首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
This contribution discusses the development of the Palaeoproterozoic Buganda-Toro belt in the Rwenzori Mountains and its influence on the western part of the East African Rift System in Uganda. The Buganda-Toro belt is composed of several thick-skinned nappes consisting of Archaean Gneisses and Palaeoproterozoic cover units that are thrusted northwards. The high Rwenzori Mountains are located in the frontal unit of this belt with retrograde greenschist facies gneisses towards the north, which are unconformably overlain by metasediments and amphibolites. Towards the south, the metasediments are overthrust by the next migmatitic gneiss unit that belongs to a crustal-scale nappe. The southwards dipping metasedimentary and volcanic sequence in the high Rwenzori Mountains shows an inverse metamorphic grade with greenschist facies conditions in the north and amphibolite facies conditions in the south. Early D1 deformation structures are overgrown by cordierite, which in turn grows into D2 deformation, representing the major northwards directed thrusting event. We argue that the inverse metamorphic gradient develops because higher grade rocks are exhumed in the footwall of a crustal-scale nappe, whereas the exhumation decreases towards the north away from the nappe leading to a decrease in metamorphic grade. The D2 deformation event is followed by a D3 E-W compression, a D4 with the development of steep shear zones with a NNE-SSW and SSE-NNW trend including the large Nyamwamba shear followed by a local D5 retrograde event and D6 brittle reverse faulting. The Palaeoproterozoic Buganda-Toro belt is relatively stiff and crosses the NNE-SSW running rift system exactly at the node where the highest peaks of the Rwenzori Mountains are situated and where the Lake George rift terminates towards the north. Orientation of brittle and ductile fabrics show some similarities indicating that the cross-cutting Buganda-Toro belt influenced rift propagation and brittle fault development within the Rwenzori Mountains and that this stiff belt may form part of the reason why the Rwenzori Mountains are relatively high within the rift.  相似文献   

2.
With heights of 4–5 km, the topography of Rwenzori Mountains, a large horst of old crustal rocks located inside a young passive rift system, poses the question “Why are the Rwenzori Mountains so high?”. The Cenozoic Western Rift branch of the East African Rift System is situated within the Late Proterozoic mobile belts between the Archean Tanzania Craton and Congo Craton. The special geological setting of the massif at a rift node encircled by the ends of the northern Western Rift segments of Lake Albert and Lake Edward suggests that the mechanism responsible for the high elevation of the Rwenzoris is related to the rifting process. Our hypothesis is based on the propagation of the rift tips, surrounding the stiff old lithosphere at Rwenzori region, thereby triggering the delamination of the cold and dense mantle lithosphere (ML) root by reducing viscosity and strength of the undermost lower crust. As a result, this unloading induces fast isostatic pop-up of the less dense crustal Rwenzori block. We term this RID—“rift induced delamination of Mantle Lithosphere”. The physical consistency of the RID hypothesis is tested numerically. Viscous flow of 2D models is approximated by a Finite Difference Method with markers in an Eulerian formulation. The equations of conservation of mass, momentum and energy are solved for a multi-component system. Based on laboratory data of appropriate rock samples, a temperature-, pressure- and stress-dependent rheology is assumed. Assuming a simple starting model with a locally heated ML, the ML block between the weakened zones becomes unstable and sinks into the asthenosphere, while the overlying continental crust rises up. Thus, RID seems to be a viable mechanism to explain geodynamically the extreme uplift. Important conditions are a thermal anomaly within the ML, a ductile lower crust with visco-plastic rheology allowing significant strength reduction and lateral density variations. The special situation of a two-sided rifting or offset rift segments to decouple the ML laterally from the surrounding continental lithosphere seems to be most decisive. Further support for the RID mechanism may come from additional crustal thickness and an extensive stress field. Some parameters, such as the excess temperature and yield stress, are very sensitive, small changes determine whether delamination takes place or not.  相似文献   

