首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In marine controlled‐source electromagnetic (CSEM) surveys the subsurface is explored by emitting low‐frequency signals from an electric dipole source close to the sea‐bed. The main goal is often to detect and describe possible thin resistive layers beneath the sea‐bed. To gain insight into how CSEM signals propagate, it is informative to study a stratified model. The electromagnetic field is then given in terms of integrals over TE‐ and TM‐polarized plane‐wave constituents. An asymptotic evaluation of the field integrals for large propagation distances results in explicit spatial expressions for the field components and the derived expressions can be used to analyse how the CSEM signals propagate. There are two major signal pathways in a standard CSEM model. One of these pathways is via the thin resistive layer and the resulting response is accounted for by a pole in the reflection response for the TM mode. The signal is propagating nearly vertically down to the resistor from the source, then guided while attenuated along the reservoir, before propagating nearly vertically up to the receiver. The response is slightly altered by the sea‐bed interface and further modified in shallow water due to multiple reflections between the sea‐surface and sea‐bed at both the source and receiver sides. The other major signal pathway is via the resistive air half‐space, the so‐called airwave. The airwave is generated by the TE mode and interacts with the subsurface via vertically propagating signals reflected between the sea‐surface and subsurface at both the source and receiver sides.  相似文献   

2.
The interaction between the Alfvén wave and turbulent sheet (TS) with an anomalous conductivity has been considered. High frequency turbulence causes the appearance of not only anomalous field-aligned plasma conductivity but also cross-field conductivity. Alfvén waves can be partially reflect from TS, be absorbed in this sheet, and pass through TS. When field-aligned conductivity is predominant, the relative effectiveness of these processes strongly depends on a cross-field wave scale. If TS is thin as compared to the Alfvén wavelength, the resistive Alfvén wave (λ A ) characterized by the field-aligned resistivity and Alfvén velocity above the sheet is the characteristic parameter responsible for the wave-sheet coupling. A comparison of the loss, estimated using the analytical relationships for a thin sheet and numerically calculated based on the complete formulas for a sheet with a finite thickness, indicates that the approximation of a thin sheet results in reasonable estimates at all wave scales except very small ones. The developed model has been applied to the interpretation of the results of the works on Pi2 pulsation damping during the substorm expansion phase, which indicated that the damping decrement increases at large substorm amplitudes. The estimates indicate that this increase in damping is related to the appearance of anomalous resistivity in the case when field-aligned currents exceed the threshold values necessary for excitation of high frequency turbulence.  相似文献   

3.
Furness , P. 1993. Gradient Array Profiles over thin resistive veins. Geophysical Prospecting 41 , 113–130. Gradient array geoelectric surveys are commonly used to explore for buried sheet-like targets. It is demonstrated that under certain circumstances the responses of such features can become practically equivalent for a range of models differing considerably in resistivity and thickness. This is the dual of the familiar equivalence phenomenon associated with thin beds in geoelectric sounding operations. Hence the geoelectric response profiles over thin dipping resistive veins are conveniently studied by considering equivalent forms with vanishing thickness and infinite resistivity but with the same resistivity-thickness product. The effects of varying the dip, depth of burial, depth extent and resistivity–thickness product of such features on the gradient array response profiles are investigated by means of a series of numerical experiments. These demonstrate several effects of significance to survey design and data interpretation. In particular it is found that while the resistivity–thickness product influences the amplitude of the response profiles it has little effect on their form. A similar behaviour is found to be exhibited by veins with extended depth extent when the dip is varied. A complete quantitative interpretation of gradient array profiles over thin dipping resistive veins is thus only possible for veins of limited depth extent. For veins with an extended depth dimension, the data is ambiguous (in a practical sense) in terms of the dip and the resistivity–thickness product. Here, the interpretation can only be expected to deduce the horizontal and vertical locations of the vein apex.  相似文献   

