首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a modified interferometry method based on local tangent‐phase analysis, which corrects the cross‐correlated data before summation. The approach makes it possible to synthesize virtual signals usually vanishing in the conventional seismic interferometry summation. For a given pair of receivers and a set of different source positions, a plurality of virtual traces is obtained at new stationary projected points located along the signal wavefronts passing through the real reference receiver. The position of the projected points is estimated by minimizing travel times using wavefront constraint and correlation‐signal tangent information. The method uses mixed processing, which is partially based on velocity‐model knowledge and on data‐based blind interferometry. The approach can be used for selected events, including reflections with different stationary conditions and projected points with respect to those of the direct arrivals, to extend the interferometry representation in seismic exploration data where conventional illumination coverage is not sufficient to obtain the stationary‐phase condition. We discuss possible applications in crosswell geometry with a velocity anomaly and a time lapse.  相似文献   

2.
This study investigates seismic interferometry in which the Green's function is estimated between two receivers by cross-correlation and integration over sources.For smoothly varying source strengths,the dominant contributions of the correlation integral come from the stationary phase directions in the forward and backward directions from the alignment of the two receivers.Gaussian beams can be used to evaluate the correlation integral and concentrate the amplitudes in a vicinity of the stationary phase regions instead of completely relying on phase interference.Several numerical examples are shown to illustrate how this process works.The use of Gaussian beams for the evaluation of the correlation integral results in stable estimates,and also provides physical insight into the estimation of the Green's function based on seismic interferometry.  相似文献   

3.
We use different interferometry approaches to process the seismic signals generated by a drill‐bit source in one well and recorded by seismic receivers located both in a second borehole and at the surface near the source well. We compare the standard interferometry results, obtained by using the raw drill‐bit data without a pilot signal, with the new interferometry results obtained by using the drill‐bit seismograms correlated with a reference pilot signal. The analysis of the stationary phase shows that the final results have different S/N levels and are affected by the coherent noise in the form of rig arrivals. The interferometry methods are compared by using different deconvolution approaches. The analysis shows that the results agree with the conventional drill‐bit seismograms and that using the reference pilot signal improves the quality of the drill‐bit wavefields redatumed by the interferometry method.  相似文献   

4.
在上覆地层比较复杂的情况下,常规地震勘探方法常常难以得到好的成像.本文研究了基于地震相干避开复杂上覆地层对地震波的影响,利用VSP数据估计地震虚源直接对目的地层进行成像的方法.在地震相干成像过程中,震源子波对分辨率有比较大的影响,尤其是存在薄层的条件下,两个非常近的反射同相轴将无法辨认.利用估计出虚源地震子波的性质,对该子波进行整形压制其旁瓣,从而提高成像的分辨率.针对典型模型的数值试验结果表明,对于复杂上覆地层情形,通过从VSP数据估计的虚源数据能够较好的对目的地层进行成像.  相似文献   

5.
This study proposes a procedure for identifying spectral response curves for earthquake‐damaged areas in developing countries without seismic records. An earthquake‐damaged reinforced concrete building located in Padang, Indonesia was selected to illustrate the identification of the maximum seismic response during the 2009 West Sumatra earthquake. This paper summarizes the damage incurred by the building; the majority of the damage was observed in the third story in the span direction. The damage was quantitatively evaluated using the damage index R according to the Japanese guidelines for post‐earthquake damage evaluation. The damage index was also applied to the proposed spectral response identification method. The seismic performance of the building was evaluated by a nonlinear static analysis. The analytical results reproduced a drift concentration in the third story. The R‐index decreased with an increase in the story drift, which provided an estimation of the maximum response of the building during the earthquake. The estimation was verified via an earthquake response analysis of the building using ground acceleration data, which were simulated based on acceleration records of engineering bedrock that considered site amplification. The maximum response estimated by the R‐index was consistent with the maximum response obtained from the earthquake response analysis. Therefore, the proposed method enables the construction of spectral response curves by integrating the identification results for the maximum responses in a number of earthquake‐damaged buildings despite a lack of seismic records. Copyright © 2016 The Authors. Earthquake Engineering & Structural Dynamics published by John Wiley & Sons Ltd.  相似文献   

