首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ultrasonic (500 kHz) P‐ and S‐wave velocity and attenuation anisotropy were measured in the laboratory on synthetic, octagonal‐shaped, silica‐cemented sandstone samples with aligned penny‐shaped voids as a function of pore fluid viscosity. One control (blank) sample was manufactured without fractures, another sample with a known fracture density (measured from X‐ray CT images). Velocity and attenuation were measured in four directions relative to the bedding fabric (introduced during packing of successive layers of sand grains during sample construction) and the coincident penny‐shaped voids (fractures). Both samples were measured when saturated with air, water (viscosity 1 cP) and glycerin (100 cP) to reveal poro‐visco‐elastic effects on velocity and attenuation, and their anisotropy. The blank sample was used to estimate the background anisotropy of the host rock in the fractured sample; the bedding fabric was found to show transverse isotropy with shear wave splitting (SWS) of 1.45 ± 1.18% (i.e. for S‐wave propagation along the bedding planes). In the fractured rock, maximum velocity and minimum attenuation of P‐waves was seen at 90° to the fracture normal. After correction for the background anisotropy, the fractured sample velocity anisotropy was expressed in terms of Thomsen's weak anisotropy parameters ε, γ & δ. A theory of frequency‐dependent seismic anisotropy in porous, fractured, media was able to predict the observed effect of viscosity and bulk modulus on ε and δ in water‐ and glycerin‐saturated samples, and the higher ε and δ values in air‐saturated samples. Theoretical predictions of fluid independent γ are also in agreement with the laboratory observations. We also observed the predicted polarisation cross‐over in shear‐wave splitting for wave propagation at 45° to the fracture normal as fluid viscosity and bulk modulus increases.  相似文献   

2.
裂缝广泛分布于地球介质中并且具有多尺度的特点,裂缝尺度对于油气勘探和开发有着重要的意义.本文制作了一组含不同长度裂缝的人工岩样,其中三块含裂缝岩样中的裂缝直径分别为2 mm、3 mm和4 mm,裂缝的厚度都约为0.06 mm,裂缝密度大致相同(分别为4.8%、4.86%和4.86%).在岩样含水的条件下测试不同方向上的纵横波速度,实验结果表明,虽然三块裂缝岩样中的裂缝密度大致相同,但是含不同直径裂缝岩样的纵横波速度存在差异.在各个方向上,含数量众多的小尺度裂缝的岩样中纵横波速度都明显低于含少量的大尺度裂缝的岩样中纵横波速度.尤其是对纵波速度和SV波速度,在不同尺度裂缝岩样中的差异更明显.在含数量多的小尺度裂缝的岩样中纵波各向异性和横波各向异性最高,而含少量的大尺度的裂缝的岩样中的纵波各向异性和横波各向异性较低.实验测量结果与Hudson理论模型预测结果进行了对比分析,结果发现Hudson理论考虑到了裂缝尺度对纵波速度和纵波各向异性的影响,但是忽略了其对横波速度和横波各向异性的影响.  相似文献   

3.
利用新方法制作出含可控裂缝的双孔隙人工砂岩物理模型,具有与天然岩石更为接近的矿物成分、孔隙结构和胶结方式,其中裂缝密度、裂缝尺寸和裂缝张开度等裂缝参数可以控制以得到实验所需要的裂缝参数,岩样具有真实的孔隙和裂缝空间并可以在不同饱和流体状态下研究流体性质对于裂缝介质性质的影响.本次实验制作出一组具有不同裂缝密度的含裂缝人工岩样,对岩样利用SEM扫描电镜分析可以看到真实的孔隙结构和符合我们要求的裂缝参数,岩样被加工成八面棱柱以测量不同方向上弹性波传播的速度,用0.5 MHz的换能器使用透射法测量在饱和空气和饱和水条件下各个样品不同方向上的纵横波速度,并得出纵横波速度、横波分裂系数和纵横波各向异性强度受裂缝密度和饱和流体的影响.研究发现流体对于纵波速度和纵波各向异性强度的影响较强,而横波速度、横波分裂系数和横波各向异性强度受饱和流体的影响不大,但是对裂缝密度的变化更敏感.  相似文献   

