首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为研究植被环境中床面泥沙起动特性,以天然河道中的植被及沙床为原型,对刚性植被环境中床面形态变化及泥沙起动规律进行了试验研究,并采用单位床面空间平均流速表述植被环境中泥沙的起动流速。研究结果表明,淹没植被条件下动床床面泥沙运动可分为3个阶段,即静止、部分起动及全部起动阶段,定义第3个阶段为刚性植被环境中泥沙起动的标准;推导的淹没刚性植被环境中的泥沙起动流速半经验函数关系式可以表述植被环境中泥沙起动特性,其中植被因子Fv对泥沙起动的影响最明显;植被密度一定时,植株周围冲坑深与空间平均流速成线性关系。研究认为采用植被环境中单位床面空间平均流速表述泥沙起动特性的方法是可行的。  相似文献   

2.
ABSTRACT Laboratory observations regarding the limit conditions for particle entrainment into suspension are presented. A high‐speed video system was used to investigate conditions for the entrainment of sediment particles and glass beads lying over a smooth boundary as well as over a rough bed. The results extend experimental conditions of previous studies towards finer particle sizes. A criterion for the limit of entrainment into suspension is proposed which is a function of the ratio between the flow shear velocity and particle settling velocity. Observations indicate that particles totally immersed within the viscous sublayer can be entrained into suspension by the flow, which contradicts the conclusions of previous researchers. A theoretical analysis of the entrainment process within the viscous sublayer, based on force–balance considerations, is used to show that this phenomenon is related to turbulent flow events of high instantaneous values of the Reynolds stress, in agreement with previous observations. In the case of experiments with a rough bed, a hiding effect was observed, which tends to preclude the entrainment of particles finer than the roughness elements. This implies that, as the ratio between particle and roughness element sizes becomes smaller, progressively higher bed shear stresses are required to entrain particles into suspension. On the other hand, an overexposure effect was also observed, which indicates that a particle moving on a smooth bed is more prone to be entrained than the same particle moving on a bed formed by identical particles.  相似文献   

3.
床面上泥沙颗粒的起动测量一直是泥沙运动规律研究的难题。为此,提出了一种基于B超成像技术的泥沙起动流速测量方法。在模型试验水槽中,该方法利用B超仪获取水下地形及其附近粒子的运行图像,通过图像处理技术分析统计床面附近运动粒子的成像光斑个数,并分析其与流速之间的关系。结果表明,B超成像光斑个数在泥沙起动过程中存在一个突变过程,且该突变过程与泥沙起动运动相对应,可用来判定泥沙起动及其对应的起动流速,并利用该流速下的床面地形变化验证了该方法的正确性。该方法具有无扰动无干扰、适合于清水和浑水、易于实现自动化测量的特点。  相似文献   

4.
In flowing water the incipient motion of sediment can be affected by the presence of microbial biofilm growth. This article documents a series of flume experiments using non‐uniform sediments, in which sediment entrainment was investigated for cases where the sediment was immersed in deionized water, so that no biofilm developed, and for cases where a bio‐sediment was cultivated by placing the sediment in a mixture of natural water and nutrient solution. Differences in entrainment and the velocity at incipient motion were measured over an eight week period, as biofilm grew. It was found that the incipient motion phenomena were quite distinct between the two kinds of sediment. Sediment with biofilm was more stable and, over time, incipient velocity increased to a threshold level, before declining. Biofilm development is clearly an important control on the stability of sediments, especially in eutrophic water bodies. Two incipient velocity formulas were derived for sliding and rolling conditions. Film water theory was utilized to describe the cohesive force between sediment particles and the adhesive force generated by biofilm was introduced into the formula derivation; the time variation characteristics of biofilm strength and the features of the substrate were also taken into consideration. Such analyses can help to predict sediment transport changes due to biofilm presence in nutrient‐rich water bodies.  相似文献   

