首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Ocean‐wide anoxic events represent intensively investigated anomalies in the global carbon cycle. Most previous research has focussed on hemipelagic and pelagic settings and on the relationship between black‐shale deposition and carbon‐isotope excursions. The study of ocean‐wide anoxic events and coeval shallow‐water settings is now increasingly seen as an interesting complementary approach, but one that is not without problems. Whereas platform drowning characterizes the Early Aptian of the northern Tethyan margin, LithocodiumBacinella‐rich facies and ongoing shoal‐water sedimentation at the southern Tethyan margin (Oman) bears important information on potential causes of carbon‐cycle perturbations. The present paper seeks to test the supra‐regional relevance of the Oman data by investigating coeval central Tethyan limestones. Three Lower Aptian shoal‐water sections in Istria (Croatia), deposited on the isolated Adriatic Carbonate Platform, are investigated applying chemostratigraphy (carbon and strontium) and detailed sedimentological analysis. The focus is on peritidal to lagoonal facies characterized by mass occurrences of LithocodiumBacinella, an enigmatic microencruster community. LithocodiumBacinella facies occurs predominantly in layers ranging from one to several centimetres in stratigraphic thickness, with several layers merging to metre‐thick packages. Growth fabrics within the layers include oncoidal morphotypes, lumps, interconnected patches and columns, layers and rare nodular to massive bindstone facies. These growth patterns show a remarkable regional extent and consistency over study sites distributed several kilometres apart. This widespread distribution suggests that specific LithocodiumBacinella morphotypes might serve as regional stratigraphic markers. The high‐resolution carbon‐isotope chemostratigraphy presented here is based on pristine rudist shells and matrix micrite samples and calibrated against strontium‐isotope data obtained from screened rudist low‐Mg calcite. The chemostratigraphic data are consistent with existing biostratigraphic data and place the studied strata at the onset of Early Aptian oceanic anoxic event 1a. Moreover, results indicate the near‐coeval nature of LithocodiumBacinella bloom facies in Istria and Oman. The outcomes of this study point to latitudinally different responses of Tethyan shoal‐water carbonate systems (platform drowning versus LithocodiumBacinella blooms) to the ocean‐wide anoxic event 1a.  相似文献   

2.
Two regionally significant microbial-foraminiferal episodes (∼150 kyr each) occur within the Early Aptian shallow marine platform in Oman and throughout eastern Arabia. The stratigraphically lower of these two intervals is characterized by isolated or coalescent domes that share similarities with modern, open-marine stromatolites from the Exuma Cays, Bahamas. The upper interval is predominantly built by a problematic Lithocodium/Bacinella consortium in buildup and massive boundstone facies. Based on high-resolution chemostratigraphy, these shoalwater intervals are coeval with oceanic anoxic event 1a (OAE1a; Livello Selli). Field evidence demonstrates that the buildup episodes alternate with stratigraphic intervals dominated by rudist bivalves. This biotic pattern is also recognized in other coeval Tethyan sections and is perhaps a characteristic shoalwater expression of the OAE1a. The short-lived regional expansions of this microbial-foraminiferal out-of-balance facies cannot be explained by local environmental factors (salinity and oxygen level) alone and the buildup consortia do not occupy stressed refugia in the absence of grazing metazoans. Judging from recent analogues, the main fossil groups, i.e. microbial assemblages, macroalgae, larger sessile foraminifera, and rudist bivalves, all favoured elevated trophic levels but with different tolerance limits. The implication of this is that the influence of palaeofertility events, possibly related to OAE1a, on carbonate platform community structures must be investigated. The observations made in these coastal sections are a significant first step for the improved understanding of the Early Aptian period of biotic, oceanic and climatic change.  相似文献   

