共查询到20条相似文献,搜索用时 0 毫秒
1.
The load distribution and deflection of large diameter piles are investigated by lateral load transfer method ( p– y curve). Special attention is given to the soil continuity and soil resistance using three-dimensional finite element analysis. A framework for determining a p– y curve is calculated based on the surrounding soil stress. The appropriate parametric studies needed for verifying the p– y characteristic are presented in this paper. Through comparisons with results of field load tests, the three-dimensional numerical methodology in the present study is in good agreement with the general trend observed by in situ measurements and thus, represents a realistic soil–pile interaction for laterally loaded piles in clay than that of existing p– y method. It can be said that a rigorous numerical analysis can overcome the limitations of existing p– y methods to some extent by considering the effect of realistic three-dimensional combination of pile–soil forces. 相似文献
2.
The Sichuan-Tibet transportation corridor is located at the eastern margin of the Qinghai-Tibet Plateau, where the complex topography and geological conditions, developed geo-hazards have severely restricted the planning and construction of major projects. For the long-term prevention and early control of regional seismic landslides, based on analyzing seismic landslide characteristics, the Newmark model was used to carry out the potential seismic landslide hazard assessment with a 50-year beyond probability 10%. The results show that the high seismic landslide hazard is mainly distributed along large active tectonic belts and deep-cut river canyons, and are significantly affected by the active tectonics. The low seismic landslide hazard is mainly distributed in the flat terrain such as the Quaternary basins, broad river valleys, and plateau planation planes. The major east-west linear projects mainly pass through five areas with high seismic landslide hazard: Luding-Kangding section, Yajiang-Xinlong (Yalong river) section, Batang-Baiyu (Jinsha river) section, Basu (Nujiang river) section, and Bomi-Linzhi (eastern Himalaya syntaxis) section. The seismic action of the Bomi-Linzhi section can also induce high-risk geo-hazard chains such as the high-level glacial lake breaks and glacial debris flows. The early prevention of seismic landslides should be strengthened in the areas with high seismic landslide hazard.©2023 China Geology Editorial Office. 相似文献
3.
Natural Hazards - One of the requirements for planning and decision-making to develop the infrastructures is to prepare the landslide occurrence hazard map. For this purpose, in this article, the... 相似文献
4.
The influence of type and amount of clays present in soils on their properties is well understood. The clays exert their influence through large specific surface area and charges on them. Their effect is mostly exhibited through inter particle bonding and subsequent particle associations. The mineralogical influence of soils in water is well documented. However, the change in soil water system because of presence some of the contaminants can greatly influence the soil behaviour. Some of the changes are due to formation of new compounds due to interactions between the soil and pollutant. The paper reports the effect of interaction of kaolinite mineral with alkali on the index properties of soils from which the geotechnical behaviour can be understood. Detailed X-ray diffraction studies have shown that sodium aluminum silicate hydroxide hydrate (NASH) is formed by clay alkali reactions. The type and amount of formation of the compound is influenced by the concentration of alkali solution. While the compound formed is in smaller quantities with 1 N NaOH solution, significantly high quantity is formed with 4 N NaOH solution. Presence of alumina is shown to play a significant role. It was observed that the formation of sodium aluminum silicate hydroxide hydrate is reduced in the presence of alumina. Specific gravity of contaminated clay soil was reduced which confirms the formation of new compounds. Water adsorption and specific surface area of soil are also influenced due to soil alkali interaction. The changes in the free swell and index properties of soil in the presence of alkali have been explained by the changes in soil fabric and the formation of new compound. 相似文献
5.