5.
A fully coupled transient two‐dimensional model was employed to study fundamentals of flood‐induced surface erosion in a particle bed. The interaction of the liquid and solid phases is the key mechanism related to surface erosion. The solid phase was idealized at a particle scale by using the discrete element method. The fluid phase was modeled at a mesoscale level and solved using the lattice Boltzmann method. The fluid forces applied on the particles were calculated on the basis of the momentum the fluid exchanges with the particle. The proposed approach was used to model both single particles and particle beds subjected to Couette flow conditions. The behavior of both the single particle and the particle bed depended on particle diameter and surface shear fluid velocity. The conducted simulations show that the fluid flow profile penetrates the bed for a small distance. This penetration initiates sheet‐flow and surface erosion as the fluid interacts with particles. The effect of suppressing particle rotation on the fluid‐induced forces on the particle was also examined. Suppressing particle spinning may lead to underestimated erosion rate. Results of fluid and particle velocities were compared against experimental results and appeared to agree with the observed trends.Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
Wind‐blown sand movement, considered as a particle‐laden two‐phase flow, was simulated by a new numerical code developed in the present study. The discrete element method was employed to model the contact force between sand particles. Large eddy simulation was used to solve the turbulent atmospheric boundary layer. Motions of sand particles were traced in the Lagrangian frame. Within the near‐surface region of the atmospheric boundary layer, interparticle collisions will significantly alter the velocity of sand. The sand phase is quite dense in this region, and its feedback force on fluid motion cannot be ignored. By considering the interparticle collision and two‐phase interaction, four‐way coupling was achieved in the numerical code. Profiles of sand velocity from the simulations were in good agreement with experimental measurements. The mass flux shows an exponential decay and is comparable to reported experimental and field measurements. The turbulence intensities and shear stress of sand particles were estimated from particle root‐mean‐square velocities. Distributions of slip velocity and feedback force were analysed to reveal the interactions between sand particles and the continuous fluid phase.  相似文献   

7.
A new model, which couples fluid and particle dynamics, has been developed to study the motion of the sediment-water mixture during intense bedload transport, including the velocity profiles of both sediment and water, the roughness length of an upper plane bed and the thickness of moving sediment layers. Standard mixing length theory is used to model the motion of water above the boundary between the overlying water and the sediment-water mixture. The turbulent flow within the moving sediment layers is described by a shear stress model, in which the effective viscosity of the flowing water is proportional to the velocity difference between the fluid and the sediment. The particle dynamics method, in which the equations of motion of each of many particles are solved directly, is applied to model the movement of sediment particles. The particle-fluid interaction is expressed by a velocity-squared fluid drag force exerted on each sediment particle. Both computer simulation results and theoretical analysis have shown that the velocities of both sediment and fluid during intense sediment transport decrease exponentially with depth in the top layers of a fast-moving sediment—water mixture. The thickness of the moving sediment layers, obtained from the computer simulation results, is proportional to the shear stress, which agrees with previous experimental observations.  相似文献   

8.
ABSTRACT Temporally and spatially averaged models of bedload transport are inadequate to describe the highly variable nature of particle motion at low transport stages. The primary sources of this variability are the resisting forces to downstream motion resulting from the geometrical relation (pocket friction angle) of a bed grain to the grains that it rests upon, variability of the near‐bed turbulent velocity field and the local modification of this velocity field by upstream, protruding grains. A model of bedload transport is presented that captures these sources of variability by directly integrating the equations of motion of each particle of a simulated mixed grain‐size sediment bed. Experimental data from the velocity field downstream and below the tops of upstream, protruding grains are presented. From these data, an empirical relation for the velocity modification resulting from upstream grains is provided to the bedload model. The temporal variability of near‐bed turbulence is provided by a measured near‐bed time series of velocity over a gravel bed. The distribution of pocket friction angles results as a consequence of directly calculating the initiation and cessation of motion of each particle as a result of the combination of fluid forcing and interaction with other particles. Calculations of bedload flux in a uniform boundary and simulated pocket friction angles agree favourably with previous studies.  相似文献   

9.
The literature review on discrete element (DEM) model analysis of jigging reveals that an idealized fluid behavior is assumed and the damping of the fluid motion across the mineral bed is generally ignored. A microscopic model based on the principles of Computational Fluid Dynamics (CFD) is used to simulate the liquid flow and stratification of coal particles with a wide size range and density distribution in jigging. Fluid motion is calculated by directly solving the Navier–Stokes equations. Coal particles are moved in a Lagrangian frame through the action of forces imposed by the fluid and gravity. Particle effects on fluid motion are fed back at each time step through calculating the velocity disturbance caused by the particle. Particle–particle and particle–wall collisions are also considered. The snapshots of particle configurations for the simulation of stratification in oscillating flow show that the model predicts the macroscopic behavior, such as segregation and stratification, of particles reasonably well.  相似文献   