3.
Two coralgal patch reefs of the Hauterivian Llàcova Formation (Maestrat Basin, eastern Spain), exposed at two consecutive stratigraphic levels within a single section, have been studied to document taxonomic implications of a changing environment. These two reefal palaeocommunities differ substantially in coral taxonomic composition, microbialite formation pattern and in abundance and composition of encrusters and bioeroders. Of a total of 14 coral species, just one (Stylina parvistella) occurs in both reefs, yet is abundant in the (lower) reef A and rare, occurring near the reef base, in the reef B assemblage. Reef A is dominated by a phototrophic fauna and coral species with small corallites and imperforate septa (a stylinid-thamnasteriid-heterocoeniid-actinastreid association), along with an encruster association dominated by Bacinella and Lithocodium. Reef B is characterised by a balanced phototrophic-heterotrophic fauna that gradually passes into a heterotrophic-dominated assemblage. During this latest growth stage, microsolenid corals dominated the assemblage. The encruster fauna is characterised by sponges, polychaetes and bryozoans. Moderate deepening during a transgressive systems tract (TST) depositional sequence and elevated nutrient supply are interpreted to represent the driving environmental parameters that caused faunal compositions to differ between these two reefal palaeocommunities. Nine coral taxa, previously known only from younger (Barremian–Cenomanian) strata, have been identified, namely Dimorphocoenia? rudis, Eocomoseris raueni, Eocomoseris sp., Holocoenia jaccardi, Latusastrea irregularis, Mesomorpha sp., Microsolena kugleri, Polyphylloseris mammillata and Polyphylloseris sp. This observation emphasises the importance of the Hauterivian Stage as a period of evolutionary transition in Late Jurassic–Cretaceous coral faunas.  相似文献   

4.
ABSTRACT The depositional organization and architecture of the middle–late Devonian Yangdi rimmed carbonate platform margin in the Guilin area of South China were related to oblique, extensional faulting in a strike‐slip setting. The platform margin shows two main stages of construction in the late Givetian to Frasnian, with a bioconstructed margin evolving into a sand‐shoal system. In the late Givetian, the platform margin was rimmed with microbial buildups composed mainly of cyanobacterial colonies (mostly Renalcis and Epiphyton). These grew upwards and produced an aggradational (locally slightly retrogradational) architecture with steep foreslope clinoforms. Three depositional sequences (S3–S5) are recognized in the upper Givetian strata, which are dominated by extensive microbialites. Metre‐scale depositional cyclicity occurs in most facies associations, except in the platform‐margin buildups and upper foreslope facies. In the latest Givetian (at the top of sequence S5), relative platform uplift (± subaerial exposure) and associated rapid basin subsidence (probably a block‐tilting effect) caused large‐scale platform collapse and slope erosion to give local scalloped embayments along the platform margin and the synchronous demise of microbial buildups. Subsequently, sand shoals and banks composed of ooids and peloids and, a little later, stromatoporoid buildups on the palaeohighs, developed along the platform margin, from which abundant loose sediment was transported downslope to form gravity‐flow deposits. Another strong tectonic episode caused further platform collapse in the early Frasnian (at the top of sequence S6), leading to large‐scale breccia release and the death of the stromatoporoid buildups. Siliceous facies (banded cherts and siliceous shales) were then deposited extensively in the basin centre as a result of the influx of hydrothermal fluids. The platform‐margin sand‐shoal/bank system, possibly with gullies on the slope, persisted into the latest Frasnian until the restoration of microbial buildups. Four sequences (S6–S9), characterized by abundant sand‐shoal deposits on the margin and gravity‐flow and hemipelagic deposits on the slope, are distinguished in the Frasnian strata. Smaller‐scale depositional cyclicity is evident in all facies associations across the platform–slope–basin transect. The distinctive depositional architecture and evolution of this Yangdi Platform are interpreted as having been controlled mainly by regional tectonics with contributions from eustasy, environmental factors, oceanographic setting, biotic and sedimentary fabrics.  相似文献   

5.
Jiang, S., Liu, X., Sun, J., Yuan, L., Sun, L. & Wang, Y. 2011: A multi‐proxy sediment record of late Holocene and recent climate change from a lake near Ny‐Ålesund, Svalbard. Boreas, Vol. 40, pp. 468–480. 10.1111/j.1502‐3885.2010.00198.x. ISSN 0300‐9483 The Arctic constitutes a unique and important environment with a significant role in the dynamics and evolution of the earth system. Arctic lake sediments, which accumulate slowly over time, contain abundant information about the biological communities that lived within the water body, as well as in the surrounding catchment. In this study, we collected a sediment core from Ny‐Ålesund, Svalbard, performed multi‐proxy analyses on sediment pigments, mineral magnetic susceptibility, various sediment quality (i. e. organic matter content, CaCO3 content, carbon and nitrogen isotope), and diatom composition, and reconstructed the history of ecosystem responses to environmental variations, especially regarding aquatic productivity and lake catchment surface processes. Ny‐Ålesund has undergone distinct ecological and climatic changes. During the Little Ice Age, the cold climate was unfavourable for the growth of lake algae, and therefore the lake primary productivity declined. After about AD 1890 and during the 20th century, the warming climate and reduced ice cover led to rapid lithological change and growth of lake algae, enhanced lake primary productivity, and increased input of nutrients derived from increased chemical weathering into the lake. The lake ecosystem on Ny‐Ålesund has had rapid responses to climatic and environmental changes in the Arctic.  相似文献   