4.
P‐ and S‐wave velocity and attenuation coefficients (accurate to ±0.3% and ±0.2 dB/cm, respectively) were measured in synthetic porous rocks with aligned, penny‐shaped fractures using the laboratory ultrasonic pulse‐echo method. Shear‐wave splitting was observed by rotating the S‐wave transducer and noting the maximum and minimum velocities relative to the fracture direction. A block of synthetic porous rock of fracture density 0.0201 ± 0.0068 and fracture size 3.6 ± 0.38 mm (measured from image analysis of X‐ray CT scans) was sub‐sampled into three 20–30 mm long, 50 mm diameter core plugs oriented at 0°, 45° and 90° to the fracture normal (transversely isotropic symmetry axis). Full waveform data were collected over the frequency range 500–1000 kHz for both water and glycerin saturated cores to observe the effect of pore fluid viscosity at 1 cP and 100 cP, respectively. The shear‐wave splitting observed in the 90° core was 2.15 ± 0.02% for water saturated and 2.39 ± 0.02% for glycerin saturated, in agreement with the theory that suggests that the percentage splitting should be 100 times the fracture density and independent of the saturating fluid. In the 45° core, by contrast, splitting was 0.00 ± 0.02% for water saturation and ?0.77 ± 0.02% for glycerin saturation. This dependence on fracture orientation and pore fluid viscosity is consistent with the poro‐visco‐elastic theory for aligned, meso‐scale fractures in porous rocks. The results suggest the possible use of shear‐ or converted‐wave data to discriminate between fluids on the basis of viscosity variations.  相似文献   

5.
Experimental measurements of fracture-induced seismic waves velocity variations at frequencies ~ 1 kHz, ~ 40 kHz and ~ 1 MHz were performed directly in the field at the rocky outcrop and in the laboratory on specific rock samples collected from the outcrops. The peridotite–lherzolite outcrop appeared macroscopically uniform and contained three systems of visible parallel sub-vertical fractures. This rock has substantial bulk density and higher than average value of seismic wave velocity. The presence of fracture systems gives rise to its velocity anisotropy. The seismic waves passing through the rock fractures are subject to velocity dispersion and frequency dependent attenuation. Our data, obtained from field and laboratory measurements, were compared with theoretical model predictions. In this model we successfully used displacement discontinuity approach. For the velocity dispersion evaluation we used multi-frequency measurements. The a priori observation of orientations and densities of fracture sets allowed evaluation of their stiffness. Our approach revealed that the first arrivals of seismic waves can be used for evaluation of P-wave group velocities, the specific case, in which we expect anomalous velocity dispersion. Our observations contribute to the issue of up-scaling of well-log derived velocities in fractured rock to the scale of standard seismic exploration frequencies.  相似文献   

6.
A polyaxial (true‐triaxial) stress‐loading system, developed originally for determining all nine components of P‐ and S‐wave velocities and attenuation and fluid permeability for 50.8 mm‐side cubic rock specimens tested to failure, has been modified to permit the measurement of acoustic emission events associated with the failure process. Results are reported for Crosland Hill sandstone tested to failure under loading conditions leading to the formation of sets of aligned microcracks, achieved by maintaining the minor principal stress at a low value while increasing the two other principal stresses until failure of the rock. An ultrasonic survey associated with the test has been employed to map the transversely‐isotropic velocity structure created by through‐going parallel fractures resulting from the sets of aligned microcracks. This velocity structure has then been employed to locate acoustic emission events recorded during the test by four acoustic emission sensors located in each of the six specimen loading platens. A selection of acoustic emission events associated with one of the fractures has been processed for moment tensor analysis information, in order to determine the source type and orientation of microcracking as the fracture grows. The mechanisms indicate tensile behaviour during initial fracture propagation. Shear failure, however, appears to dominate as the fracture finally approaches the opposite face of the cubic specimen. The work presented here has, in part, led to the development of new rock testing systems and geophysical monitoring and processing technologies that will enable laboratory study of rock behaviour under conditions better resembling those experienced in situ.  相似文献   