3.
New structural and seismologic evidence from the Rwenzori Mountains, Uganda, indicate that continental rifts can capture and rotate fragments of the lithosphere while rift segments interact, in a manner analogous to the interaction of small-scale fractures. The Rwenzori Mountains are a basement block within the western branch of the East African Rift System that is located at the intersection of two rift segments and is apparently rotating clockwise. Structural data and new seismological data from earthquake epicentres indicate a large-scale, 20-km-long transsection fault is currently detaching the Rwenzori micro-plate on its northern margin from the larger Victoria plate (Tanzania craton), whereas it is already fully detached in the south. We propose that this fault develops due to the rotation of the Rwenzori block. In a numerical model we show how rift segment interaction, block rotation and the development of transsection faults (faults that cut through the Rwenzori Mountains) evolve through time. The model suggests that uplift of the Rwenzori block can only take place after the rift has opened significantly, and rotation leads to the development of transsection faults that connect two rift segments, so that the block is captured within the rifts. Our numerical model suggests that the majority of the uplift has taken place within the last 8 Ma.  相似文献   

4.
The Rwenzori Mountains in western Uganda form an active rift-transfer zone in the western branch of the East African Rift System. Here we quantify local stress fields in high resolution from field observations of fault structures to shed light on the complex, polyphase tectonics expected in transfer zones. We apply the multiple inverse method, which is optimized for heterogeneous fault-slip data, to the northern and central Rwenzori Mountains. Observations from the northern Rwenzori Mountains show larger heterogeneity than data from the central Rwenzori, including unexpected compressional features; thus the local stress field indicates polyphase transpressional tectonics. We suggest that transpression here is linked to rotational and translational movements of the neighboring Victoria block relative to the Rwenzori block that includes strong overprinting relationships. Stress inversions of data from the central Rwenzori Mountains indicate two distinct local stress fields. These results suggest that the Rwenzori block consists of smaller blocks.  相似文献   

5.
The Rwenzori mountains in western Uganda, with a maximum elevation of more than 5,000 m, are located within the Albertine rift valley. We have deployed a temporary seismic network on the Ugandan side of the mountain range to study the seismic velocity structure of the crust and upper mantle beneath this section of the rift. We present results from a receiver-function study revealing a simple crustal structure along the eastern rift flank with a more or less uniform crustal thickness of about 30 km. The complexity of inner-crustal structures increases drastically within the Rwenzori block. We apply different inversion techniques to obtain reliable results for the thickness of the crust. The observations expose a significantly thinner crust beneath the Rwenzori range with thickness values ranging from about 20–28 km beneath northern and central parts of the mountains. Our study therefore indicates the absence of a crustal root beneath the Rwenzori block. Beneath the Lake Edward and Lake George basins we detect the top of a layer of significantly reduced S-wave velocity at 15 km depth. This low-velocity layer may be attributed to the presence of partial melt beneath a region of recent volcanic activity.  相似文献   

6.
This study aims at showing how far pre-existing crustal weaknesses left behind by Proterozoic mobile belts, that pass around cratonic Archean shields (Tanzania Craton to the southeast and Congo Craton to the northwest), control the geometry of the Albertine Rift. Focus is laid on the development of the Lake Albert and Lake Edward/George sub-segments and between them the greatly uplifted Rwenzori Mountains, a horst block located within the rift and whose highest peak rises to >5000 m above mean sea level. In particular we study how the southward propagating Lake Albert sub-segment to the north interacts with the northward propagating Lake Edward/George sub-segment south of it, and how this interaction produces the structures and geometry observed in this section of the western branch of the East African Rift, especially within and around the Rwenzori horst. We simulate behaviour of the upper crust by conducting sandbox analogue experiments in which pre-cut rubber strips of varying overstep/overlap connected to a basal sheet and oriented oblique and/or orthogonal to the extension vector, are placed below the sand-pack. The points of connection present velocity discontinuities to localise deformation, while the rubber strips represent ductile domain affected by older mobile belts. From fault geometry of developing rift segments in plan view and section cuts, we study kinematics resulting from a given set of boundary conditions, and results are compared with the natural scenario. Three different basal model-configurations are used to simulate two parallel rifts that propagate towards each other and interact. Wider overstep (model SbR3) produces an oblique transfer zone with deep grabens (max. 7.0 km) in the adjoining segments. Smaller overlap (model SbR4) ends in offset rift segments without oblique transfer faults to join the two, and produces moderately deep grabens (max. 4.6 km). When overlap doubles the overstep (model SbR5), rifts propagate sub-orthogonal to the extension direction and form shallow valleys (max. 2.9 km). Relative ratios of overlap/overstep between rift segments dictate the kind of transition zone that develops and whether or not a block (like the Rwenzoris) is captured and rotates; hence determining the end-member geometry. Rotation direction is controlled by pre-existing fabrics. Fault orientation, fault kinematics, and block rotation (once in play) reinforce each other; and depending on the local kinematics, different parts of a captured block may rotate with variable velocities but in the same general direction. Mechanical strength anisotropy of pre-structured crust only initially centres fault nucleation and propagation parallel to the grain of weakness of the basement, but at later stages of a protracted period of crustal extension, such boundaries are locally defied.  相似文献   

