based on archaeological findings on the ferricrete surface, geomorphological observations supplemented by radiocarbon dating. The coastal landscape around Chennai, Tamil Nadu, has preserved ferruginised boulder gravel deposits, ferricretes and fluvial deposits of varying thickness. The area studied is approximately 150 km east to west and 180 km north to south with a broad continental shelf towards the seaward. Several rivers enter the Bay of Bengal along its shores like the Koratallaiyar, Cooum and the Adyar. Precambrian charnockite and Upper Gondwana sandstone and shale bedrock rim the shelf margin. For the most part, the Upper Pleistocene-Holocene fluvial sediments overlie an erosion surface that has cut into older Pleistocene sediments and ferricrete surface. Incised valleys that cut into this erosion surface are up to 5–6 km wide and have a relief of at least 30 m. The largest valley is that cut by the Koratallaiyar River. Holocene sediments deposited in the incised valleys include fluvial gravels, early transgressive channel sands and floodplain silts. Older Pleistocene sediments are deposited before and during the 120-ka high stand (Marine isotope stage 5). They consist of ferricretes and ferricrete gravel formed in nearshore humid environments. Muddy and sandy clastic sediments dated to the ca. 5 ka highstand suggest that the climate was semi arid at this time with less fluvial transport. The coarsening up sequence indicates deposition by high intensity channel processes. Pedogenic mottled, clayey silt unit represents an important tectonic event when the channel was temporarily drained and sediment were sub aerially exposed. Uplift of the region has caused the local rivers to incise into the landscape, forming degradation terraces.  相似文献   

16.
The Ombrone palaeovalley was incised during the last glacial sea‐level fall and was infilled during the subsequent Late‐glacial to Holocene transgression. A detailed sedimentological and stratigraphic study of two cores along the palaeovalley axis led to reconstruction of the post‐Last Glacial Maximum valley‐fill history. Stratigraphic correlations show remarkable similarity in the Late‐glacial to early‐Holocene succession, but discrepancy in the Holocene portion of the valley fill. Above the palaeovalley floor, about 60 m below sea‐level, Late‐glacial sedimentation is recorded by an unusually thick alluvial succession dated back to ca 18 cal kyr bp . The Holocene onset was followed by the retrogradational shift from alluvial to coastal facies. In seaward core OM1, the transition from inner to outer estuarine environments marks the maximum deepening of the system. By comparison, in landward core OM2, the emplacement of estuarine conditions was interrupted by renewed continental sedimentation. Swamp to lacustrine facies, stratigraphically equivalent to the fully estuarine facies of core OM1, represent the proximal expression of the maximum flooding zone. This succession reflects location in a confined segment of the valley, just landward of the confluence with a tributary valley. It is likely that sudden sediment input from the tributary produced a topographic threshold, damming the main valley course and isolating its landward segment from the sea. The seaward portion of the Ombrone palaeovalley presents the typical estuarine backfilling succession of allogenically controlled incised valleys. In contrast, in the landward portion of the system, local dynamics completely overwhelmed the sea‐level signal, following marine ingression. This study highlights the complexity of palaeovalley systems, where local morphologies, changes in catchment areas, drainage systems and tributary valleys may produce facies patterns significantly different from the general stratigraphic organization depicted by traditional sequence‐stratigraphic models.  相似文献   

17.
Episodes of glaciation in the region north of Baffin Bay resulted in the erosion of Paleozoic carbonate outcrops in NW Greenland and the Canadian High Arctic. These events are recognized in the marine sediments of Baffin Bay (BB) as a series of detrital carbonate-rich (DC-) layers. BBDC-layers thin southward within Baffin Bay; thus, the contribution of Baffin Bay ice-rafted carbonate-rich sediments to the North Atlantic is probably slight, especially compared with sediment output from Hudson Strait during Heinrich events. We reexamine (cf. Aksu, 1981) a series of nine piston cores from the axis of Baffin Bay and across the Davis Strait sill and provide a suite of 21 AMS 14C dates on foramininfera which bracket the ages of several DC-layers. The onset of the last DC event is dated in six cores and has an age of ca. 12.4 ka. In northern and central Baffin Bay a thick DC-layer occurs at around 4 m in the cores and is dated >40 ka. There were three to six DC intervening events. The youngest BBDC event (possibly a double event) lags Heinrich event 1 (H-1) off Hudson Strait, dated at 14.5 ka, but it is coeval with the pronounced warming seen in GISP2 records from the Greenland Ice Sheet during interstadial #1. We hypothesize that BBDC episodes are coeval with major interstadial δ18O peaks from GISP2 and other Greenland ice core records and are caused by or associated with the advection of Atlantic Water into Baffin Bay (cf. Hiscott et al., 1989) and the subsequent rapid retreat of ice streams in the northern approaches to Baffin Bay.  相似文献   