6.
This study explores garnet coronas around hedenbergite, which were formed by the reaction plagioclase + hedenbergite→garnet + quartz, to derive information about diffusion paths that allowed for material redistribution during reaction progress. Whereas quartz forms disconnected single grains along the garnet/hedenbergite boundaries, garnet forms ~20‐μm‐wide continuous polycrystalline rims along former plagioclase/hedenbergite phase boundaries. Individual garnet crystals are separated by low‐angle grain boundaries, which commonly form a direct link between the reaction interfaces of the plagioclase|garnet|hedenbergite succession. Compositional variations in garnet involve: (i) an overall asymmetric compositional zoning in Ca, Fe2+, Fe3+ and Al across the garnet layer; and (ii) micron‐scale compositional variations in the near‐grain boundary regions and along plagioclase/garnet phase boundaries. These compositional variations formed during garnet rim growth. Thereby, transfer of the chemical components occurred by a combination of fast‐path diffusion along grain boundaries within the garnet rim, slow diffusion through the interior of the garnet grains, and by fast diffusion along the garnet/plagioclase and the garnet/hedenbergite phase boundaries. Numerical simulation indicates that diffusion of Ca, Al and Fe2+ occurred about three to four, four and six to seven orders of magnitude faster along the grain boundaries than through the interior of the garnet grains. Fast‐path diffusion along grain boundaries contributed substantially to the bulk material transfer across the growing garnet rim. Despite the contribution of fast‐path diffusion, bulk diffusion through the garnet rim was too slow to allow for chemical equilibration of the phases involved in garnet rim formation even on a micrometre scale. Based on published garnet volume diffusion data the growth interval of a 20‐μm‐wide garnet rim is estimated at ~103–104 years at the inferred reaction conditions of 760 ± 50 °C at 7.6 kbar. Using the same parameterization of the growth law, 100‐μm‐ and 1‐mm‐thick garnet rims would grow within 105–106 and 106–107 years respectively.  相似文献   

7.
《Sedimentology》2018,65(5):1520-1557
Since the beginning of the century, several authors have hypothesized and documented the presence of bottom currents during the deposition of mudstones, including mudstones rich in organic matter, challenging the assumption that persistent low‐energy conditions are necessary prerequisites for deposition of such sediments. More processes responsible for transport and deposition of mudstones mean also more processes acting contemporaneously in different parts of a basin. Without a precise and robust chronostratigraphic framework, however, it is not possible to characterize these differences. The new data reported here provide a profoundly different understanding of the controls on sedimentation in distal continental shelf platforms. To enhance the understanding of the different coeval environments of deposition coexisting in a muddy system, the Upper Cretaceous Eagle Ford Group, deposited on the Comanche carbonate platform, has been investigated by integrating sedimentology, mineralogy, geochemistry and palaeoecology, and creating age models in different physiographic sectors using biostratigraphy and geochronology. Data from two cores and 41 outcrops were analysed with a telescopic approach, from grain scale to basin scale. Nine temporal stages over a ca 8 Myr interval (ca 98 to 90 Ma) were defined in an area that spans 75 000 km2. Finally, the different environments of deposition recorded within each of the nine stages were interpreted. The construction of the chronostratigraphic framework also allowed: measuring the duration of a basin‐wide gradational increase in energy in the water column (ca 1 Myr) and a hiatus confined into the shallower water sector (ca 2 Myr); determining the mean eruption frequency of volcanoes (ca 9 kyr); and the time of inundation of the Western Interior Seaway (97·5 to 97·1 Ma). The context, the outcrops–cores–logs correlations, the large data set (Appendix  S1 ), the high‐precision and well‐calibrated constraints represent an unprecedented contribution for future regional facies models of organic‐rich units and for improvements of key aspects in the industry of unconventional resources.  相似文献   