7.
To provide a guide for future deep (<1.5 km) seismic mineral exploration and to better understand the nature of reflections imaged by surface reflection seismic data in two mining camps and a carbonatite complex of Sweden, more than 50 rock and ore samples were collected and measured for their seismic velocities. The samples are geographically from the northern and central parts of Sweden, ranging from metallic ore deposits, meta‐volcanic and meta‐intrusive rocks to deformed and metamorphosed rocks. First, ultrasonic measurements of P‐ and S‐wave velocities at both atmospheric and elevated pressures, using 0.5 MHz P‐ and S‐wave transducers were conducted. The ultrasonic measurements suggest that most of the measured velocities show positive correlation with the density of the samples with an exception of a massive sulphide ore sample that shows significant low P‐ and S‐wave velocities. The low P‐ and S‐wave velocities are attributed to the mineral texture of the sample and partly lower pyrite content in comparison with a similar type sample obtained from Norway, which shows significantly higher P‐ and S‐wave velocities. Later, an iron ore sample from the central part of Sweden was measured using a low‐frequency (0.1–50 Hz) apparatus to provide comparison with the ultrasonic velocity measurements. The low‐frequency measurements indicate that the iron ore sample has minimal dispersion and attenuation. The iron ore sample shows the highest acoustic impedance among our samples suggesting that these deposits are favourable targets for seismic methods. This is further demonstrated by a real seismic section acquired over an iron ore mine in the central part of Sweden. Finally, a laser‐interferometer device was used to analyse elastic anisotropy of five rock samples taken from a major deformation zone in order to provide insights into the nature of reflections observed from the deformation zone. Up to 10% velocity‐anisotropy is estimated and demonstrated to be present for the samples taken from the deformation zone using the laser‐interferometery measurements. However, the origin of the reflections from the major deformation zone is attributed to a combination of anisotropy and amphibolite lenses within the deformation zone.  相似文献   

8.
Cross‐hole anisotropic electrical and seismic tomograms of fractured metamorphic rock have been obtained at a test site where extensive hydrological data were available. A strong correlation between electrical resistivity anisotropy and seismic compressional‐wave velocity anisotropy has been observed. Analysis of core samples from the site reveal that the shale‐rich rocks have fabric‐related average velocity anisotropy of between 10% and 30%. The cross‐hole seismic data are consistent with these values, indicating that observed anisotropy might be principally due to the inherent rock fabric rather than to the aligned sets of open fractures. One region with velocity anisotropy greater than 30% has been modelled as aligned open fractures within an anisotropic rock matrix and this model is consistent with available fracture density and hydraulic transmissivity data from the boreholes and the cross‐hole resistivity tomography data. However, in general the study highlights the uncertainties that can arise, due to the relative influence of rock fabric and fluid‐filled fractures, when using geophysical techniques for hydrological investigations.  相似文献   

9.
泥岩、页岩声速各向异性及其影响因素分析   总被引:16,自引:3,他引:13       下载免费PDF全文
在实验室超声波频率下(纵波主频为700kHz、横波为250kHz)对层理发育的页岩和泥岩的各向异性进行了研究,给出了在干燥和油饱和条件下,样品不同方向上纵、横波速度以及各向异性参数随压力的变化规律. 用X 射线衍射和扫描电镜分析了样品中引起各向异性的原因,指出平行于层理定向排列的粘土矿物和微裂隙是使样品显示出强弹性各向异性的内在原因. 随着压力的增高微裂隙逐渐闭合,样品的各向异性程度减弱. 孔隙流体的存在增强了孔隙(裂隙)的刚度,减弱了各向异性随压力增大而减小的趋势.  相似文献   

10.
为研究致密砂岩声波速度及其各向异性随围压的变化规律以及不同流体饱和状态下的弹性各向异性特征,钻取了不同方向的岩心并在实验室超声波频率下对致密砂岩的声学特性进行了测量,分别给出干燥和饱和水状态下,不同方向样品纵横波速度、刚性系数以及各向异性系数随围压的变化规律,并对实验结果进行了分析讨论.实验结果表明致密砂岩纵横波速度、纵横波速度比以及刚性系数均随围压增加而增加,但其在不同饱和状态下的变化率却截然不同;纵横波速度比、各向异性系数在饱和水状态下变化规律不明显,表明孔隙流体的存在对于岩石物理性质有着非常重要的影响.这方面的实验工作不但对于考察不同流体性质对致密岩石弹性各向异性影响是必要的,而且有助于致密砂岩油水和气层的识别.  相似文献   