The stability of both natural and cut slopes in mountainous areas is a great challenge to highway constructions and operations. This paper presents a successful case study of stability analyses and protection treatments for high-steep cut soil slopes in an ancient landslide zone which was located at Km12+700 to Km15+000 along the Tehran?CChalus highway. This report has three parts. First, geotechnical investigations of in situ direct shear test, SPT tests and laboratory tests were implemented to get the subsurface profiles and the mechanical properties of the soil mass. Second, finite difference analysis was carried out to evaluate the stability of both the natural and cut slopes. Minimum safety factors and potential failure modes of cut slopes were obtained under both static and dynamic conditions. These results indicated that the ancient landslide could not be reactivated under the present climatic and morphological conditions, but there were some potential shallow failures in some cut soil slopes (failure actually occurred during excavation). Protection treatments and reinforcements were thus necessary. Third, the stability of the cut slopes was re-assessed by simplified Bishop limit equilibrium analysis (using Slide 5.0). Some potential failure zones were designed to be protected by back-anchored concrete retaining wall at the slope toe, rock bolts and frame beams on the slope face and planting grass on the slope face. Numerical analysis indicated that these protection measures could stabilize this remedial slope. These practical experiences may be of benefit for similar highway construction projects. 相似文献
6.
The role of the seismic soil–pile–structure interaction (SSPSI) is usually considered beneficial to the structural system under seismic loading since it lengthens the lateral fundamental period and leads to higher damping of the system in comparison with the fixed-base assumption. Lessons learned from recent earthquakes show that fixed-base assumption could be misleading, and neglecting the influence of SSPSI could lead to unsafe design particularly for structures founded on soft soils. In this study, in order to better understand the SSPSI phenomena, a series of shaking table tests have been conducted for three different cases, namely: (i) fixed-base structure representing the situation excluding the soil–structure interaction; (ii) structure supported by shallow foundation on soft soil; and (iii) structure supported by floating (frictional) pile foundation in soft soil. A laminar soil container has been designed and constructed to simulate the free field soil response by minimising boundary effects during shaking table tests. In addition, a fully nonlinear three dimensional numerical model employing FLAC3D has been adopted to perform time-history analysis on the mentioned three cases. The numerical model adopts hysteretic damping algorithm representing the variation of the shear modulus and damping ratio of the soil with the cyclic shear strain capturing the energy absorbing characteristics of the soil. Results are presented in terms of the structural response parameters most significant for the damage such as foundation rocking, base shear, floor deformation, and inter-storey drifts. Comparison of the numerical predictions and the experimental data shows a good agreement confirming the reliability of the numerical model. Both experimental and numerical results indicate that soil–structure interaction amplifies the lateral deflections and inter-storey drifts of the structures supported by floating pile foundations in comparison to the fixed base structures. However, the floating pile foundations contribute to the reduction in the lateral displacements in comparison to the shallow foundation case, due to the reduced rocking components. 相似文献
7.
The way in which the NE Tibetan Plateau uplifted and its impact on climatic change are crucial to understanding the evolution of the Tibetan Plateau and the development of the present geomorphology and climate of Central and East Asia. This paper is not a comprehensive review of current thinking but instead synthesises our past decades of work together with a number of new findings. The dating of Late Cenozoic basin sediments and the tectonic geomorphology of the NE Tibetan Plateau demonstrates that the rapid persistent rise of this plateau began ~ 8 ± 1 Ma followed by stepwise accelerated rise at ~ 3.6 Ma, 2.6 Ma, 1.8–1.7 Ma, 1.2–0.6 Ma and 0.15 Ma. The Yellow River basin developed at ~ 1.7 Ma and evolved to its present pattern through stepwise backward-expansion toward its source area in response to the stepwise uplift of the plateau. High-resolution multi-climatic proxy records from the basins and terrace sediments indicate a persistent stepwise accelerated enhancement of the East Asian winter monsoon and drying of the Asian interior coupled with the episodic tectonic uplift since ~ 8 Ma and later also with the global cooling since ~ 3.2 Ma, suggesting a major role for tectonic forcing of the cooling. 相似文献
8.
Earthquakes in regions underlain by soft clay have amply demonstrated the detrimental effects of soil–structure interaction (SSI) in such settings. This paper describes a new three dimensional Finite Element model utilizing linear elastic single degree of freedom (SDOF) structure and a nonlinear elasto-plastic constitutive model for soil behavior in order to capture the nonlinear foundation–soil coupled response under seismic loadings. Results from an experimental SSI centrifuge test were used to verify the reliability of the numerical model followed by parametric studies to evaluate performance of linear elastic structures underlain by soft saturated clay. The results of parametric study demonstrate that rigid slender (tall) structures are highly susceptible to the SSI effects including alteration of natural frequency, foundation rocking and excessive base shear demand. Structure–foundation stiffness and aspect ratios were found to be crucial parameters controlling coupled foundation–structure performance in flexible-base structures. Furthermore, frequency content of input motion, site response and structure must be taken into account to avoid occurrence of resonance problem. 相似文献
9.