8.
Late Mississippian carbonates in southern Montagne Noire are dominantly domical to laterally‐accreted microbial mounds in some formations, as well as stratiform microbial limestones occurring in hundreds of olistoliths within a flysch basin, constituting pieces of a giant puzzle that are used to help reconstruct a platform in a region that is no longer preserved. Petrographic data of limestone samples from 14 continuous long sections of olistoliths have been analyzed statistically, using multivariate clustering (Q‐mode) of the components/matrix/cement and canonical correspondence analysis that allow the reconstruction of the environmental parameters of carbonate microbial communities in space and time. Clustering analysis separated microbial and non‐microbial facies. The calculation of indices along the various axes from canonical correspondence analysis allows recognition of the controlling factors of the mounds and microbial growth as being turbidity, light penetration, bathymetry and storms. Turbidity and light penetration are the primary factors controlling the morphology of the microbial limestones. Representation of the light penetration and bathymetry indices on the stratigraphical sections defines two vertical environmental gradients. Light penetration can be subdivided into euphotic, euphotic–dysphotic and dysphotic‐aphotic conditions. The representation of the bathymetry allows the subdivision of samples into a deeper outer ramp, external mid‐ramp and internal mid‐ramp. The curve distance from the section base = f (index) suggests a cyclicity for the platform that cannot be compared with the onlap curve defined from other cratonic areas (Moscow Basin), and thus the cyclic succession of the Montagne Noire is interpreted to have been mostly tectonically‐controlled. Integration of the data allowed the reconstruction of the original Mississippian carbonate platform, where, up to the Mikhailovian, it appears to correspond to a platform morphology, with narrow shallow water facies and wide turbiditic systems, whereas the width of shallow‐water settings expanded during the Venevian to the Protvian, forming a ramp or distally‐steepened ramp with widespread microbial limestones.  相似文献   

9.
Marine microbial communities recorded in the Moroccan Anti‐Atlas were unaffected across the Neoproterozoic–Cambrian transition. A stromatolite‐dominated consortium was replaced at the beginning of the Atdabanian (ca 20 Myr after the Neoproterozoic–Cambrian boundary) by shelly metazoan and thromboid consortia, which contain the oldest biostratigraphically significant fossils of the Moroccan Cambrian. The associated collapse of microbial mat (stromatolitic) growth appears to coincide with a change from pre‐Atdabanian shallow‐water restricted conditions into Atdabanian deeper, open‐sea conditions. It is postulated that this environmental change led to an episode of improved water circulation over carbonate platform interiors, promoting shelly metazoan immigration into the region. The Tiout/Amouslek lithostratigraphic contact in the early Atdabanian marks the end of an episodically unstable seafloor as suggested by the abundance of slumping and sliding structures, and synsedimentary microfaults and cracks recorded in the underlying Tiout Member. Concurrent with the transition is the occurrence of a network of cryptic fissures and cavities that provided habitats for a coelobiontic chemosynthetic–heterotrophic microbial community composed of stromatolitic crusts, RenalcisEpiphytonGirvanella intergrowths, and Kundatia thalli. In the overlying Amouslek Formation, archaeocyathan–thromboid reefs were constrained by substrate stability, water depth and subsidence rate. Four reef geometries are distinguished: (i) patch reefs surrounded by shales, (ii) bioherms in which flank beds intercalate laterally with carbonate and shale inter‐reef sediments, (iii) biostromes or low‐relief structures formed as a result of lateral accretion of patch reefs, and (iv) kalyptrate complexes that nucleated because of a marked tendency for aggregation, and in which patch reefs and bioherms occur stacked together bounded by clay–marl–silt seams.  相似文献   