10.
天然河流床沙通常为非均匀沙,准确把握非均匀沙颗粒运动规律是模拟和预测天然河流河床演变的基础。开展了恒定均匀流条件下的非均匀沙推移质运动水槽试验,床沙粒径范围为0.10~20 mm。利用摄像机从顶部拍摄了粗化条件下的推移质颗粒运动,获取大量非均匀沙颗粒的运动轨迹,提取了颗粒运动速度、走停时间等基本运动参数,推移质运动颗粒粒径范围为0.74~8.19 mm。试验结果表明,非均匀沙床面聚集体或大颗粒使推移质颗粒运动方向发生改变,与均匀沙成果相比,非均匀沙推移质颗粒的纵向运动速度减小,横向运动速度增大;推移质颗粒纵向运动速度遵循指数分布,单次运动速度遵循Γ分布,横向运动速度及运动速度矢量角则遵循正态分布。  相似文献   

11.
单向流边界层泥沙起动规律   总被引:2,自引:0,他引:2       下载免费PDF全文
Shields曲线常用于表示泥沙起动的临界条件,基于边界层理论,对Shields曲线各个流区的线型进行了推证;考虑粘结力的作用,对Shields参数及Shields曲线进行了修正,并给出修正Shields曲线表达式;在此基础之上,从边界层角度重新阐述了Shields曲线。结果表明:Shields曲线在光滑紊流及层流区呈直线分布,在过渡区与阻力系数线型保持一致,在粗糙紊流区呈水平直线分布;修正后Shields曲线与原始Shields曲线在形式上保持一致,修正Shields曲线表达式与实测数据吻合较好,适用于粗、细颗粒泥沙起动条件的计算;Shields曲线事实上代表了Shields参数与沙粒周围绕流流态的关系,同一颗粒处于不同流区起动时,其起动切应力不同。  相似文献   

12.
The planform patterns of meandering submarine channels and subaerial fluvial bends show many similarities that have given rise to strong analogies concerning the fluid dynamics of these channel types. Existing models of helical motion in open‐channel bends depict flow that is characterized by surface flow towards the outer bank, and basal flow towards the inner bank. This paper investigates and compares, through an analytical model and physical experiment, flows within fluvial meanders, and submarine channel bends that contain density‐driven gravity currents. The results indicate that the sense of helical motion can be reversed in submarine bends that contain density currents when compared with fluvial bends, and that the orientation of the helical flow is dependent on the vertical distribution of downstream velocity. Specifically, the sense of helical motion is reversed in bends when the maximum downstream velocity is near the bed, resulting in near‐bed flow towards the outer bank. These findings suggest that the dynamics of sediment transport and deposition in curved channels with such velocity profiles will be fundamentally different to those currently assumed from sinuous open‐channels.  相似文献   

13.
ABSTRACT Particles projecting from the bed of an alluvial channel distort the fluid stream to produce a distinctive pressure field. This has considerable significance for both the entrapment and entrainment of other particles and is a primary cause of the widespread occurrence of pebble clusters and boulder shadows. Lift and drag forces are determined on clustered hemispherical particles of varying size. In the wake of an obstructing particle both forces are shown to vary directly with particle separation in a linear fashion. On the stoss side of the cluster, drag is uniform regardless of the separation of the component particles, but lift is shown to increase when particle separation is small, so affecting stability. This mutual interference of neighbouring clustered bed particles is a vital consideration of incipient motion and is shown by field evidence to cause a wide range in transport stage for particles of similar size and shape. On average, 46% of clustered particles are entrained by flood flow compared to 87% of particles in open plane-beds. The influence of clusters is a major determinant of sedimentary sorting.  相似文献   