In order to enhance the road capacity and guarantee the commodity transportation to Tibet, the Ministry of Communications conducted renovation and rebuilding of the Qinghai-Tibet Highway. It is of great importance to conserve the water and soil well durin… 相似文献
10.
Wildfires transform the landscape, leading to changes in surface cover and, potentially, in water quality. The purpose of this study was to assess changes in the chemical composition of soils and surface water as a result of a wildfire that burned in 2006 in the Marão Mountains, NE Portugal, by comparing pre- and post-fire hydrochemical data and burned/unburned soil data, and to examine the recovery of vegetation over time using Landsat TM imagery. Studies that have access to pre-fire data are rare and even fewer studies document changes in biomass as a result of fire and during the postfire recovery period. Samples of ash, soil and water, from within and outside the burned area, were collected 5 months, and one year after the fire, for chemical analyses. Landsat TM Images were downloaded and transformed into a vegetation index, in order to analyze landcover dynamics and to calculate biomass. The wildfire effects on the Marão River water quality, resulted in an increase in the total mineralization of water. Five months after the wildfire the electrical conductivity (E.C.) at the mainstem was about 56% higher than pre-fire values (E.C. increased from 25 to 39 μS/cm) and still higher one year after (36 μS/cm). Cations of Ca, Na, Mg and Mn showed the greatest increase. This increase was probably triggered by the movement of ash to the watercourses. This disturbance had already attenuated one year after wildfire to values closer to pre-fire data except for manganese. Manganese had anomalous concentrations in the water within the burned area. The concentration of Mn in ash samples reached values up to 5 times more than values found in underlying soils. One year after the wildfire, almost all the burned area had recovered with herbaceous vegetation and patches of shrub vegetation. The wildfire burned 1194.7 dry tons of biomass which means, on average, 4.9 dry ton/ha. Based on the mass of burned biomass, we calculated approximately 350 g/ha of Mn were released as a result of the fire. We suggest that this type of calculation can be conducted before a fire to help resource managers understand worst-case scenarios for changes in water quality that have the potential to affect aquatic biotic and the suitability of water for drinking water purposes and agriculture. 相似文献
11.
It is widely accepted that future environmental changes will affect rainfall-induced shallow slides in high-mountain areas. In this study, the Val d’Aran region located in the Central Pyrenees was selected to analyze and quantify the impacts of land use and land cover (LULC) and climate changes on regional landslides susceptibility. We analyzed 26 climate models of the EURO-CORDEX database focussing on the future rainfall conditions. The IDRISI TerrSet software suite was used to create the future LULC maps. These two inputs were analyzed individually and in a combined way defining 20 different scenarios. All these scenarios were incorporated in a physically based stability model to compute landslides susceptibility maps. The results showed that both environmental conditions will considerably change in the future. The daily rainfall will increase between 14 and 26% assuming a return period of 100 years. This intensification of precipitation will produce an overall decrease of the stability condition in the study area. Regarding the LULC prediction, the forest area will significantly increase, while in particular grassland, but also shrubs decrease. As a consequence, the overall stability condition improves, because the root strength is higher in forest than in grassland and shrubs. When we analyzed the combined impacts, the results showed that the positive effect of LULC changes is larger than the negative influence of rainfall changes. Hence, when combining the two aspects in the future scenarios, the stability condition in the study area will improve. 相似文献
12.