4.
Elastic imaging from ocean bottom cable (OBC) data can be challenging because it requires the prior estimation of both compressional‐wave (P‐wave) and shear‐wave (S‐wave) velocity fields. Seismic interferometry is an attractive technique for processing OBC data because it performs model‐independent redatuming; retrieving ‘pseudo‐sources’ at positions of the receivers. The purpose of this study is to investigate multicomponent applications of interferometry for processing OBC data. This translates into using interferometry to retrieve pseudo‐source data on the sea‐bed not only for multiple suppression but for obtaining P‐, converted P to S‐wave (PS‐wave) and possibly pure mode S‐waves. We discuss scattering‐based, elastic interferometry with synthetic and field OBC datasets. Conventional and scattering‐based interferometry integrands computed from a synthetic are compared to show that the latter yields little anti‐causal response. A four‐component (4C) pseudo‐source response retrieves pure‐mode S‐reflections as well at P‐ and PS‐reflections. Pseudo‐source responses observed in OBC data are related to P‐wave conversions at the seabed rather than to true horizontal or vertical point forces. From a Gulf of Mexico OBC data set, diagonal components from a nine‐component pseudo‐source response demonstrate that the P‐wave to S‐wave velocity ratio (VP/VS) at the sea‐bed is an important factor in the conversion of P to S for obtaining the pure‐mode S‐wave reflections.  相似文献   

5.
We compare selected marine electromagnetic methods for sensitivity to the presence of relatively thin resistive targets (e.g., hydrocarbons, gas hydrates, fresh groundwater, etc.). The study includes the conventional controlled‐source electromagnetic method, the recently introduced transient electromagnetic prospecting with vertical electric lines method, and the novel marine circular electric dipole method, which is still in the stage of theoretical development. The comparison is based on general physical considerations, analytical (mainly asymptotic) analysis, and rigorous one‐dimensional and multidimensional forward modelling. It is shown that transient electromagnetic prospecting with vertical electric lines and marine circular electric dipole methods represent an alternative to the conventional controlled‐source electromagnetic method at shallow sea, where the latter becomes less efficient due to the air‐wave phenomenon. Since both former methods are essentially short‐offset time‐domain techniques, they exhibit a much better lateral resolution than the controlled‐source electromagnetic method in both shallow sea and deep sea. The greatest shortcoming of the transient electromagnetic prospecting with vertical electric lines and marine circular electric dipole methods comes from the difficulties in accurately assembling the transmitter antenna within the marine environment. This makes these methods significantly less practical than the controlled‐source electromagnetic method. Consequently, the controlled‐source electromagnetic method remains the leading marine electromagnetic technique in the exploration of large resistive targets in deep sea. However, exploring laterally small targets in deep sea and both small and large targets in shallow sea might require the use of the less practical transient electromagnetic prospecting with vertical electric lines and/or marine circular electric dipole method as a desirable alternative to the controlled‐source electromagnetic method.  相似文献   

6.
李刚  李予国  韩波  段双敏 《地球物理学报》2017,60(12):4887-4900
在海洋可控源电磁法勘探中,接收站常置于海底.在进行海洋电磁场模拟时,由于海水和海底介质存在显著电性差异,这给海底接收点处场值的求取带来困难.本文提出一种新的接收点插值算法,该算法考虑到海底电场法向分量不连续性问题,用法向电流分量进行插值以准确求取海底任意接收点处电磁场值.本文利用交错网格有限差分法实现了二维介质中频率域海洋可控源法(CSEM)正演.对构造走向做傅里叶变换,将三维电磁模拟问题转换为波数域2.5维问题,即三维场源激励下针对二维地电模型的电磁模拟问题.使用交错网格有限差分法,基于一次场/二次场分离方法导出波数域二次电场离散形式,并进一步求得波数域电磁场.采用本文提出的改进的插值算法可求得海底任意接收点处波数域电磁场,采用傅里叶逆变换对波数域电磁场进行积分可得到接收点处空间域电磁场.模型算例表明,与常规的线性插值和严格插值算法相比,本文提出的改进的插值算法具有更高的精度.  相似文献   

