首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The disproportionality of the large frequency of occurrence of severe storm surges on the coast of Bangladesh is highlighted. The reasons for the recurvature of these storms towards the Bangladesh coast and the associated severe surges are discussed in this paper.Atmospheric Environment Service, Ice Center, Environment Canada, 373 Sussex Drive, Ottawa, Ontario, Canada K1A 0H3.  相似文献   

2.
Natural Hazards - This study presents a new approach to assess storm surge risk from tropical cyclones under climate change by direct calculation of the local flood levels using a limited number of...  相似文献   

3.
4.
5.
为了研究三角洲河口风暴潮溃堤时的盐水运动规律,建立一、二维耦合的盐度数学模型对风暴潮溃堤时的盐水运动进行模拟。模型考虑洪泛区建筑物对盐水运动的影响以及溃口的渐变发展过程。用2008年多个测站的实测数据对河网模型的潮位和盐度计算结果进行了验证。将模型应用于珠江三角洲河网某近海溃口风暴潮溃堤的盐水运动模拟,并绘制了最大盐度等值面图。计算结果表明,该溃口大部分区域的溃堤积水盐度超过了4psu,因此,溃堤洪水的高盐度积水影响不容忽视。通过比较“溃堤”和“不溃堤”两种情况下的河网盐度计算结果,发现上游河道的溃堤分流增大了河道的纳潮量,促使涨潮量增大,增大了下游河网的咸潮上溯风险,减弱了上游来流对咸潮的压制效果。  相似文献   

6.
The storm surge in coastal Mississippi caused by Hurricane Katrina was unprecedented in the region. The height and geographic extent of the storm surge came as a surprise to many and exceeded pre-impact surge scenarios based on SLOSH models that were the basis for emergency preparedness and local land use decision-making. This paper explores the spatial accuracy of three interpolated storm surge surfaces derived from post-event reconnaissance data by comparing the interpolation results to a specific SLOSH run. The findings are used to suggest improvements in the calibration of existing pre-event storm surge models such as SLOSH. Finally, the paper provides some suggestions on an optimal surge forecast map that could enhance the communication of storm surge risks to the public.  相似文献   

7.
One of the regions of the globe that is frequently and very significantly affected by storm surges is Bangladesh. These high amplitude water-level oscillations are generated by the meteorological forcing fields due to tropical cyclones in the Bay of Bengal. The tide also plays a significant role in determining the time history of the total water level. Due to the greenhouse warming associated with the increasing levels of carbon dioxide in the atmosphere, it is expected that the frequency and intensity of tropical cyclones in the Bay of Bengal will increase substantially within the next 50 to 100 years. This new breed of tropical cyclones, referred to as hypercanes, will generate storm surges on the coast of Bangladesh which could attain amplitudes of up to 15 m, much greater than the present-day amplitudes of up to 6 m. Various mitigation procedures are discussed and compared.  相似文献   

8.
The ability of the SMARA storm surge numerical prediction system to reproduce local effects in estuarine and coastal winds was recently improved by considering one-way coupling of the air–sea momentum exchange through the wave stress, and best forecasting practices for downscaling. The inclusion of long period atmospheric pressure forcing in tide and tide/surge calculations corrected a systematic error in the surge, produced by the South Atlantic Ocean quasi-stationary pressure patterns. The maximum forecast range for the storm surge at Buenos Aires provided by the real-time use of water level observations is approximately 12 h. The best available water level prediction is the 6-h forecast (nowcast) based on the closest water level observations. The 24-h forecast from the numerical models slightly improves this nowcast. Although the numerical forecast accuracy degrades after the first 48 h, the improvement to the full range observation-based prediction is maintained at the inner Río de la Plata area and extends to the first 3 days at the intermediate navigation channels.  相似文献   