7.
To determine the long-term landscape evolution of the Albertine Rift in East Africa, low-temperature thermochronology was applied and the cooling history constrained using thermal history modelling. Acquired results reveal (1) “old” cooling ages, with predominantly Devonian to Carboniferous apatite fission-track ages, Ordovician to Silurian zircon (U–Th)/He ages and Jurassic to Cretaceous apatite (U–Th–Sm)/He ages; (2) protracted cooling histories of the western rift shoulder with major phases of exhumation in mid-Palaeozoic and Palaeogene to Neogene times; (3) low Palaeozoic and Neogene erosion rates. This indicates a long residence time of the analysed samples in the uppermost crust, with the current landscape surface at a near-surface position for hundreds of million years. Apatite He cooling ages and thermal history models indicate moderate reheating in Jurassic to Cretaceous times. Together with the cooling age distribution, a possible Albertine high with a distinct relief can be inferred that might have been a source area for the Congo Basin.  相似文献   

8.
Western Uganda is a key region for understanding the development of the western branch of the East African rift system and its interaction with pre-existing cratonic lithosphere. It is also the site of the topographically anomalous Rwenzori Mountains, which attain altitudes of >5000 m within the rift. New structural and geochronological data indicate that western Uganda south and east of the Rwenzori Mountains consists of a WSW to ENE trending fold and thrust belt emplaced by thick-skinned tectonics that thrust several slices of Proterozoic and Archaean units onto the craton from the south. The presence of Archaean units within the thrust stack is supported by new Laser-ICP-MS U–Pb age determinations (2637–2584 Ma) on zircons from the Rwenzori foothills. Repetition of the Paleoproterozoic units is confirmed by mapping the internal stratigraphy where a basal quartzite can be used as marker layer, and discrete thrust units show distinct metamorphic grades. The thrust belt is partially unconformably covered by a Neoproterozoic nappe correlated with the Kibaran orogenic belt. Even though conglomerates mark the bottom of the Kibaran unit, intensive brittle fault zones and pseudotachylites disprove an autochthonous position. The composition of volcanics in the Toro-Ankole field of western Uganda can be explained by the persistence of a cratonic lithosphere root beneath the northwardly thrusted Archaean and Palaeoproterozoic rocks of westernmost Uganda. Volcanic geochemistry indicates thinning of the lithosphere from >140 km beneath Toro-Ankole to ca. 80 km beneath the Virunga volcanic field about 150 km to the south. We conclude that the western branch of the East African rift system was initiated in an area of thinner lithosphere with Palaeoproterozoic cover in the Virunga area and has propagated northwards where it now abuts against thick cratonic lithosphere covered by a thrust belt consisting of gneisses, metasediments and metavolcanics of Neoarchaean to Proterozoic age.  相似文献   