7.
ABSTRACT

A hydro-elastic frame has been considered to investigate the proliferation of waves over small base deformation on an infinitely extended flexible seabed. The flexible base surface is assumed as a thin elastic plate of very small thickness and it depends on the Euler–Bernoulli beam equation. For any particular frequency, there are two different modes of time-harmonic propagating wave exists rather than one mode of propagating wave along the positive horizontal direction. The waves with smaller wavenumber spread along the free-surface of the sea (say, free-surface mode) and the waves with higher wavenumber spread along the flexible base surface (say, flexural mode). A simplified perturbation approach is utilised to bring down the entire equations which govern the original boundary value problem (bvp) to a less complex bvp for the first-order velocity potential function. The first-order potential function along with the first-order reflection and transmission coefficients for both modes are calculated by a procedure based upon Fourier transform approach. A shape of sinusoidal swells flexible base surface is taken as an example to approve the scientific results. It is observed that when the train of normal incident propagating wave spreads over base distortion because of either the free-surface unsettling influence or the flexural wave movement in the sea, the reflected and transmitted energy are always feasible to be exchanged from one particular wave mode to another wave mode. Furthermore, we notice that the realistic changes in the flexural rigidity behaviour on the flexible base surface of the sea have a significant effect on the problem of water wave proliferation over small base deformation. Moreover, the energy conservation equation is derived with the help of the Green's integral theorem. The results for the values of reflection and transmission coefficients obtained for both the free-surface unsettling influence as well as flexural wave movement in the fluid are found to satisfy the energy conservation equation almost accurately.  相似文献   

8.
Mud volcanism is commonly observed in Azerbaijan and the surrounding South Caspian Basin. This natural phenomenon is very similar to magmatic volcanoes but differs in one considerable aspect: Magmatic volcanoes are generally the result of ascending molten rock within the Earth's crust, whereas mud volcanoes are characterised by expelling mixtures of water, mud, and gas. The majority of mud volcanoes have been observed on ocean floors or in deep sedimentary basins, such as those found in Azerbaijan. Furthermore, their occurrences in Azerbaijan are generally closely associated with hydrocarbon reservoirs and are therefore of immense economic and geological interest. The broadside long‐offset transient electromagnetic method and the central‐loop transient electromagnetic method were applied to study the inner structure of such mud volcanoes and to determine the depth of a resistive geological formation that is predicted to contain the majority of the hydrocarbon reservoirs in the survey area. One‐dimensional joint inversion of central‐loop and long‐offset transient electromagnetic data was performed using the inversion schemes of Occam and Marquardt. By using the joint inversion models, a subsurface resistivity structure ranging from the surface to a depth of approximately 7 km was determined. Along a profile running perpendicular to the assumed strike direction, lateral resistivity variations could only be determined in the shallow depth range using the transient electromagnetic data. An attempt to resolve further two‐dimensional/three‐dimensional resistivity structures, representing possible mud migration paths at large depths using the long‐offset transient electromagnetic data, failed. Moreover, the joint inversion models led to ambiguous results regarding the depth and resistivity of the hydrocarbon target formation due to poor resolution at great depths (>5 km). Thus, 1D/2D modelling studies were subsequently performed to investigate the influence of the resistive terminating half‐space on the measured long‐offset transient electromagnetic data. The 1D joint inversion models were utilised as starting models for both the 1D and 2D modelling studies. The results tend to show that a resistive terminating half‐space, implying the presence of the target formation, is the favourable geological setting. Furthermore, the 2D modelling study aimed to fit all measured long‐offset transient electromagnetic Ex transients along the profile simultaneously. Consequently, 3125 2D forward calculations were necessary to determine the best‐fit resistivity model. The results are consistent with the 1D inversion, indicating that the data are best described by a resistive terminating half‐space, although the resistivity and depth cannot be determined clearly.  相似文献   