Statistical approach to the analysis of the relationship between the frequency of flood events and land cover (LC) changes
in small catchments of Slovakia is presented in this paper. The data for identification of LC changes were taken from the
1990 and 2006 CORINE LC (CLC) data layers. They were derived by computer-aided visual interpretation of satellite images under
the CLC Projects. The data about frequency of flood events in small catchments are from the period 1996–2006. Two hypotheses
were formulated: (1) the greater the area of LC changes, the more frequent flood events; (2) in catchments where LC changes
accelerating formation of direct runoff (e.g. urbanization, deforestation, farming) dominates, flood events are more frequent
than in catchments where the prevailing LC changes (e.g. afforestation) reduce formation of direct runoff. Validity of hypotheses
was tested in the framework of flood potential of catchments by two-factor ANOVA method. The obtained results indicate that
(1) flood event frequency increases with the increasing total area of LC changes in a catchment. This tendency clearly manifests
itself in catchments with very high flood potential. It is somewhat less distinct in catchments with moderate and high flood
potentials. (2) There were no differences in flood event frequency between the group of catchments, where LC changes accelerating
the formation of the direct runoff prevailed and the group of catchments where LC changes decelerating the formation of direct
runoff were dominated. 相似文献
13.
Soil–water interaction is a pivotal process in many underwater geohazards such as underwater landslides where soil sediments gradually evolve into turbidity currents after interactions with ambient water. Due to the large deformations, multiphase interactions and phase changes this involves, investigations from numerical modelling of the transition process have been limited so far. This study explores a simple numerical replication of such soil–water mixing with respect to changes in average strength using smoothed particle hydrodynamics (SPH). A uniform viscoplastic model is used for both the solid-like and fluid-like SPH particles. The proposed numerical solution scheme is verified by single-phase dam break tests and multiphase simple shear tests. SPH combinations of solid-like and fluid-like particles can replicate the clay–water mixture as long as the liquidity index of the solid-like particles is larger than unity. The proposed numerical scheme is shown to capture key features of an underwater landslide such as hydroplaning, water entrainment and wave generation and thus shows promise as a tool to simulate the whole process of subaquatic geohazards involving solid–fluid transition during mass transport. 相似文献
14.
A laboratory study was conducted to evaluate the response of soil enzyme activities (namely dehydrogenase, phosphatase and
urease) to different levels of trace element pollution in soil representative area. The improved ecological dose model and
random-amplified polymorphic DNA (RAPD) were used to assess soil health. The 50% ecological dose (ED 50) values modified by toxicant coefficient were calculated from the best-fit model, and determination values from the regression
analysis for the three enzyme activities were studied after the incubation periods. The results showed that the elevated heavy
metal concentration negatively affects the total population size of bacteria and actinomycetes and enzymatic activity; dehydrogenase
(ED 50 = 777) was the most sensitive soil enzyme, whereas urease activity (ED 50 = 2,857) showed the lowest inhibition; combined pollution or elevated toxicant level would increase disappearing RAPD bands,
and the number of denoting polymorphic bands was greater in combined polluted soils. All three mathematical modified models
satisfactorily described the inhibition of soil enzyme activities caused by Cd and Pb, by giving the best fit. 相似文献
15.
Structures affected by mining subsidence are exposed to heavy damage potential in relation to the induced tensile or compressive horizontal ground strains. This study intends to specify and compare the mining subsidence effect in terms of building transmitted movements or induced stresses, given the soil–structure interaction phenomena produced at the interface between a “stiff” elastic structure and a “flexible” elastoplastic soil. 相似文献
16.
Natural Hazards - In this paper, the role of basin shape in the site–city interaction (SCI) effects on the ground motion characteristics is documented. The effects of city type and city... 相似文献
17.
During the planning of an urban environment, usually only economic and social parameters are taken into account. As a result,
urban areas are susceptible to natural disasters, which cause extensive damages in them, because the cities or towns have
been repeatedly located in vulnerable areas. In this study, for the protection of human environment, is proposed a unique
approach of urban planning and sustainable development. The study area is Trikala Prefecture (Western Thessaly, Central Greece).