14.
Reported here are results from new flume experiments examining deposition and entrainment of inert, silt‐sized particles (with spherical diameters in the range from 20 to 60 μm) to and from planar, impermeable and initially starved beds underlying channel flows. Bed surfaces comprised smooth or fixed sand‐size granular roughness and provided hydraulically smooth to transitionally rough boundaries. Results of these experiments were analysed with a simple model that describes the evolution of vertically averaged concentration of suspended sediment and accommodates the simultaneous delivery to and entrainment of grains from the bed. The rate of particle arrival to a bed diminishes linearly, and the rate of particle entrainment increases by the 5/2 power, as the value of the dimensionless Saffman parameter S = u*3/g’ν approaches a threshold value of order unity, where u is the conventional friction velocity of the turbulent channel flow, g’ is the acceleration due to gravity adjusted for the submerged buoyancy of individual particles and ν is the kinematic viscosity of the transporting fluid. This transport behaviour is consistent with the notion that non‐cohesive, silt‐sized particles can neither reach nor remain on an impermeable bed under flow conditions where mean lift imposed on stationary particles in the viscous sublayer equals or exceeds the submerged weight of individual particles. Within the size range of particles used in these experiments, particle size and the characteristic size of granular roughness, up to that of medium sand, did not affect rates of dimensionless arrival or entrainment to a significant degree. Instead, a new but consistent picture of fine‐particle transport is emerging. Silt‐sized material, at least, is subject to potentially significant interaction with the bed during intermittent suspension transport at intermediate flow speeds greater than the value required for initiation of transport (ca 20 cm sec?1) but less than the value (ca 50 cm sec?1) required by the Saffman criterion ensuring transport in fully passive suspension or, equivalently, ‘wash‐load’.  相似文献   

15.
The complexity of flow and wide variety of depositional processes operating in subaqueous density flows, combined with post‐depositional consolidation and soft‐sediment deformation, often make it difficult to interpret the characteristics of the original flow from the sedimentary record. This has led to considerable confusion of nomenclature in the literature. This paper attempts to clarify this situation by presenting a simple classification of sedimentary density flows, based on physical flow properties and grain‐support mechanisms, and briefly discusses the likely characteristics of the deposited sediments. Cohesive flows are commonly referred to as debris flows and mud flows and defined on the basis of sediment characteristics. The boundary between cohesive and non‐cohesive density flows (frictional flows) is poorly constrained, but dimensionless numbers may be of use to define flow thresholds. Frictional flows include a continuous series from sediment slides to turbidity currents. Subdivision of these flows is made on the basis of the dominant particle‐support mechanisms, which include matrix strength (in cohesive flows), buoyancy, pore pressure, grain‐to‐grain interaction (causing dispersive pressure), Reynolds stresses (turbulence) and bed support (particles moved on the stationary bed). The dominant particle‐support mechanism depends upon flow conditions, particle concentration, grain‐size distribution and particle type. In hyperconcentrated density flows, very high sediment concentrations (>25 volume%) make particle interactions of major importance. The difference between hyperconcentrated density flows and cohesive flows is that the former are friction dominated. With decreasing sediment concentration, vertical particle sorting can result from differential settling, and flows in which this can occur are termed concentrated density flows. The boundary between hyperconcentrated and concentrated density flows is defined by a change in particle behaviour, such that denser or larger grains are no longer fully supported by grain interaction, thus allowing coarse‐grain tail (or dense‐grain tail) normal grading. The concentration at which this change occurs depends on particle size, sorting, composition and relative density, so that a single threshold concentration cannot be defined. Concentrated density flows may be highly erosive and subsequently deposit complete or incomplete Lowe and Bouma sequences. Conversely, hydroplaning at the base of debris flows, and possibly also in some hyperconcentrated flows, may reduce the fluid drag, thus allowing high flow velocities while preventing large‐scale erosion. Flows with concentrations <9% by volume are true turbidity flows (sensu 4 ), in which fluid turbulence is the main particle‐support mechanism. Turbidity flows and concentrated density flows can be subdivided on the basis of flow duration into instantaneous surges, longer duration surge‐like flows and quasi‐steady currents. Flow duration is shown to control the nature of the resulting deposits. Surge‐like turbidity currents tend to produce classical Bouma sequences, whose nature at any one site depends on factors such as flow size, sediment type and proximity to source. In contrast, quasi‐steady turbidity currents, generated by hyperpycnal river effluent, can deposit coarsening‐up units capped by fining‐up units (because of waxing and waning conditions respectively) and may also include thick units of uniform character (resulting from prolonged periods of near‐steady conditions). Any flow type may progressively change character along the transport path, with transformation primarily resulting from reductions in sediment concentration through progressive entrainment of surrounding fluid and/or sediment deposition. The rate of fluid entrainment, and consequently flow transformation, is dependent on factors including slope gradient, lateral confinement, bed roughness, flow thickness and water depth. Flows with high and low sediment concentrations may co‐exist in one transport event because of downflow transformations, flow stratification or shear layer development of the mixing interface with the overlying water (mixing cloud formation). Deposits of an individual flow event at one site may therefore form from a succession of different flow types, and this introduces considerable complexity into classifying the flow event or component flow types from the deposits.  相似文献   