11.
The laboratory ultrasonic pulse‐echo method was used to collect accurate P‐ and S‐wave velocity (±0.3%) and attenuation (±10%) data at differential pressures of 5–50 MPa on water‐saturated core samples of sandstone, limestone and siltstone that were cut parallel and perpendicular to the vertical borehole axis. The results, when expressed in terms of the P‐ and S‐wave velocity and attenuation anisotropy parameters for weakly transversely isotropic media (ɛ, γ, ɛQ, γQ) show complex variations with pressure and lithology. In general, attenuation anisotropy is stronger and more sensitive to pressure changes than velocity anisotropy, regardless of lithology. Anisotropy is greatest (over 20% for velocity, over 70% for attenuation) in rocks with visible clay/organic matter laminations in hand specimens. Pressure sensitivities are attributed to the opening of microcracks with decreasing pressure. Changes in magnitude of velocity and attenuation anisotropy with effective pressure show similar trends, although they can show different signs (positive or negative values of ɛ, ɛQ, γ, γQ). We conclude that attenuation anisotropy in particular could prove useful to seismic monitoring of reservoir pressure changes if frequency‐dependent effects can be quantified and modelled.  相似文献   

12.
Most sedimentary rocks are anisotropic, yet it is often difficult to accurately incorporate anisotropy into seismic workflows because analysis of anisotropy requires knowledge of a number of parameters that are difficult to estimate from standard seismic data. In this study, we provide a methodology to infer azimuthal P‐wave anisotropy from S‐wave anisotropy calculated from log or vertical seismic profile data. This methodology involves a number of steps. First, we compute the azimuthal P‐wave anisotropy in the dry medium as a function of the azimuthal S‐wave anisotropy using a rock physics model, which accounts for the stress dependency of seismic wave velocities in dry isotropic elastic media subjected to triaxial compression. Once the P‐wave anisotropy in the dry medium is known, we use the anisotropic Gassmann equations to estimate the anisotropy of the saturated medium. We test this workflow on the log data acquired in the North West Shelf of Australia, where azimuthal anisotropy is likely caused by large differences between minimum and maximum horizontal stresses. The obtained results are compared to azimuthal P‐wave anisotropy obtained via orthorhombic tomography in the same area. In the clean sandstone layers, anisotropy parameters obtained by both methods are fairly consistent. In the shale and shaly sandstone layers, however, there is a significant discrepancy between results since the stress‐induced anisotropy model we use is not applicable to rocks exhibiting intrinsic anisotropy. This methodology could be useful for building the initial anisotropic velocity model for imaging, which is to be refined through migration velocity analysis.  相似文献   

13.
唐杰  吴国忱 《地球物理学报》2015,58(8):2986-2995
本文在实验室对所获取的东营地区层理发育的低孔隙度页岩和泥岩的各向异性裂纹演化特性进行了研究,获得了各向同性条件下泥页岩的力学与超声波响应特性,分析了应力幅度对于页岩声波速度和各向异性的影响.主要结论包括:(1)泥页岩在循环载荷下存在滞后效应,表明其经历了去压实或油气产生导致的超压;(2)泥岩和页岩具有不同程度的各向异性,随着各向同性压力的增高微裂隙逐渐闭合,样品的各向异性程度减弱;(3)分析了岩石韧度和裂纹损伤参数随压力的变化特征,相比泥岩,页岩各向异性程度更高,随压力变化更明显,其裂纹导致的附加各向异性更强;(4)分析了各向异性岩石的动态弹性模量特征,由于软裂隙空间的闭合,动态弹性模量在低压条件下都随着围压的增加有硬化趋势.  相似文献   