9.
The Neogene was a period of long-term global cooling and increasing climatic variability. Variations in African-Asian monsoon intensity over the last 7 Ma have been deduced from patterns of eolian dust export into the Indian Ocean and Mediterranean Sea as well as from lake level records in the East African Rift System (EARS). However, lake systems not only depend on rainfall patterns, but also on the size and physiography of river catchment areas. This study is based on stable isotope proxy data (18O/16O, 13C/12C) from tooth enamel of hippopotamids (Mammalia) and aims in unravelling long-term climate and watershed dynamics that control the evolution of palaeolake systems in the western branch of the EARS (Lake Albert, Uganda) during the Late Neogene (7.5 Ma to recent). Having no dietary preferences with respect to wooded (C3) versus grassland (C4) vegetation, these territorial, water-dependant mammals are particularly useful for palaeoclimate analyses. As inhabitants of lakes and rivers, hippopotamid tooth enamel isotope data document mesoclimates of topographic depressions, such as the rift valleys and, therefore, changes in relative valley depth instead of exclusively global climate changes. Consequently, we ascribe a synchronous maximum in 18O/16O and 13C/12C composition of hippopotamid enamel centred around 1.5–2.5 Ma to maximum aridity and/or maximum hydrological isolation of the rift floor from rift-external river catchment areas in response to the combined effects of rift shoulder uplift and subsidence of the rift valley floor. Structural rearrangements by ~2.5 Ma within the northern segment of the Albertine Rift are well constrained by reversals in river flow, cannibalisation of catchments, biogeographic turnover and uplift of the Rwenzori horst. However, a growing rain shadow is not obvious in 18O/16O signatures of the hippopotamid teeth of the Albertine Rift. According to our interpretation, this is the result of the overriding effect of evaporation on 18O/16O responding to aridification of the basin floor by a valley air circulation system through relative deepening of the valley. On the other hand, a synchronous arid pulse is not so clearly recorded in palaeosol data and mammalian fauna of the eastern branch of the EARS. This discrepancy indicates that rift mesoclimates may represent an underestimated aspect in previous palaeoclimate reconstructions from rift valley data and represent a clear limitation to attempts at global climate reconstructions. The results of this study also suggest that using 18O/16O data as a proxy to rain shadow evolution must take into account relative basin subsidence to properly document mountain range uplift.  相似文献   

10.
This study presents an almost complete Middle Miocene to Pleistocene sequence of synrift sediments in the western branch of the East African Rift. The studied succession is exposed in several patches on an eastward tilted block between the northern tip of the Rwenzori Block and the eastern shoulder of the Albert Rift. In this position, it reaches a maximum thickness of 600 m of which 350 m have been logged systematically by analysing lithofacies and sediment architecture. Stratigraphic subdivision of the succession relies on published biostratigraphic data of endemic mollusc associations and their correlation across East Africa. The synrift sediments encountered are siliciclastics ranging from clay to coarse gravel with gypsum and ferrugineous interlayers or impregnations. Lithofacies and architectural analysis indicate alluvial plain, delta plain, nearshore, delta front, or lacustrine depositional environments. Based on the vertical stacking pattern, prograding and retrograding trends of the depositional environments, and climatic indicators (e.g. conservation of feldspar, gypsum, and/or iron hydroxide precipitation), four evolutionary phases can be distinguished: (i) a first phase between ca. 14.5 and 10.0 Ma is characterised by bedload-dominated fluvial environment with massive sandy to gravelly bedforms, feldspar-rich sands, rare iron impregnations and relatively low accommodation space. This phase is interpreted as pre- and early synrift sedimentation under a semiarid climate. (ii) From ca. 10.0 to 4.5 Ma predominantly fine-grained siliciclastics were deposited in a distal fluvial plain to lacustrine setting characterised by limited accommodation space. Fluctuation of thin beds, dominance of clay and frequent iron impregnations point to a more humid climate with seasonality and weak tectonic activity. (iii) During the third phase between 4.5 and 2.0 Ma delta plain and nearshore deposits with frequent ferrugineous impregnations and rich mollusc associations occurred, indicating a humid period with lake-level highstands and accelerated subsidence. (iv) During the final sedimentary interval between 2.0 and 1.5 Ma gravel units reoccurred with less iron- but more carbonate and gypsum impregnations, and arkosic sandstones. This phase recorded a general aridisation trend most probably caused by the upcoming rain barrier of the Rwenzori Mountains together with accelerated rift-flank uplift and strong subsidence of the rift floor. The results of this study are of particular importance for delineating key controls on sedimentation in the Albert Rift.  相似文献   