18.
为揭示河口湾水动力环境对滩涂利用的累积响应过程,以珠江口伶仃洋河口湾为例,基于潮波数学模型和潮流数学模型,研究了1981年以来湾内进出潮量、分潮振幅和潮流流速的累积变化。结果表明:相对于1981年,2018年岸线条件下伶仃洋湾口断面涨落潮量累积减少4.9%~6.0%、内伶仃断面涨落潮量累积减少9.0%~12.8%、深圳湾断面涨落潮量累积减少17.8%、南沙断面涨落潮量累积减少5.0%~6.3%;伶仃洋M2分潮振幅呈增加趋势,振幅增幅由南向北增加,潮波由南向北变形进一步加剧;伶仃洋最大可能潮差变化与M2分潮振幅变化趋势一致,潮汐性质没有发生变化;伶仃洋潮流流速总体减小,西岸流速减幅高于东岸,湾顶附近流速略有增加。  相似文献   

19.
KIM M. COHEN 《Sedimentology》2011,58(6):1453-1485
This study presents a detailed reconstruction of the palaeogeography of the Rhine valley (western Netherlands) during the Holocene transgression with systems tracts placed in a precise sea‐level context. This approach permits comparison of actual versus conceptual boundaries of the lowstand, transgressive and highstand systems tracts. The inland position of the highstand Rhine river mouth on a wide, low‐gradient continental shelf meant that base‐level changes were the dominant control on sedimentation for a relatively short period of the last glacial cycle. Systems in such inland positions predominantly record changes in the balance between river discharge and sediment load, and preserve excellent records of climatic changes or other catchment‐induced forcing. It is shown here that the transgressive systems tract‐part of the coastal prism formed in three stages: (i) the millennium before 8·45 ka bp , when the area was dominated by fluvial environments with extensive wetlands; (ii) the millennium after 8·45 ka, characterized by strong erosion, increasing tidal amplitudes and bay‐head delta development; and (iii) the period between 7·5 and 6·3 ka bp when the Rhine avulsed multiple times and the maximum flooding surface formed. The diachroneity of the transgressive surface is strongly suppressed because of a pulse of accelerated sea‐level rise at 8·45 ka bp . That event not only had a strong effect on preservation, but has circum‐oceanic stratigraphical relevance as it divides the early and middle Holocene parts of coastal successions worldwide. The palaeogeographical reconstruction offers a unique full spatial–temporal view on the coastal and fluvial dynamics of a major river mouth under brief rapid forced transgression. This reconstruction is of relevance for Holocene and ancient transgressive systems worldwide, and for next‐century natural coasts that are predicted to experience a 1 m sea‐level rise.  相似文献   

20.
Gregers Dam 《Sedimentology》2002,49(3):505-532
ABSTRACT After a period of early Palaeocene faulting and uplift of the Nuussuaq Basin, West Greenland, two valley systems were incised into the underlying sediments. Incision of the older Tupaasat valley took place during a single drainage event of large water masses, which resulted in catastrophic deposition. The valley was cut along early Palaeocene NW‐ to SE‐trending normal faults, clearly showing that the trend and the relief of the valley were structurally controlled. The valley fill is up to 120 m thick and consists of a lower part of sandstones and conglomerates deposited from catastrophic flows characterized by very high concentrations of suspended coarse‐grained sediment load. Catastrophic deposition was followed by rapid decrease in flow discharge and the establishment of a lacustrine environment within the valley characterized by the deposition of heterolithic sediments. The younger Paatuutkløften valley system was mainly cut into the Tupaasat valley fill, which was completely or nearly completely eroded away in many places. The younger valley is 1–2 km wide and up to 190 m deep. Incision of the Paatuutkløften valley probably reflected renewed tectonic activity and uplift of the basin. This phase was shortly followed by rapid major subsidence. The valley‐fill deposits comprise a uniform succession of fluvial and estuarine sandstones. The valley fill is topped by shoreface sandstones, which are succeeded abruptly by offshore mudstones deposited shortly before and during the initial extrusion of a thick hyaloclastite succession. The Paatuutkløften valley fill is attributed to a very rapid rise in relative sea level contemporary with extensive volcanism. It is suggested that this sequence of events coincided with the arrival of the North Atlantic mantle plume. In several respects, the early Palaeocene valley‐fill deposits of the Nuussuaq Basin are different from idealized facies models for incised valley systems and represent very special cases of incised valleys. Major differences from published examples include the dominance of catastrophic deposits and indications of large changes in relative sea level of several hundreds of metres taking place rapidly in less than 1 Myr. These changes were governed by the rise of the North Atlantic mantle plume.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号