9.
This paper establishes various advancements for the application of surrogate modeling techniques for storm surge prediction utilizing an existing database of high-fidelity, synthetic storms (tropical cyclones). Kriging, also known as Gaussian process regression, is specifically chosen as the surrogate model in this study. Emphasis is first placed on the storm selection for developing the database of synthetic storms. An adaptive, sequential selection is examined here that iteratively identifies the storm (or multiple storms) that is expected to provide the greatest enhancement of the prediction accuracy when that storm is added into the already available database. Appropriate error statistics are discussed for assessing convergence of this iterative selection, and its performance is compared to the joint probability method with optimal sampling, utilizing the required number of synthetic storms to achieve the same level of accuracy as comparison metric. The impact on risk estimation is also examined. The discussion then moves to adjustments of the surrogate modeling framework to support two implementation issues that might become more relevant due to climate change considerations: future storm intensification and sea level rise (SLR). For storm intensification, the use of the surrogate model for prediction extrapolation is examined. Tuning of the surrogate model characteristics using cross-validation techniques and modification of the tuning to prioritize storms with specific characteristics are proposed, whereas an augmentation of the database with new/additional storms is also considered. With respect to SLR, the recently developed database for the US Army Corps of Engineers’ North Atlantic Comprehensive Coastal Study is exploited to demonstrate how surrogate modeling can support predictions that include SLR considerations.  相似文献   

10.

Surrogate models are becoming increasingly popular for storm surge predictions. Using existing databases of storm simulations, developed typically during regional flood studies, these models provide fast-to-compute, data-driven approximations quantifying the expected storm surge for any new storm (not included in the training database). This paper considers the development of such a surrogate model for Delaware Bay, using a database of 156 simulations driven by synthetic tropical cyclones and offering predictions for a grid that includes close to 300,000 computational nodes within the geographical domain of interest. Kriging (Gaussian Process regression) is adopted as the surrogate modeling technique, and various relevant advancements are established. The appropriate parameterization of the synthetic storm database is examined. For this, instead of the storm features at landfall, the features when the storm is at closest distance to some representative point of the domain of interest are investigated as an alternative parametrization, and are found to produce a better surrogate. For nodes that remained dry for some of the database storms, imputation of the surge using a weighted k nearest neighbor (kNN) interpolation is considered to fill in the missing data. The use of a secondary, classification surrogate model, combining logistic principal component analysis and Kriging, is examined to address instances for which the imputed surge leads to misclassification of the node condition. Finally, concerns related to overfitting for the surrogate model are discussed, stemming from the small size of the available database. These concerns extend to both the calibration of the surrogate model hyper-parameters, as well as to the validation approaches adopted. During this process, the benefits from the use of principal component analysis as a dimensionality reduction technique, and the appropriate transformation and scaling of the surge output are examined in detail.

  相似文献   

11.
Chaudhuri  Sutapa  Goswami  Sayantika  Middey  Anirban  Das  Debanjana  Chowdhury  S. 《Natural Hazards》2015,78(2):1369-1385
Natural Hazards - Forecasting, with precision, the location of landfall and the height of surge of cyclonic storms prevailing over any ocean basin is very important to cope with the associated...  相似文献   

12.
The northeastern sector of the Arabian Sea, which covers the Gujarat coast of India and western coast of Pakistan, is a region vulnerable to extreme sea levels associated with tropical cyclones (TCs). Although the frequency of tropical cyclones in the Arabian Sea is not high, the coastal regions of India and Pakistan suffer in terms of loss of life and property caused by the surges. In view of this a location-specific fine resolution model is developed for the Gujarat coast of India and adjoining Pakistan coast. The east–west and north–south grid distance is about 3.0 km. Using this model, numerical experiments are carried out to simulate the surges generated by 1999 and 2001 cyclones which struck the Pakistan coast. The model computed surges are in agreement with the available observational estimates.  相似文献   