11.
Compilation of new and existing gravity data were undertaken to assess the nature of the crust beneath the East African Rift System. Using 3D gravity modeling code crustal model of gravity profiles across two sectors of the rift were computed. The results are discussed in light of the structure of the rift system.The results of the 3D modeling of gravity profiles across the two rift zones revealed northward thinning of the crust. The maximum crustal attenuation occurs beneath the Afar depression, indicating the Afar rift undergoes an intense fragmentation of the crust resulting from faulting and magmatic activity. However, our computed crustal thickness below the Afar depression falls within an upper bound compared to elsewhere below tectonically active rift zones. This can be explained in terms of crustal accretion resulting from an impact of the Afar mantle plume since 30 Ma ago.The residual gravity obtained using high-cut filtering techniques reveals significant density contrast between the northern and southern sectors of the rift. The northern part of the rift is characterized by regular patterns of positive gravity anomalies, which can be interpreted in terms of a zone of crustal thinning through which relatively dense materials have intruded the overlying crust. In contrast, south of the Main Ethiopian Rift, the anomalies are characterized by random patterns and low amplitudes. The along-rift-axis variation in gravity anomalies implies that the style of crustal deformation changed progressively, beginning with regionally distributed crustal deformation, such as the one we observe within the more juvenile and wider southern segment of the rift, to localized deformation within the active and narrow rift zones of the northern sector of the Ethiopian Rift. We suggest that the key parameters controlling along-rift-axis variation in gravity anomalies are the rate of crustal extension, faulting and magmatic activities.  相似文献   

12.
With its exceptionally steep topography, wet climate, and active faulting, landslides can be expected to occur in the Rwenzori Mountains. Whether or not this region is prone to landsliding and more generally whether global landslide inventories and hazard assessments are accurate in data-poor regions such as the East African highlands are thus far unclear. In order to address these questions, a first landslide inventory based on archive information is built for the Rwenzori Mountains. In total, 48 landslide and flash flood events, or combinations of these, are found. They caused 56 fatalities and considerable damage to road infrastructure, buildings, and cropland, and rendered over 14,000 persons homeless. These numbers indicate that the Rwenzori Mountains are landslide-prone and that the impact of these events is significant. Although not based on field investigations but on archive data from media reports and laymen accounts, our approach provides a useful complement to global inventories overlooking this region and increases our understanding of the phenomenon in the Rwenzori Mountains. Considering the severe impacts of landslides, the population growth and related anthropogenic interventions, and the likelihood of more intense rainfall conditions, there is an urgent need to invest in research on disaster risk reduction strategies in this region and other similar highland areas of Africa.  相似文献   

13.
《Quaternary Science Reviews》2007,26(13-14):1771-1789
The Neogene geological history of East Africa is characterised by the doming and extension in the course of development of the East African Rift System with its eastern and western branches. In the centre of the Western Rift Rise Rwanda is situated on Proterozoic basement rocks exposed in the strongly uplifted eastern rift shoulder of the Kivu–Nile Rift segment, where clastic sedimentation is largely restricted to the rift axis itself. A small, volcanically and tectonically controlled depository in northwestern Rwanda preserved the only Neogene sediments known from the extremely uplifted rift shoulder. Those (?)Pliocene to Pleistocene/Holocene fluvio-lacustrine muds and sands of the Palaeo-Nyabarongo River record the influence of Virunga volcanism on the major drainage reversal that affected East Africa in the Plio-/Pleistocene, when the originally rift-parallel upper Nile drainage system became diverted to the East in order to enter the Nile system via Lake Victoria. Sedimentary facies development, heavy mineral distributions and palaeobiological controls, including hominid artefacts, signal a short time interval of <300–350 ka to complete this major event for the sediment supply system of the Kivu–Nile Rift segment.  相似文献   