9.
Single‐component towed‐streamer marine data acquisition records the pressure variations of the upgoing compressional waves followed by the polarity‐reversed pressure variations of downgoing waves, creating sea‐surface ghost events in the data. The sea‐surface ghost for constant‐depth towed‐streamer marine data acquisition is usually characterised by a ghost operator acting on the upgoing waves, which can be formulated as a filtering process in the frequency–wavenumber domain. The deghosting operation, usually via the application of the inverse Wiener filter related to the ghost operator, acts on the signal as well as the noise. The noise power transfer into the deghosted data is proportional to the power spectrum of the inverse Wiener filter and is amplifying the noise strongly at the notch wavenumbers and frequencies of the ghost operator. For variable‐depth streamer acquisition, the sea‐surface ghost cannot be described any longer as a wavenumber–frequency operator but as a linear relationship between the wavenumber–frequency representation of the upgoing waves at the sea surface and the data in the space–frequency domain. In this article, we investigate how the application of the inverse process acts on noise. It turns out that the noise magnification is less severe with variable‐depth streamer data, as opposed to constant depth, and is inversely proportional to the local slant of the streamer. We support this statement via application of the deghosting process to real and numerical random noise. We also propose a more general concept of a wavenumber–frequency ghost power transfer function, applicable for variable‐depth streamer acquisition, and demonstrate that the inverse of the proposed variable‐depth ghost power transfer function can be used to approximately quantify the action of the variable‐depth streamer deghosting process on noise.  相似文献   

10.
地震资料预测薄层厚度方法研究与应用   总被引:25,自引:15,他引:10       下载免费PDF全文
薄层厚度预测一直是公认的难题之一,其难度就在于如何准确地识别和提取薄层的地震属性.常规方法是利用时间域或频率域地震属性与薄层厚度的线性关系计算.但是理论与实际资料表明,不同的薄层和地层组合对地震波的动力学的信息影响很大,各种参数与薄层厚度成非线性关系,使用单一的信息不可能准确预测薄层厚度.本文利用三种线性预测原理(模型),经数学变换为属性参数,采用非线性BP网络预测薄层厚度,取得了令人满意的效果.  相似文献   

11.
Borehole direct current (dc) resistivity problems are solved using finite difference method (FDM) primarily to extend the log interpretation in the two-dimensional (2D) domain. Transitional invaded zone, flushed zone, uncontaminated zone, shoulder beds and borehole filled with mud are simulated simultaneously in the model. Linear variation of resistivity is assumed for transitional invaded zone. Normal, lateral and modified laterolog7 (LL74) electrode configuration (discussed in the text) responses were computed using expanding rectangular grid system. LL74 responses with variable geometric factor did show some superiority over the conventional normal and lateral for conductive target beds sandwiched between the resistive beds. For relatively small borehole diameter, all three probes can detect resistive target bed satisfactorily. However, for highly conductive mud both LL74 and normal electrode configuration fail to detect any signal from the target bed. Bypassing effect of the current for LL74 is more than that in normal log. Lateral log shows a signal of conductive invaded zone generated by the conductive mud. Bucking current ratio peaks and the geometric factor peaks in LL74 can detect the bed boundaries.  相似文献   

12.
Sea‐bed diffractions are frequently observed for several of the fields in the Norwegian Sea and the Barents Sea. This is a challenge in time lapse seismic analysis, since diffracted multiples are difficult to remove by processing and therefore is a major source of poor time lapse data quality. In this work we test if the diffractions can be used for enhanced 4D interpretation. By analysing the time‐shift of the sea‐bed diffraction hyperbola between the base and monitor it is tested if changes in water velocity and tides can be estimated. Two models using time lapse diffraction analysis are tested: the first one simply adds time‐shifts for the two branches of the diffraction hyperbola and this average time‐shift is then used to estimate the water velocity change. The other method uses an inversion method based on the diffraction equation for a point diffractor to estimate the velocity change. In‐line common‐midpoint shifts are estimated by subtracting the time‐shifts of both hyperbola branches followed by direct inversion. The diffraction based time‐shifts are compared to time‐shifts estimated by standard cross‐correlation of the sea‐bed reflection. The averaging method gives slightly higher uncertainties, while the inversion using an exact traveltime equation gives similar uncertainties compared to the sea‐bed reflection method.  相似文献   