10.
Linking surficial sediment patterns in reef environments to the processes that underlie their depositional dynamics enables predictions to be made of how environmental changes will influence reef‐associated sedimentary landforms, such as islands and beaches. Geomorphic linkages between sediment deposition patterns and the biophysical processes that drive them are often poorly resolved, particularly at broad landscape scales where tangible statements can be made about structural changes to landforms. The present study applies geospatial techniques to link patterns in reef sediment dynamics at Lady Musgrave Island to the underlying processes driving them. In situ calcification is characterized by developing a high resolution map of the surficial calcium carbonate producing communities inhabiting the reef platform, and associated sediments across the reef flat are analysed for grain size, kurtosis, sorting and threshold bed shear stress to explore transport pathways across the reef flat and lagoon. Wave energy is modelled across the entire reef platform as a potential driver of sediment dynamics, and morphometric linkages are empirically defined between wave energy and grain size. Findings indicate that carbonate sediments are primarily sourced from calcifying communities colonizing the outer periphery of the reef platform and that sediment grain size can be reliably linked to wave energy by virtue of a linear model.  相似文献   

11.
A mathematical model of carbonate platform evolution is presented in which depth‐dependent carbonate growth rates determine platform‐top accumulation patterns in response to rising relative sea‐level. This model predicts that carbonate platform evolution is controlled primarily by the water depth and sediment accumulation rate conditions at the onset of relative sea‐level rise. The long‐standing ‘paradox of a drowned platform’ arose from the observation that maximum growth rate potentials of healthy platforms are faster than those of relative sea‐level rise. The model presented here demonstrates that a carbonate platform could be drowned during a constant relative sea‐level rise whose rate remains less than the maximum carbonate production potential. This scenario does not require environmental changes, such as increases in nutrient supply or siliciclastic sedimentation, to have taken place. A rate of relative sea‐level rise that is higher than the carbonate accumulation rate at the initial water depth is the only necessary condition to cause continuous negative feedbacks to the sediment accumulation rates. Under these conditions, the top of the carbonate platform gradually deepens until it is below the active photic zone and drowns despite the strong maximum growth potential of the carbonate production factory. This result effectively resolves the paradox of a drowned carbonate platform. Test modelling runs conducted with 2·5 m and 15 m initial sea water depths at bracketed rates of relative sea‐level rise have determined how fast the system catches up and maintains the ‘keep‐up’ phase. This is the measure of time necessary for the basin to respond fully to external forcing mechanisms. The duration of the ‘catch‐up’ phase of platform response (termed ‘carbonate response time’) scales with the initial sea water depth and the platform‐top aggradation rate. The catch‐up duration can be significantly elongated with an increase in the rate of relative sea‐level rise. The transition from the catch‐up to the keep‐up phases can also be delayed by a time interval associated with ecological re‐establishment after platform flooding. The carbonate model here employs a logistical equation to model the colonization of carbonate‐producing marine organisms and captures the initial time interval for full ecological re‐establishment. This mechanism prevents the full extent of carbonate production to be achieved at the incipient stage of relative sea‐level rise. The increase in delay time due to the carbonate response time and self‐organized processes associated with biological colonization increase the chances for platform drowning due to deepening of water depth (> ca 10 m). Furthermore this implies a greater likelihood for an autogenic origin for high‐frequency cyclic strata than has been estimated previously.  相似文献   

12.
Carbonate platforms spanning intervals of global change provide an opportunity to identify causal links between the evolution of marine environment and depositional architecture. This study investigates the controls on platform geometry across the Palaeozoic to Mesozoic transition and yields new stratigraphic and palaeoenvironmental constraints on the Great Bank of Guizhou, a latest Permian to earliest Late Triassic isolated carbonate platform in the Nanpanjiang Basin of south China. Reconstruction of platform architecture was achieved by integrating field mapping, petrography, biostratigraphy, satellite imagery analysis and δ13C chemostratigraphy. In contrast to previous interpretations, this study indicates that: (i) the Great Bank of Guizhou transitioned during Early Triassic time from a low-relief bank to a platform with high relief above the basin floor (up to 600 m) and steep slope angles (preserved up to 50°); and (ii) the oldest-known platform-margin reef of the Mesozoic Era grew along steep, prograding clinoforms in an outer-margin to lower-slope environment. Increasing platform relief during Early Triassic time was caused by limited sediment delivery to the basin margin and a high rate of accommodation creation driven by Indosinian convergence. The steep upper Olenekian (upper Lower Triassic) slope is dominated by well-cemented grainstone, suggesting that high carbonate saturation states led to syndepositional or rapid post-depositional sediment stabilization. Latest Spathian reef initiation coincided with global cooling following Early Triassic global warmth. The first Triassic framework-building metazoans on the Great Bank of Guizhou were small calcareous sponges restricted to deeper water settings, but early Mesozoic reef builders were volumetrically dominated by Tubiphytes, a fossil genus of uncertain taxonomic affinity. In aggregate, the stratigraphic architecture of the Great Bank of Guizhou records sedimentary response to long-term environmental and biological recovery from the end-Permian mass extinction, highlighting the close connections among marine chemistry, marine ecosystems and carbonate depositional systems.  相似文献   