14.
The Rwenzori Mountains (Mtns) in west Uganda are the highest rift mountains on Earth and rise to more than 5,000 m. We apply low-temperature thermochronology (apatite fission-track (AFT) and apatite (U–Th–Sm)/He (AHe) analysis) for tracking the cooling history of the Rwenzori Mtns. Samples from the central and northern Rwenzoris reveal AFT ages between 195.0 (±8.4) Ma and 85.3 (±5.3) Ma, and AHe ages between 210.0 (±6.0) Ma to 24.9 (±0.5) Ma. Modelled time–temperature paths reflect a protracted cooling history with accelerated cooling in Permo-Triassic and Jurassic times, followed by a long period of constant and slow cooling, than succeeded by a renewed accelerated cooling in the Neogene. During the last 10 Ma, differentiated erosion and surface uplift affected the Rwenzori Mtns, with more pronounced uplift along the western flank. The final rock uplift of the Rwenzori Mtns that partly led to the formation of the recent topography must have been fast and in the near past (Pliocene to Pleistocene). Erosion could not compensate for the latest rock uplift, resulting in Oligocene to Miocene AHe ages.  相似文献   

15.
In this contribution, we present a new model of passive rifting and related rift-flank uplift. The numerical model is based on a lattice spring network coupled with a viscous particle model so that we can simulate visco-elasto-plastic behaviour with dynamic fault development. In our model, we show that rift-flank uplift can be achieved best when extension in the crust is localized and the lower crust is strong so that major rift faults transect the whole crust. Uplift of rift flanks follows a smooth function whereas down-throw in the rift basin takes place in steps. The geometry of the developing faults has also an influence on the uplift; in this case, displacement along major rift faults produces higher flanks than distributed displacement on many faults. Our model also shows that the relative elastic thickness of the crust has only a minor influence on the uplift since fault depth and elastic thickness are not independent. In addition, we show with a second set of simulations and analytically that a strain misfit between the upper and lower boundaries of a stretched crust, which is created by the horizontal extension, leads to an active uplift driven by elastic forces. We compare the numerical simulations, the analytical solution and real surface data from the Albertine rift in the East African Rift System and show that our new model can reproduce realistic features. Our two-layer beam model with strain misfit can also explain why a thick crust in the simulations can have an even higher rift flank than a thin crust even though the thin crust topography has a higher curvature. We discuss the implications of our simulations for real rift systems and for the current theory of rift-flank uplift.  相似文献   

16.
东非裂谷Tanganyika地堑石油地质特征和勘探潜力分析   总被引:2,自引:2,他引:0       下载免费PDF全文
随着东非裂谷乌干达区块的勘探获得重大突破,与之石油地质条件相似的Tanganyika地堑的勘探潜力受到了人们的重视。Tanganyika地堑地处东非,属于东非裂谷西支的中段,是典型陆内裂谷盆地,主要沉积中新世以来的地层,现仍大部分被湖水覆盖,湖盆水体较深。盆地整体分为2个次盆,呈三隆夹两凹的构造格局。盆地目前勘探程度较低,根据现有资料推测,盆地地层埋深较大,深洼区中新统地层发育成熟烃源岩,具有较大的生烃潜力和生烃规模; 陆内盆地物源相对充足,储盖组合条件较好; 应力复杂,能够形成大量多种类型构造及构造-地层圈闭; 各种成藏条件匹配关系较好,有利于油气聚集成藏。综合分析认为,盆地具有较大勘探潜力,其中盆地转换带是最有利的油气勘探区。  相似文献   