14.
We studied the contributions of plagioclase, clinopyroxene, and amphibole to the P‐wave velocity properties of gabbroic mylonites of the Godzilla Megamullion (site KH07‐02‐D18) in the Parece Vela Rift of the central Parece Vela Basin, Philippine Sea, based on their crystal‐preferred orientations (CPOs), mineral modes, and elastic constants and densities of single crystals. The gabbroic mylonites have been classified into three types based on their microstructures and temperature conditions: HT1, HT2 and medium‐temperature (MT) mylonites. The P‐wave velocity properties of the HT1 mylonite are dominantly influenced by plagioclase CPOs. Secondary amphibole occurred after deformation in the HT1 mylonite, so that its effect on P‐wave velocity anisotropy is minimal due to weak CPOs. Although the HT2 mylonite developed deformation microstructures in the three minerals, the P‐wave velocity properties of the HT2 mylonite are essentially isotropic, resulting from the destructive interference of different P‐wave velocity anisotropy patterns produced by the distinct CPOs of the three constituent minerals (i.e., plagioclase, clinopyroxene, and amphibole). The P‐wave velocity properties of the MT mylonite are influenced mainly by amphibole CPOs, whereas the effect of plagioclase CPOs on P‐wave velocity anisotropy becomes very small with a decrease in the intensity of plagioclase CPOs. As a result, the gabbroic mylonites tend to have weak P‐wave velocity anisotropy in seismic velocity, although their constituent minerals show distinct CPOs. Such weakness in the whole‐rock P‐wave velocity anisotropy could result from the destructive contributions of the different mineral CPOs with respect to the structural framework (foliation and lineation). These results show that amphibole has a high potential for P‐wave velocity anisotropy by aligning both crystallographically and dimensionally during deformation in the hydrous oceanic crust. The results also suggest that the effect of a hydrous phase on P‐wave velocity anisotropy within the detachment shear zone in a slow‐spreading oceanic crust varies depending on the degree of deformation and on the timing of hydrothermal activity.  相似文献   

15.
High‐resolution three‐dimensional images are used in digital rock physics to numerically compute rock physical properties such as permeability and elastic moduli. These images are not widely available, and their preparation is both expensive and time consuming. All of these issues highlight the importance of alternative digital rock physics methods that are based on two‐dimensional images and use different approaches to compute effective properties of three‐dimensional samples. In addition, the scale of study in both standard and alternative digital rock physics is very small, which applications of its results are questionable at wells or reservoir scale. The aim of this study is to use two‐dimensional images and alternative digital rock physics techniques for computing seismic wave velocity and permeability, which are compared with well and laboratory data. For this purpose, data from one well in a reservoir located in the southwestern part of Iran are used. First, two clean (carbonate) and two cemented (limy sandstone) samples were collected from well cores at different depths. Then, two‐dimensional images by scanning electron microscope and conventional microscope were captured. In the next step, two alternative digital rock physics methods, namely, empirical relations and conditional reconstruction, have been employed to compute P‐wave velocity and permeability of a three‐dimensional medium. Results showed that, in clean (mono‐mineral) samples, velocity values were reasonably close to well data. However, permeability values are underestimated compared with laboratory data because laboratory data were obtained at ambient pressure, whereas alternative digital rock physics results are more representative of reservoir pressure conditions. Nevertheless, permeability–porosity trends are valid for both samples. In the case of cemented samples, a two‐scale procedure, along with a method for two‐scale computation and grain‐cement segmentation, is presented and developed. Results showed that P‐wave velocity is overestimated probably due to random sampling in this method. However, velocity–porosity trends are in agreement with well data. Moreover, permeability results obtained for cemented samples were also similar to those obtained for the clean samples.  相似文献   

16.
In 2005, a multicomponent ocean bottom node data set was collected by BP and BHP Billiton in the Atlantis field in the Gulf of Mexico. Our results are based on data from a few sparse nodes with millions of shots that were analysed as common receiver azimuthal gathers. A first‐order look at P‐wave arrivals on a common receiver gather at a constant offset reveals variation of P‐wave arrival time as a function of azimuth indicating the presence of azimuthal anisotropy at the top few layers. This prompted us to investigate shear arrivals on the horizontal component data. After preliminary processing, including a static correction, the data were optimally rotated to radial (R) and transverse (T) components. The R component shows azimuthal variation of traveltime indicating variation of velocity with azimuth; the corresponding T component shows azimuthal variation of amplitude and phase (polarity reversal). The observed shear‐wave (S‐wave) splitting, previously observed azimuthal P‐wave velocity variation and azimuthal P‐wave amplitude variation, all indicate the occurrence of anisotropy in the shallow (just below the seafloor) subsea sediment in the area. From the radial component azimuthal gather, we analysed the PP‐ and PS‐wave amplitude variation for the first few layers and determined corresponding anisotropy parameter and VP/VS values. Since fracture at this depth is not likely to occur, we attribute the observed azimuthal anisotropy to the presence of microcracks and grain boundary orientation due to stress. The evidence of anisotropy is ubiquitous in this data set and thus it argues strongly in favour of considering anisotropy in depth imaging for obtaining realistic subsurface images, at the least.  相似文献   