13.
Damage to the top of coal seams, caused by incorrect blast stand-off distances, results in coal losses of up to 10–15% to the Australian open cut coal mining operations. This is a serious issue to be addressed. Here we propose to use a new forward-looking imaging technique based on the borehole radar technology to predict the coal seam top in real time while drilling blast holes. This is achieved by coupling the conventional borehole radar waves on to a steel drill rod to induce a guided wave along the axial drill rod. The drill rod ahead of the borehole radar behaves as a forward-looking antenna for the guided waves. Both numerical modelling and field trials simulating a drill rod as an antenna are used to investigate the feasibility of the proposed technique for prediction of the coal top under typical open cut environments. Numerical modelling demonstrated that conductivity of the overburden is the most important factor affecting our ability to see coal seams ahead of the drill bit, the guided borehole radar waves could be used for top coal prediction and a theoretical prediction error less than 10 cm and a forward-looking capability of 4–6 m can be achieved. Field trials at Australian open cut coal mines also demonstrated that guided borehole radar waves can be observed and used for prediction of coal top ahead of drill bit during blast-hole drilling in resistive, open cut environments (the average resistivity should be higher than 75 Ωm).  相似文献   

14.
The rough sea surface causes perturbations in the seismic data that can be significant for time‐lapse studies. The perturbations arise because the reflection response of the non‐flat sea perturbs the seismic wavelet. In order to remove these perturbations from the received seismic data, special deconvolution methods can be used, but these methods require, as input, the time varying wave elevation above each hydrophone in the streamer. In addition, the vertical displacement of the streamer itself must also be known at the position of each hydrophone and at all times. This information is not available in conventional seismic acquisition. However, it can be obtained from the hydrophone measurements provided that the hydrophones are recorded individually (not grouped), that the recording bandwidth is extended down to 0.05 Hz and that data are recorded without gaps between the shot records. The sea surface elevation, and also the wave‐induced vertical displacement of the streamer, can be determined from the time‐varying pressure that the sea waves cause in the hydrophone measurements. When this was done experimentally, using a single sensor seismic streamer without a conventional low cut filter, the wave induced pressure variations were easily detected. The inversion of these experimental data gives results for the sea surface elevation that are consistent with the weather and sea state at the time of acquisition. A high tension approximation allows a simplified solution of the equations that does not demand a knowledge of the streamer tension. However, best results at the tail end of the streamer are obtained using the general equation.  相似文献   

15.
Principal components classification based on geochemical data from sea bed samples offers a discriminant methodology for assignment of sea bed core location to defined types of hydrocarbon seep characteristics. Significant contributions to the geochemical fingerprint of the samples, like influence of sediment nature and biogenic input, are considered bias effects by oil explorationists and may be removed by aid of the method of principal components target rotation. This removal is called data laundering, and map attributes representing known hydrocarbon accumulations can be constructed from laundered data sets. Signatures of the Draugen (Haltenbanken, Norway) sea bed type occur over the Heidrun and Smørbukk fields and points out regions of interest to exploration in unexplored areas.  相似文献   

16.
Alfano's integral equation method, previously used to calculate VES theoretical curves in parallel or diverging dipping planes including an indefinite conductive medium (open structures), was applied to calculate VES theoretical curves in closed structures, i.e. when the conductive medium is limited in depth. The theoretical curves, as calculated for various cases, show slopes steeper than the corresponding two-layers curves and resistivity asymptotic values equal to those of the resistive layer; their trends can be used to evaluate the dips of contacts.Two surveys, carried out on similar superficial situations in the Appennines area, have been interpreted by means of the new theoretical curves, and have shown different structural situations in depth.  相似文献   

17.
Since the ocean bottom is a sedimentary environment wherein stratification is well developed, the use of an anisotropic model is best for studying its geology. Beginning with Maxwell’s equations for an anisotropic model, we introduce scalar potentials based on the divergence-free characteristic of the electric and magnetic (EM) fields. We then continue the EM fields down into the deep earth and upward into the seawater and couple them at the ocean bottom to the transmitting source. By studying both the DC apparent resistivity curves and their polar plots, we can resolve the anisotropy of the ocean bottom. Forward modeling of a high-resistivity thin layer in an anisotropic half-space demonstrates that the marine DC resistivity method in shallow water is very sensitive to the resistive reservoir but is not influenced by airwaves. As such, it is very suitable for oil and gas exploration in shallowwater areas but, to date, most modeling algorithms for studying marine DC resistivity are based on isotropic models. In this paper, we investigate one-dimensional anisotropic forward modeling for marine DC resistivity method, prove the algorithm to have high accuracy, and thus provide a theoretical basis for 2D and 3D forward modeling.  相似文献   