6.
Non‐ductile reinforced concrete buildings represent a prevalent construction type found in many parts of the world. Due to the seismic vulnerability of such buildings, in areas of high seismic activity non‐ductile reinforced concrete buildings pose a significant threat to the safety of the occupants and damage to such structures can result in large financial losses. This paper introduces advanced analytical models that can be used to simulate the nonlinear dynamic response of these structural systems, including collapse. The state‐of‐the‐art loss simulation procedure developed for new buildings is extended to estimate the expected losses of existing non‐ductile concrete buildings considering their vulnerability to collapse. Three criteria for collapse, namely first component failure, side‐sway collapse, and gravity‐load collapse, are considered in determining the probability of collapse and the assessment of financial losses. A detailed example is presented using a seven‐story non‐ductile reinforced concrete frame building located in the Los Angeles, California. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
Interferometric identification and health monitoring of high‐rise buildings has been gaining increasing interest in recent years. The wave dispersion in the structure has been largely ignored in these efforts but needs to be considered to further develop these methods. In this paper, (i) the goodness of estimation of vertical wave velocity in buildings, as function of frequency, by two nonparametric interferometric techniques is examined, using realistic fixed‐base Timoshenko beam benchmark models. Such models are convenient because the variation of phase and group velocities with frequency can be derived theoretically. The models are those of the NS and EW responses of Millikan Library. One of the techniques, deconvolution interferometry, estimates the phase velocity on a frequency band from phase difference between motions at two locations in the structure, while the other one estimates it approximately at the resonant frequencies based on standing wave patterns. The paper also (ii) examines the modeling error in wave velocity profiles identified by fitting layered shear beam in broader band impulse response functions of buildings with significant bending flexibility. This error may affect inferences on the spatial distribution of damage from detected changes in such velocity profiles. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
Seismic interferometry deals with the generation of new seismic responses by crosscorrelating existing ones. One of the main assumptions underlying most interferometry methods is that the medium is lossless. We develop an ‘interferometry‐by‐deconvolution’ approach which circumvents this assumption. The proposed method applies not only to seismic waves, but to any type of diffusion and/or wave field in a dissipative medium. This opens the way to applying interferometry to controlled‐source electromagnetic (CSEM) data. Interferometry‐by‐deconvolution replaces the overburden by a homogeneous half space, thereby solving the shallow sea problem for CSEM applications. We demonstrate this at the hand of numerically modeled CSEM data.  相似文献   

9.
While seismic reflection amplitudes are generally determined by real acoustical impedance contrasts, there has been recent interest in reflections due to contrasts in seismic‐Q. Herein we compare theoretical and modelled seismic reflection amplitudes for two different cases of material contrasts. In case A, we examine reflections from material interfaces that have a large contrast in real‐valued impedance () with virtually no contrast in seismic‐Q. In case B, we examine reflections from material interfaces that have virtually no contrast in but that have very large seismic‐Q contrasts. The complex‐valued reflection coefficient formula predicts non‐zero seismic reflection amplitudes for both cases. We choose physical materials that typify the physics of both case A and case B. Physical modelling experiments show significantly large reflections for both cases – with the reflections in the two cases being phase shifted with respect to each other, as predicted theoretically. While these modelling experiments show the existence of reflections that are predicted by theory, there are still intriguing questions regarding the size of the Q‐contrast reflections, the existence of large Q‐contrast reflections in reservoir rocks and the possible application of Q‐reflection analysis to viscosity estimation in heavy oilfields.  相似文献   