17.
The study of seismic anisotropy in exploration seismology is gaining interest as it provides valuable information about reservoir properties and stress directions. In this study we estimate anisotropy in a petroleum field in Oman using observations of shear‐wave splitting from microseismic data. The data set was recorded by arrays of borehole geophones deployed in five wells. We analyse nearly 3400 microearthquakes, yielding around 8500 shear‐wave splitting measurements. Stringent quality control reduces the number of reliable measurements to 325. Shear‐wave splitting modelling in a range of rock models is then used to guide the interpretation. The difference between the fast and slow shear‐wave velocities along the raypath in the field ranges between 0–10% and it is controlled both by lithology and proximity to the NE‐SW trending graben fault system that cuts the field formations. The anisotropy is interpreted in terms of aligned fractures or cracks superimposed on an intrinsic vertical transversely isotropic (VTI) rock fabric. The highest magnitudes of anisotropy are within the highly fractured uppermost unit of the Natih carbonate reservoir. Anisotropy decreases with depth, with the lowest magnitudes found in the deep part of the Natih carbonate formation. Moderate amounts of anisotropy are found in the shale cap rock. Anisotropy also varies laterally with the highest anisotropy occurring either side of the south‐eastern graben fault. The predominant fracture strikes, inferred from the fast shear‐wave polarizations, are consistent with the trends of the main faults (NE‐SW and NW‐SE). The majority of observations indicate subvertical fracture dip (>70° ). Cumulatively, these observations show how studies of shear‐wave splitting using microseismic data can be used to characterize fractures, important information for the exploitation of many reservoirs.  相似文献   

18.
孔隙、裂隙介质弹性波理论的实验研究   总被引:1,自引:1,他引:0       下载免费PDF全文
近年来发展起来的“孔隙、裂隙介质弹性波理论”提高了人们对实际岩石声学性质的模拟和预测的能力.作为对这一理论的实验验证和重要应用,我们将它用来模拟和解释岩石超声实验中测得的干燥和饱和岩石弹性波速度随压力的变化曲线.理论模拟的重要参数,如岩石的裂隙密度等是从实验数据反演得到的.结果表明:无论是孔隙度较高的砂岩,还是孔隙度很小的致密岩石,如花岗岩,该理论都能很好地描述岩石在干燥和饱和状态下纵、横波速度随压力的变化.造成波速变化的原因是岩石中裂隙在压力作用下的闭合和裂隙密度的减少.本文的结果还指出了将岩石裂隙密度作为描述岩石的重要物性参数,并给出了从实验室超声测量中确定这一参数的方法.  相似文献   

19.
A field investigation of fracture compliance   总被引:2,自引:0,他引:2  
A field measurement of fracture compliance is described. The aim was to determine how compliance scales with fracture size and, specifically, how laboratory measurements of fracture compliance compared with field estimates from sonic and seismic data. A test site was constructed, consisting of three 40 m vertical boreholes drilled in the floor of a Carboniferous Limestone quarry. Detailed knowledge of the rocks in the test area was obtained from core analysis, wireline logging and local area fracture mapping. Seismic cross‐hole surveys were performed using a sparker source with a dominant frequency of 2000 Hz and hydrophone receivers. The rocks had a compressional‐wave velocity anisotropy of 10%, which was attributed to the presence of predominantly horizontal, partially open fractures. Estimates of normal fracture compliance within a range from 2.5 × 10?13 m/Pa to 3.5 × 10?12 m/Pa were obtained from both the cross‐hole data and the sonic‐log data. This is an order of magnitude greater than values obtained from laboratory experiments which are reported elsewhere.  相似文献   

20.
根据加卸载响应比理论,选用纵波速度作为响应参数,在实验室内,在模拟构造应力和引潮力的共同作用下,使岩石失稳破裂.在整个过程中测量纵波在岩石中的走时或速度,发现加卸载响应比Y的值,在系统稳定时近于1;而在失稳前,逐渐增加,最大可达到10.实验结果和理论预测曲线非常相近.认为可用纵波速度的响应比来表示岩石系统的稳定程度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号