13.
Spartina species tend to exhibit a range of phenotypes, often with short and tall growth forms. Such differences have been attributed variously to environmentally induced phenotypic plasticity and genetic diferentiation between populations. This work examines the basis of height variation inSpartina maritima (Curtis) Fernald at Odiel salt marshes, southwest Spain. Populations from sites with lower sediment redox potentials tended to have significantly taller shoots. Thirty-four natural populations with an 8-fold range of shoot height were transplanted to a common environment on an unvegetated, intertidal plain and shoot height was measured annually for 3 yr. There was a striking convergence in height across populations after transplantation and the change in height in each year of a population was linearly related to its initial height. Most populations grew taller after transplantation, suggesting environmental limitation in their natural habitats. Populations that were originally tall tended to become shorter. The change in shoot height was negatively related to the difference in surface sediment redox potential between their natural sites and the common transplant site. Hypoxic sediments may stimulate stem growth, resulting in improved photosynthetic gas exchange and internal aeration of roots and rhizomes. Although height variation inS. maritima appears mainly to be a result of phenotypic plasticity, a genetic component cannot be ruled out. This study emphasizes the importance of long-term studies, preferably longer than turnover time of shoot populations. The highly plastic growth form ofS. maritima allows it to colonize a wide range of habitats in environmentally heterogeneous salt marshes.  相似文献   

14.
In order to investigate whether geochemical, physiographic and lithological differences in two end‐member sedimentary settings could evoke varied microbe–sediment interactions, two 25 cm long sediment cores from contrasting regions in the Central Indian Basin have been examined. Site TVBC 26 in the northern siliceous realm (10°S, 75·5°E) is organic‐C rich with 0·3 ± 0·09% total organic carbon. Site TVBC 08 in the southern pelagic red clay realm (16°S, 75·5°E), located on the flank of a seamount in a mid‐plate volcanic area with hydrothermal alterations of recent origin, is organic‐C poor (0·1 ± 0·07%). Significantly higher bacterial viability under anaerobic conditions, generally lower microbial carbon uptake and higher numbers of aerobic sulphur oxidizers at the mottled zones, characterize core TVBC 26. In the carbon‐poor environment of core TVBC 08, a doubling of the 14C uptake, a 250 times increase in the number of autotrophic nitrifiers, a four‐fold lowering in the number of aerobic sulphur oxidizers and a higher order of denitrifiers exists when compared with core TVBC 26; this suggests the prevalence of a potentially autotrophic microbial community in core TVBC 08 in response to hydrothermal activity. Microbial activity at the northern TVBC 26 is predominantly heterotrophic with enhanced chemosynthetic activity restricted to tan‐green mottled zones. The southern TVBC 08 is autotrophic with increased heterotrophic activity in the deepest layers. Notably, the bacterial activity is generally dependent on the surface productivity in TVBC 26, the carbon‐rich core, and mostly independent in TVBC 08, the carbon‐poor, hydrothermally influenced core. The northern sediment is more organic sink‐controlled and the southern sediment is more hydrothermal source‐controlled. Hydrothermal activity and associated rock alteration processes may be more relevant than organic matter delivery in these deep‐sea sediments. Thus, this study highlights the relative importance of hydrothermal activity versus organic delivery in evoking different microbial responses in the Central Indian Basin sediments.  相似文献   