10.
Scattered ground roll is a type of noise observed in land seismic data that can be particularly difficult to suppress. Typically, this type of noise cannot be removed using conventional velocity‐based filters. In this paper, we discuss a model‐driven form of seismic interferometry that allows suppression of scattered ground‐roll noise in land seismic data. The conventional cross‐correlate and stack interferometry approach results in scattered noise estimates between two receiver locations (i.e. as if one of the receivers had been replaced by a source). For noise suppression, this requires that each source we wish to attenuate the noise from is co‐located with a receiver. The model‐driven form differs, as the use of a simple model in place of one of the inputs for interferometry allows the scattered noise estimate to be made between a source and a receiver. This allows the method to be more flexible, as co‐location of sources and receivers is not required, and the method can be applied to data sets with a variety of different acquisition geometries. A simple plane‐wave model is used, allowing the method to remain relatively data driven, with weighting factors for the plane waves determined using a least‐squares solution. Using a number of both synthetic and real two‐dimensional (2D) and three‐dimensional (3D) land seismic data sets, we show that this model‐driven approach provides effective results, allowing suppression of scattered ground‐roll noise without having an adverse effect on the underlying signal.  相似文献   

11.
We consider two design criteria to study seismic zoning. In the first, codes require that structures be designed for some specified values. Zoning is then optimal when it minimizes the expected present value of the initial costs of all structures to be built in the region being zoned. In the second criterion, it is designed so that the present value of the total cost is minimized, including initial and maintenance costs as well as losses due to damage and failure. We will call these criteria zoning for the initial‐ and totalcost minimization, respectively. It is shown that under certain conditions, the boundaries coincide with isoparametric curves and the problem may be solved in one dimension. We also deal with problems not reducible to a single dimension. Different methods are proposed to solve the various kinds of problems. The work ends with some illustrative examples. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

12.
We present the results of a seismic interferometry experiment in a shallow cased borehole. The experiment is an initial study for subsequent borehole seismic surveys in an instrumented well site, where we plan to test other surface/borehole seismic techniques. The purpose of this application is to improve the knowledge of the reflectivity sequence and to verify the potential of the seismic interferometry approach to retrieve high‐frequency signals in the single well geometry, overcoming the loss and attenuation effects introduced by the overburden. We used a walkaway vertical seismic profile (VSP) geometry with a seismic vibrator to generate polarized vertical and horizontal components along a surface seismic line and an array of 3C geophones cemented outside the casing. The recorded traces are processed to obtain virtual sources in the borehole and to simulate single‐well gathers with a variable source‐receiver offset in the vertical array. We compare the results obtained by processing the field data with synthetic signals calculated by numerical simulation and analyse the signal bandwidth and amplitude versus offset to evaluate near‐field effects in the virtual signals. The application provides direct and reflected signals with improved bandwidth after vibrator signal deconvolution. Clear reflections are detected in the virtual seismic sections in agreement with the geology and other surface and borehole seismic data recorded with conventional seismic exploration techniques.  相似文献   