17.
Shear-wave splitting measurements from local and teleseismic earthquakes are used to investigate the seismic anisotropy in the upper mantle beneath the Rwenzori region of the East African Rift system. At most stations, shear-wave splitting parameters obtained from individual earthquakes exhibit only minor variations with backazimuth. We therefore employ a joint inversion of SKS waveforms to derive hypothetical one-layer parameters. The corresponding fast polarizations are generally rift parallel and the average delay time is about 1 s. Shear phases from local events within the crust are characterized by an average delay time of 0.04 s. Delay times from local mantle earthquakes are in the range of 0.2 s. This observation suggests that the dominant source region for seismic anisotropy beneath the rift is located within the mantle. We use finite-frequency waveform modeling to test different models of anisotropy within the lithosphere/asthenosphere system of the rift. The results show that the rift-parallel fast polarizations are consistent with horizontal transverse isotropy (HTI anisotropy) caused by rift-parallel magmatic intrusions or lenses located within the lithospheric mantle—as it would be expected during the early stages of continental rifting. Furthermore, the short-scale spatial variations in the fast polarizations observed in the southern part of the study area can be explained by effects due to sedimentary basins of low isotropic velocity in combination with a shift in the orientation of anisotropic fabrics in the upper mantle. A uniform anisotropic layer in relation to large-scale asthenospheric mantle flow is less consistent with the observed splitting parameters.  相似文献   

18.
东非裂谷系一直是世界油气勘探重点关注区,尤其在西支Albertine盆地获得重大油气发现,而与之具有相似成因演化的西支中南段其它盆地,勘探潜力一直不明朗并急待挖掘。中-古生代Karoo地层及分布在该地区广泛分布,特别是作为烃源和主要的勘探层系在东非海岸陆缘盆地被广泛证实后,Karoo的勘探潜力备受关注。然而,Karoo本身经过漫长的演变,涵盖的地质学内容包罗万象,混淆不清,十分不利于该地区油气勘探潜力的研究和判断。本文通过系统查阅国外文献并结合东非裂谷系的研究工作,初步查明Karoo的成因、演变及分布,并系统评价Karoo地层在西支中南段裂谷盆地及周边的分布,探讨其勘探意义。但以Karoo作为东非地区未来勘探领域仍然面临着一系列不确定性的问题和风险,值得思索和总结。  相似文献   

19.
Using numerical thermo‐mechanical experiments we analyse the role of an active mantle plume and pre‐existing lithospheric thickness differences in the structural development of the central and southern East African Rift system. The plume‐lithosphere interaction model setup captures the essential features of the studied area: two cratonic bodies embedded into surrounding lithosphere of normal thickness. The results of the numerical experiments suggest that localization of rift branches in the crust is mainly defined by the initial position of the mantle plume relative to the cratons. We demonstrate that development of the Eastern branch, the Western branch and the Malawi rift can be the result of non‐uniform splitting of the Kenyan plume, which has been rising underneath the southern part of the Tanzanian craton. Major features associated with Cenozoic rifting can thus be reproduced in a relatively simple model of the interaction between a single mantle plume and pre‐stressed continental lithosphere with double cratonic roots.  相似文献   

20.
肯尼亚裂谷位于东非大裂谷东支中段,现代构造运动以及火山活动强烈,是当今地学研究的热点地区。裂谷区因其独特的地质构造背景、岩土体特性以及气象水文条件,使得地裂缝灾害较为发育。文章以肯尼亚裂谷地裂缝为研究对象,利用资料收集、野外调查、槽探、钻探和室内土工试验等研究手段,对研究区的地质环境背景、地裂缝平剖面结构特征进行研究。裂谷拉张和火山活动等内动力地质作用是该区域地裂缝形成的控制因素,浅表部松散易潜蚀的土体是地裂缝形成的物质基础,强降雨为地裂缝的形成提供了水力条件,“软硬软”的地层结构为水力侵蚀物质提供了有利的堆积场所。将肯尼亚裂谷区地裂缝的形成演化过程分为3个阶段:孕育阶段、扩展阶段和成灾阶段。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号