16.
粘性土及粘性土夹沙的起动规律研究   总被引:5,自引:0,他引:5       下载免费PDF全文
从水流脉动的机理出发,以粘性土的宾汉应力作参数,建立了粘性土的临界起动剪切力公式.根据一系列实验结果,分析了不同情况下粘性土夹沙的起动条件,归纳出统一的表达式.此外,还对上部水流为浑水的情况下,粘性土及粘性土夹沙的起动条件作了定性分析.  相似文献   

17.
床面附近泥沙运动的分析   总被引:6,自引:0,他引:6       下载免费PDF全文
基于水、沙两相的分相测量试验结果,分析了床面附近泥沙颗粒的脉动和力学特性,指出床面附近的泥沙运动有着特殊的力学机制:颗粒相具有较强的非湍流脉动,其产生的脉动应力对颗粒的运动起着重要作用。论述了沙粒在水流中从推移运动到扬起悬浮的物理过程,讨论了过去一些理论中存在的问题和不足,概括了泥沙颗粒在水流中从床面扬起的基本模式,运用两相流理论分析了沙粒在水流中扬起的动力学机理。根据颗粒运动的垂向动量平衡原理,对泥沙颗粒的垂向浓度分布规律作了新的分析解释。证实了除浓度梯度之外,颗粒相的垂向脉动强度梯度也是泥沙扩散的重要扩散势,进一步揭示了悬移质浓度垂线分布存在两种类型的内在机理。  相似文献   

18.
掌握三峡和葛洲坝枢纽间河段水沙及冲淤特性的变化规律,是河段诸多工程问题研究的前提。对大量水沙地形资料进行分析,探讨泥沙起动理论在冲刷预测中的应用。长江上游水库建设及两大枢纽相继运行,河段年径流量微减,月均流量发生"削峰填谷"重分配,年输沙量大幅降低,河段水沙关系显著改变;河段累积冲淤量受极端水文条件和枢纽调度的短期和长期控制,时间上具有明显阶段性特征,空间上则表现为部分子河段的活跃性;床沙组成随枢纽运行先后发生细化和粗化;基于沙玉清起动流速公式绘制了起动临界条件曲线图,通过推算断面最大可动床沙粒径或临界流量,可为河床冲刷可能性的预判提供参考。  相似文献   

19.
掌握三峡和葛洲坝枢纽间河段水沙及冲淤特性的变化规律,是河段诸多工程问题研究的前提。对大量水沙地形资料进行分析,探讨泥沙起动理论在冲刷预测中的应用。长江上游水库建设及两大枢纽相继运行,河段年径流量微减,月均流量发生"削峰填谷"重分配,年输沙量大幅降低,河段水沙关系显著改变;河段累积冲淤量受极端水文条件和枢纽调度的短期和长期控制,时间上具有明显阶段性特征,空间上则表现为部分子河段的活跃性;床沙组成随枢纽运行先后发生细化和粗化;基于沙玉清起动流速公式绘制了起动临界条件曲线图,通过推算断面最大可动床沙粒径或临界流量,可为河床冲刷可能性的预判提供参考。  相似文献   

20.
Mcewan  Jefcoate  & Willetts 《Sedimentology》1999,46(3):407-416
A grain-scale model of fluvial bed load transport is described, with particular emphasis on the equilibrium between the saltating grains and the near bed flow, and its role in determining transport rate. The model calculates, explicitly, the modification of the velocity profile by the moving grains, together with the consequential reduction in surface fluid shear stress. As the surface fluid shear stress is reduced by the moving grains, so the entrainment rate decreases and the model reaches a steady state. The results provide insight into two important questions at a macroscopic level. First, they show that, in the absence of large static roughness, the dynamic roughness caused by the moving grains may be a significant contributor to flow resistance. Secondly, the model indicates the manner in which transport may be limited by a combination of the transport capacity of the flow and the availability of sediment for entrainment. Only in the case of high sediment availability does the fluid shear stress acting at the surface approach the critical entrainment value, reproducing the behaviour suggested by Bagnold (1956 ) and Owen (1964 ). This suggests that prediction formulae based on this assumption only describe the bed load transport system under particular conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号