13.
Sediments produced by landslides are crucial in the sediment yield of a catchment, debris flow forecasting, and related hazard assessment. On a regional scale, however, it is difficult and time consuming to measure the volumes of such sediment. This paper uses a LiDAR‐derived digital terrain model (DTM) taken in 2005 and 2010 (at 2 m resolution) to accurately obtain landslide‐induced sediment volumes that resulted from a single catastrophic typhoon event in a heavily forested mountainous area of Taiwan. The landslides induced by Typhoon Morakot are mapped by comparison of 25 cm resolution aerial photographs taken before and after the typhoon in an 83.6 km2 study area. Each landslide volume is calculated by subtraction of the 2005 DTM from the 2010 DTM, and the scaling relationship between landslide area and its volume are further regressed. The relationship between volume and area are also determined for all the disturbed areas (VL = 0.452AL1.242) and for the crown areas of the landslides (VL = 2.510AL1.206). The uncertainty in estimated volume caused by use of the LiDAR DTMs is discussed, and the error in absolute volume estimation for landslides with an area >105 m2 is within 20%. The volume–area relationship obtained in this study is also validated in 11 small to medium‐sized catchments located outside the study area, and there is good agreement between the calculation from DTMs and the regression formula. By comparison of debris volumes estimated in this study with previous work, it is found that a wider volume variation exists that is directly proportional to the landslide area, especially under a higher scaling exponent. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
雷达干涉PS网络的基线识别与解算方法   总被引:3,自引:3,他引:0       下载免费PDF全文
时序雷达干涉图中的永久散射体(PS)可看作“天然GPS点”, 以构成网络用于监测长期的地表形变. 本文提出采用邻接矩阵拓扑模型对基于Delaunay剖分算法生成的PS网络进行基线识别, 并采用时序相干最大化算法求解PS基线的线性形变速度增量和高程误差增量. 该数据模型和计算方法被应用于探测香港地区2006~2007年间的区域地表沉降. 实验研究采用由Envisat卫星ASAR传感器对该地区成像所获取的时序SAR影像作为数据源, 并联合该地区12个GPS连续运行参考站的观测数据予以大气修正和地面控制. 实验结果表明, 该模型和方法应用于地表形变测量是有效的和可靠的, PS网络方法探测地面沉降的精度约为±2.0 mm/a.  相似文献   

15.
We use numerically modelled data sets to investigate the sensitivity of electromagnetic interferometry by multidimensional deconvolution to spatial receiver sampling. Interferometry by multidimensional deconvolution retrieves the reflection response below the receivers after decomposition of the fields into upward and downward decaying fields and deconvolving the upward decaying field by the downward decaying field. Thereby the medium above the receiver level is replaced with a homogeneous half‐space, the sources are redatumed to the receiver level and the direct field is removed. Consequently, in a marine setting the retrieved reflection response is independent of any effect of the water layer and the air above. A drawback of interferometry by multidimensional deconvolution is a possibly unstable matrix inversion, which is necessary to retrieve the reflection response. Additionally, in order to correctly separate the upward and the downward decaying fields, the electromagnetic fields need to be sampled properly. We show that the largest possible receiver spacing depends on two parameters: the vertical distance between the source and the receivers and the length of the source. The receiver spacing should not exceed the larger of these two parameters. Besides these two parameters, the presence of inhomogeneities close to the receivers may also require a dense receiver sampling. We show that by using the synthetic aperture concept, an elongated source can be created from conventionally acquired data in order to overcome these strict sampling criteria. Finally, we show that interferometry may work under real‐world conditions with random noise and receiver orientation and positioning errors.  相似文献   

16.
A structure that has a permanent offset from a true vertical line is commonly referred to as being ‘out‐of‐plumb’. Out‐of‐plumb may result from construction tolerances or post‐earthquake permanent deformations in steel buildings. This paper quantifies the displacements of buildings with out‐of‐plumb in subsequent seismic events by means of inelastic dynamic time history analysis. Structures considered have different structural heights, force design reduction factors (R), and target inter‐story drifts. It is shown that buildings with greater out of plumb and force design reduction factor have larger normalized peak inter‐story drift ratio and ratio of residual‐to‐peak drift. Also, the ratio of residual‐to‐peak drift was not strongly dependent on structural height or design drift. A design procedure and example provided, based on the results obtained, show how peak and residual inter‐story drift ratio can be estimated. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Local seismic event slopes contain subsurface velocity information and can be used to estimate seismic stacking velocity. In this paper, we propose a novel approach to estimate the stacking velocity automatically from seismic reflection data using similarity‐weighted k‐means clustering, in which the weights are local similarity between each trace in common midpoint gather and a reference trace. Local similarity reflects the local signal‐to‐noise ratio in common midpoint gather. We select the data points with high signal‐to‐noise ratio to be used in the velocity estimation with large weights in mapped traveltime and velocity domain by similarity‐weighted k‐means clustering with thresholding. By using weighted k‐means clustering, we make clustering centroids closer to those data points with large weights, which are more reliable and have higher signal‐to‐noise ratio. The interpolation is used to obtain the whole velocity volume after we have got velocity points calculated by weighted k‐means clustering. Using the proposed method, one obtains a more accurate estimate of the stacking velocity because the similarity‐based weighting in clustering takes into account the signal‐to‐noise ratio and reliability of different data points in mapped traveltime and velocity domain. In order to demonstrate that, we apply the proposed method to synthetic and field data examples, and the resulting images are of higher quality when compared with the ones obtained using existing methods.  相似文献   