18.
基于反射系数谱理论的薄层多波AVO   总被引:2,自引:0,他引:2  
AVO分析是目前地震勘探潜在油气储层的一个重要方法。体散射信息包含了层结构、岩性和孔隙流体信息,对地震勘探非常有用。但是基于 Zoeppritz方程的传统AVO分析之只包含了单层信息。薄层厚度定量解释对构造解释、储层描述和储层横向预测都非常重要。本文阐述的基于频率域弹性传播矩阵反射系数谱方法既考虑了层界面引起的振幅变化(Zoeppritz方程),也考虑了层内传播引起的振幅变化。因此该反射系数谱既包括单一层界面信息,也包括层内体散射信息。该反射系数谱是层厚和频率的连续函数,便于分析频率和层厚对反射系数谱的影响。可分析的薄层厚度可以无限小,直至消失。可分析的频率是任意的和连续的。这是对时间域反射系数做傅里叶变换无法实现的。地震波的传播是复杂的,各种波型是同时存在而且相互转换的,该反射系数谱考虑了各种波型在传播过程中的相互转换以及多次波。与比射线方法比更便于正演薄层多波多分量AVO响应。  相似文献   

19.
The problem of equivalence in direct current (DC) resistivity and electromagnetic methods for a thin resistive and conducting layer is well‐known. Attempts have been made in the past to resolve this problem through joint inversion. However, equivalence still remains an unresolved problem. In the present study, an effort is made to reduce non‐uniqueness due to equivalence using global optimization and joint inversion by successive refinement of the model space. A number of solutions derived for DC resistivity data using very fast simulated annealing global inversion that fits the observations equally well, follow the equivalence principle and show a definite trend. For a thin conductive layer, the quotient between resistivity and thickness is constant, while for a resistive one, the product between these magnitudes is constant. Three approaches to obtain very fast simulated annealing solutions are tested. In the first one, layer resistivities and thicknesses are optimized in a linear domain. In the second, layer resistivities are optimized in the logarithmic domain and thicknesses in the linear domain. Lastly, both layer resistivities and thicknesses are optimized in the logarithmic domain. Only model data from the mean models, corresponding to very fast simulated annealing solutions obtained for approach three, always fit the observations. The mean model defined by multiple very fast simulated annealing solutions shows extremely large uncertainty (almost 100%) in the final solution after inversion of individual DC resistivity or electromagnetic (EM) data sets. Uncertainty associated with the intermediate resistive and conducting layers after global optimization and joint inversion is still large. In order to reduce the large uncertainty associated with the intermediate layer, global optimization is performed over several iterations by reducing and redefining the search limits of model parameters according to the uncertainty in the solution. The new minimum and maximum limits are obtained from the uncertainty in the previous iteration. Though the misfit error reduces in the solution after successive refinement of the model space in individual inversion, it is observed that the mean model drifts away from the actual model. However, successive refinement of the model space using global optimization and joint inversion reduces uncertainty to a very low level in 4–5 iterations. This approach works very well in resolving the problem of equivalence for resistive as well as for conducting layers. The efficacy of the approach has been demonstrated using DC resistivity and EM data, however, it can be applied to any geophysical data to solve the inherent ambiguities in the interpretations.  相似文献   

20.
Faithful recording of the elastic wavefield at the sea‐bed is required for quantitative applications of 4C seismic. The accuracy of the recorded vectorial wavefield depends on factors that vary from deployment to deployment. This paper focuses on one such factor: the interaction of the acquisition system with the sea‐bed, which is referred to here as coupling. We show, using multi‐azimuth data recorded with a cable‐based sea‐bed acquisition system, whose sensor housing is cylindrically shaped and with the in‐line geophone fixed to the cable, that coupling depends on the propagation direction and wave type (P‐ or S‐waves) of the incident wavefield. We show that coupling is more critical for S‐waves than for P‐waves. Detection of inconsistent coupling using both P‐ and S‐waves is therefore mandatory. A data‐driven processing method to compensate for the frequency‐dependent coupling response of the cross‐line geophone is derived. Its application to field data verifies the effectiveness of the method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号