15.
Graptolite‐bearing Middle and Upper Ordovician siliciclastic facies of the Argentine Precordillera fold‐thrust belt record the disintegration of a long‐lived Cambro‐Mid Ordovician carbonate platform into a series of tectonically partitioned basins. A combination of stratigraphic, petrographic, U‐Pb detrital zircon, and Nd‐Pb whole‐rock isotopic data provide evidence for a variety of clastic sediment sources. Four Upper Ordovician quartzo‐lithic sandstones collected in the eastern and central Precordillera yield complex U‐Pb zircon age spectra dominated by 1·05–1·10 Ga zircons, secondary populations of 1·22, 1·30, and 1·46 Ga, rare 2·2 and 1·8 Ga zircons, and a minor population (<2%) of concordant zircons in the 600–700 Ma range. Archaean‐age grains comprise <1% of all zircons analysed from these rocks. In contrast, a feldspathic arenite from the Middle Ordovician Estancia San Isidro Formation of the central Precordillera has two well‐defined peaks at 1·41 and 1·43 Ga, with no grains in the 600–1200 Ma range and none older than 1·70 Ga. The zircon age spectrum in this unit is similar to that of a Middle Cambrian quartz arenite from the La Laja Formation, suggesting that local basement rocks were a regional source of ca 1·4 Ga detrital zircons in the Precordillera Terrane from the Cambrian onwards. The lack of grains younger than 600 Ma in Upper Ordovician units reinforces petrographic data indicating that Ordovician volcanic arc sources did not supply significant material directly to these sedimentary basins. Nd isotopic data (n = 32) for Middle and Upper Ordovician graptolitic shales from six localities define a poorly mixed signal [ɛNd(450 Ma) = −9·6 to −4·5] that becomes more regionally homogenized in Upper Ordovician rocks (−6·2 ± 1·0; TDM = 1·51 ± 0·15 Ga; n = 17), a trend reinforced by the U‐Pb detrital zircon data. It is concluded that proximal, recycled orogenic sources dominated the siliciclastic sediment supply for these basins, consistent with rapid unroofing of the Precordillera Terrane platform succession and basement starting in Mid Ordovician time. Common Pb data for Middle and Upper Ordovician shales from the western and eastern Precordillera (n = 15) provide evidence for a minor (<30%) component that was likely derived from a high‐μ (U/Pb) terrane.  相似文献   

16.
ABSTRACT A calcite mass more than 1·5 km long and 20 m wide crops outs along the faulted margin of the Albian carbonate platform of Jorrios in northern Spain. The mass contains abundant dissolution cavities up to 7 m long and 1 m high, filled with cross‐stratified quartz sandstone and alternating sandstone–calcite laminae. Similar cavities are also present in a 50‐m‐wide zone of platform limestones adjacent to the calcite mass that are filled with limestone breccias and sandstone. The calcite mass has mean δ18O values of 19·6‰ (SMOW), whereas platform limestones have mean δ18O values of 24·4‰ (SMOW). Synsedimentary faulting of the carbonate margin and circulation of heated fault‐related waters resulted in replacement of a band of limestone by calcite. Soon after this replacement, dissolution by undersaturated fluids affected both the calcite mass and the adjacent limestones. Percolating marine quartz sand filled all dissolution cavities, sometimes alternating with precipitating calcite. The resulting cavities and fills, which recall products of meteoric diagenesis, are attributed to a hydrothermal origin based on their geometry, occurrence along the profile and synsedimentary tectonic relationships. The early faulting and diagenesis are related to local extensional tectonism in a large‐scale strike‐slip setting. Movements occurred during the early dispar/appenninica zone of the Late Albian.  相似文献   

17.
Sedimentologists recognize that development of a fine‐resolution, truly three‐dimensional analytical tool is essential if the internal structure of an opaque material is to be examined. This paper therefore seeks to: (i) test the viability of magnetic resonance imaging for sedimentological research; and (ii) investigate fine‐sediment infiltration into gravel beds. The results of six experiments are analysed quantitatively using Image J post‐processing software. Data indicate that magnetic resonance imaging‐based measurements of particle axes and volumes are comparable with standard laboratory techniques. Furthermore, the technique permits visualization and analysis of differences in the pattern of fine‐sediment infiltration (median particle diameter, d) into a framework of gravel (median particle diameter, D). Data clearly illustrate a siltation process for samples of D/d = 34 and a sealing process for samples of D/d = 7 where the seal is restricted to a depth equal to 2D. This pore‐scale visualization is valuable to the understanding of hydraulic–sediment–habitat interactions.  相似文献   