18.
Interception losses in stands of non‐native trees in Hawaiian forests and their potential negative impacts on fresh water availability are poorly understood. In this study, a canopy water balance analysis was conducted to estimate interception losses using measurements of rainfall (RF), throughfall (TF), and stemflow (SF) at three locations, each dominated by one or more of the following non‐native tree species: Psidium cattleianum Sabine (Strawberry guava), Schinus terebinthifolius Raddi (Christmas berry), Syzygium cumini (L.) Skeels (Java plum), and Coffea arabica L. (Coffee). Mean TF expressed as percentage of total RF was the lowest (43.3%) under a monotypic stand of P. cattleianum and the highest (56.5%) under mixture of S. terebinthifolius, P. cattleianum, and S. cumini. Observed SF was highest (33.9%) under P. cattleianum and lowest (3.6%) under a mixture of S. terebinthifolius, P. cattleianum, and S. cumini. The relatively high SF under P. cattleianum can be attributed to its smooth bark, stem density, and steep branching. The mean observed canopy interception varied between 23% under P. cattleianum and 45% at the site dominated by C. arabica. Mean direct TF coefficients from individual events at each location ranged from a low of 0.36 under the canopy dominated by C. arabica to a high of 0.51 under the canopy dominated by S. terebinthifolius, P. cattleianum, and S. cumini. In contrast, the mean SF partitioning coefficients from individual storm events at each location ranged from a low of 0.05 under the canopy dominated by S. terebinthifolius, P. cattleianum, and S. cumini to a high of 0.37 under P. cattleianum. Mean canopy storage capacity was highest (1.90) at the site dominated by S. terebinthifolius, P. cattleianum, and S. cumini whereas trunk storage capacity was highest (0.54) under the P. cattleianum. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
This paper investigates the seismic response of multi‐storey cross‐laminated timber (CLT) buildings and its relationship with salient ground‐motion and building characteristics. Attention is given to the effects of earthquake frequency content on the inelastic deformation demands of platform CLT walled structures. The response of a set of 60 CLT buildings of varying number of storeys and panel fragmentation levels representative of a wide range of structural configurations subjected to 1656 real earthquake records is examined. It is shown that, besides salient structural parameters like panel aspect ratio, design behaviour factor, and density of joints, the frequency content of the earthquake action as characterized by its mean period has a paramount importance on the level of nonlinear deformations attained by CLT structures. Moreover, the evolution of drifts as a function of building to ground‐motion periods ratio is different for low‐ and high‐rise buildings. Accordingly, nonlinear regression models are developed for estimating the global and interstorey drifts demands on multi‐storey CLT buildings. Finally, the significance of the results is highlighted with reference to European seismic design procedures and recent assessment proposals.  相似文献   

20.
Attenuation of random noise and enhancement of structural continuity can significantly improve the quality of seismic interpretation. We present a new technique, which aims at reducing random noise while protecting structural information. The technique is based on combining structure prediction with either similarity‐mean filtering or lower‐upper‐middle filtering. We use structure prediction to form a structural prediction of seismic traces from neighbouring traces. We apply a non‐linear similarity‐mean filter or an lower‐upper‐middle filter to select best samples from different predictions. In comparison with other common filters, such as mean or median, the additional parameters of the non‐linear filters allow us to better control the balance between eliminating random noise and protecting structural information. Numerical tests using synthetic and field data show the effectiveness of the proposed structure‐enhancing filters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号