An integrated evaluation of the suitable areas for urban growth and light industry development is proposed by using mainly
natural hazards as well as geological–geomorphological–geographical characteristics of the study area. The used parameters
were correlated by using the analytical hierarchical process (AHP) method and incorporated into a geographic information system
(GIS) in order to produce the corresponding suitability maps. The study area is classified in five categories of very high,
high, moderate, low, and very low suitability for urban growth and industrial development. Moreover, the spatio-temporal changes
of the urban limits are studied since 1885 for the three major towns (Trikala, Kalambaka and Pyli) of the study area. These
changes sketch out the urban growth trend. The comparison between the urban growth trend with the potential suitability for
urban growth and industrial development of these towns lead to discrepancies. These can be attributed mainly to the fact that
in the majority of cases, only geographical, social, and economical factors were used for urban development, whereas in our
study, natural hazards, geomorphological, and geographical parameters were quantified and taken into account. 相似文献
18.
How and to what extent are human societies affected by climate change? There has been a growing body of research using big historical data and statistical analyses to provide scientific answers to this inter-disciplinary research question. However, quantitative analysis measuring the historical demographic impact of ocean/atmosphere interaction is still scanty. Here we use 544 years (1368–1911) of historical records to trace the demographic impact brought about by ocean/atmosphere interaction in Shaanxi, located on the northern fringe of the Asian summer monsoon region in China. Our results show that: (1) North Atlantic Oscillation (NAO) and El Niño Southern Oscillation (ENSO) caused Malthusian catastrophes mainly through drought at the inter-annual scale; (2) drought reinforced the synchrony of various Malthusian catastrophes at the inter-annual to multi-decadal scale; and (3) the unusual cycles of NAO drove drought and various Malthusian catastrophes in the cold 1550–1730 period at the multi-decadal scale. This study represents a pioneering attempt to quantitatively assess the demographic impact caused by the ocean/atmosphere in historical China. Our findings may help to conceptualise the climate–human nexus in those ecologically marginal regions that are impacted by ocean/atmosphere interaction, and to explain the synchrony of social crisis in Eurasia in the 17th century. 相似文献
19.
The design of earthquake-resistant structures depends greatly on the soil–foundation–structure interaction. This interaction is more complex in the presence of liquefiable soils. Pile and rigid inclusion systems represent a useful practice to support structures in the presence of liquefiable soils in seismic zones. Both systems increase the bearing capacity of soil and allow reducing the settlements in the structure. Numerical models with a 3-storey reinforced concrete frame founded on inclusions systems (soil–inclusion–platform–structure) and pile systems (soil–pile–structure) were analyzed. Finite difference numerical models were developed using Flac 3D. Two different soil profiles were considered. A simple constitutive model for liquefaction analysis that relates the volumetric strain increment to the cyclic shear strain amplitude was utilized to represent the behavior of the sand, and the linear elastic perfectly plastic constitutive model with a Mohr–Coulomb failure criterion was used to represent the behavior of the earth platform. Two earthquakes were used to study the influence of the different frequency of excitation in the systems. The results were presented in terms of maximum shear forces distribution in the superstructure and spectrum response of each system. The efforts and displacements in the rigid elements (piles or rigid inclusions) were compared for the different systems. The bending and buckling failure modes of the pile were examined. The results show that the pile system, the soil profile and the frequency of excitation have a great influence on the magnitude and location of efforts and displacements in the rigid elements.
相似文献
20.
The dielectric constant of soil is used to estimate its water content in a range of applications. Unlike the widely known effect of water content on the soil dielectric constant (consistent direct proportionality), only a limited number of studies have reported the effects of soil dry density, however, with equivocal results. This paper, therefore, investigates the effects of dry density or degree of compaction on the dielectric constant of five different soil types. The results of the experimental work for the soils ranging from sand to Bentonite clay with distinct specific surface areas were evaluated based on the use of two simple mixture models (De Loor and Birchak). The effects of dry density on the soil dielectric constant were found to be soil type dependent. This is demonstrated by the experimental data and further proven by the modified De Loor model. The behavior is shown to be defined by the changes in the free water, bound water, and solid particle volume fractions, ultimately controlled by the soil specific surface area. The dielectric constant changes from being directly proportional to dry density to inversely proportional at a threshold specific surface area of between 122 and 147 m2/g. Supported by the experimental observations, parametric analysis has revealed that the range for the dielectric constant of bound water was found to be 9–37, while the geometrical parameter α in the Birchak model was found to be 0.4–0.8. 相似文献
|