18.
This study investigates the δ13C values of Middle Miocene–Modern drift deposits and periplatform sediments in the Maldives and compares these data with the global δ13C values derived from bulk oceanic sediments and foraminifera. This comparison reveals that while the δ13C values of the early Miocene periplatform sediments in the Maldives appear to track the global record of δ13C values, including increases associated with the Oligocene–Miocene boundary as well as the variations within the Monterey Event, the correlation with the Monterey Event may be coincidental. It is suggested that variations in δ13C values do not reflect changes in oceanic dissolved inorganic carbon, but instead pulses of sediment arising from platform progradation that contribute carbonates with elevated δ13C values derived from the adjacent shallow‐water atolls. This conclusion is supported both by correlations between the seismic sequence architecture and the δ13C values which document progradation of 13C‐rich platform sediments, and also by the continuation of the interval of 13C‐rich sediments past the end of the Monterey Event at 13 Ma within the drift.  相似文献   

19.
Alluvial fans serve as useful archives that record the history of depositional and erosional processes in mountainous regions and thus can reveal the environmental controls that influenced their development. Economically, they play an important role as groundwater reservoirs as well as host rocks for hydrocarbons in deeply buried systems. The interpretation of these archives and the evaluation of their reservoir architecture, however, are problematic because marked heterogeneity in the distribution of sedimentary facies makes correlation difficult. This problem is compounded because the accumulated sedimentary deposits of modern unconsolidated fan systems tend to be poorly exposed and few such systems have been the focus of investigation using high‐resolution subsurface analytical techniques. To overcome this limitation of standard outcrop–analogue studies, a geophysical survey of an alpine alluvial fan was performed using ground‐penetrating radar to devise a scaled three‐dimensional subsurface model. Radar facies were classified and calibrated to lithofacies within a fan system that provided outcropping walls and these were used to derive a three‐dimensional model of the sedimentary architecture and identify evolutionary fan stages. The Illgraben fan in the Swiss Alps was selected as a case study and a network of ca 60 km sections of ground‐penetrating radar was surveyed. Seven radar facies types could be distinguished, which were grouped into debris‐flow deposits and stream‐flow deposits. Assemblages of these radar facies types show three depositional units, which are separated by continuous, fan‐wide reflectors; they were interpreted as palaeo‐surfaces corresponding to episodes of sediment starvation that affected the entire fan. An overall upward decline in the proportion of debris‐flow deposits from ca 50% to 15% and a corresponding increase in stream‐flow deposits were identified. The uppermost depositional unit is bounded at its base by a significant incision surface up to 700 m wide, which was subsequently filled up mostly by stream‐flow deposits. The pronounced palaeo‐surfaces and depositional trends suggest that allocyclic controls governed the evolution of the Illgraben fan, making this fan a valuable archive from which to reconstruct past sediment fluxes and environmental change in the Alps. The results of the integrated outcrop–geophysical approach encourage similar future studies on fans to retrieve their depositional history as well as their potential reservoir properties.  相似文献   

20.
Cenozoic climatic and environmental changes in the arid Asian interior, and their possible relations with global climatic changes and the Tibetan Plateau uplift, have been intensively investigated and debated over past decades. Here we present 40-Myr (million years)-long n-alkane records from a continuous Cenozoic sediment sequence in the Dahonggou Section, Qaidam Basin, northern Tibetan Plateau, to infer environmental changes in the northern basin. A set of n-alkane indexes, including ACL, CPI and Paq, vary substantially and consistently throughout the records, which are interpreted to reflect relative contributions from terrestrial vascular plants vs. aquatic macrophytes, and thus indicate depositional environments. ACL values vary between 21 and 30; CP1 values range from 1.0 to 8.0; and Paq values change from 〈0.1 to 0.8 over the past 40-Myr. We have roughly identified two periods, at 25.8-21.0 Ma (million years ago) and 13.0-17.5 Ma, with higher ACL and CPI and lower Paq values indicating predominant lacustrine environments. Lower ACL and CPI values, together with higher Paq values, occurred at 〉25.8 Ma, 17.5-21.0 Ma, and 〈13.0 Ma, corresponding to alluvial fan/river deltaic deposits and shallow lacustrine settings, consistent with the observed features in sedimentological facies. The inferred Cenozoic environmental changes in the northern Qaidam Basin appear to correspond to global climatic changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号