13.
Hurricane storm surge simulations for Tampa Bay   总被引:1,自引:0,他引:1  
Using a high resolution, three-dimensional, primitive equation, finite volume coastal ocean model with flooding and drying capabilities, supported by a merged bathymetric-topographic data set and driven by prototypical hurricane winds and atmospheric pressure fields, we investigated the storm surge responses for the Tampa Bay, Florida, vicinity and their sensitivities to point of landfall, direction and speed of approach, and intensity. All of these factors were found to be important. Flooding potential by wind stress and atmospheric pressure induced surge is significant for a category 2 hurricane and catastrophic for a category 4 hurricane. Tide, river, and wave effects are additive, making the potential for flood-induced damage even greater. Since storm surge sets up as a slope to the sea surface, the highest surge tends to occur over the upper reaches of the bay, Old Tampa Bay and Hillsborough Bay in particular. For point of landfall sensitivity, the worst case is when the hurricane center is positioned north of the bay mouth such that the maximum winds associated with the eye wall are at the bay mouth. Northerly (southerly) approaching storms yield larger (smaller) surges since the winds initially set up (set down) water level. As a hybrid between the landfall and direction sensitivity experiments, a storm transiting up the bay axis from southwest to northeast yields the smallest surge, debunking a misconception that this is the worst Tampa Bay flooding case. Hurricanes with slow (fast) translation speeds yield larger (smaller) surges within Tampa Bay due to the time required to redistribute mass.  相似文献   

14.
The impact of realistic representation of sea surface temperature (SST) on the numerical simulation of track and intensity of tropical cyclones formed over the north Indian Ocean is studied using the Weather Research and Forecast (WRF) model. We have selected two intense tropical cyclones formed over the Bay of Bengal for studying the SST impact. Two different sets of SSTs were used in this study: one from TRMM Microwave Imager (TMI) satellite and other is the weekly averaged Reynold’s SST analysis from National Center for Environmental Prediction (NCEP). WRF simulations were conducted using the Reynold’s and TMI SST as model boundary condition for the two cyclone cases selected. The TMI SST which has a better temporal and spatial resolution showed sharper gradient when compared to the Reynold’s SST. The use of TMI SST improved the WRF cyclone intensity prediction when compared to that using Reynold’s SST for both the cases studied. The improvements in intensity were mainly due to the improved prediction of surface latent and sensible heat fluxes. The use of TMI SST in place of Reynold’s SST improved cyclone track prediction for Orissa super cyclone but slightly degraded track prediction for cyclone Mala. The present modeling study supports the well established notion that the horizontal SST gradient is one of the major driving forces for the intensification and movement of tropical cyclones over the Indian Ocean.  相似文献   

15.
16.
李勇  田立柱  裴艳东  王福  王宏 《地质通报》2016,35(10):1638-1645
基于ROMS海洋模式,结合近年的地质实测资料,建立了渤海湾西部地区风暴潮漫滩的数值模型。对模型进行验证后,对渤海湾西部区域重现期为50a、100a、200a及500a的风暴潮漫滩进行了数值模拟,分析了不同重现期风暴潮漫滩发展的动态过程及最大漫滩淹水范围。结果表明,数值模型基本能反映风暴潮的增水趋势,能够模拟风暴潮漫滩发生发展的动态过程。随着风暴潮强度的增加,渤海湾西部地区淹水范围具有从东海岸向西部内陆区域扩展的趋势。通过曲线拟合发现,风暴潮最大漫滩面积比值与高水位之间基本呈线性关系。  相似文献   

17.
《地学前缘》2017,(4):124-133
热带气旋是全球最具破坏性的天气系统之一。随着全球气候变暖,热带气旋的异常活动受到了各国政府、民众和学术界广泛的关注。本文分析了热带气旋对海洋沉积物"从源到汇"过程中的作用及其机制,表明热带气旋是陆源沉积物、有机碳和污染物通过河流向海洋输送的重要控制因素;热带气旋产生的波浪、强流和内波可造成河口和陆架沉积物再悬浮、侵蚀、液化甚至剪切破坏,对陆架沉积物向深海输送起重要作用。虽然热带气旋有随全球变暖而增强的趋势,但热带气旋发生频率与全球变暖之间的关系尚不明确,对未来热带气旋发生频率的预测结果也存在较大分歧,对该问题的研究需要长期、高分辨率的热带气旋记录,使用热带气旋沉积记录研究热带气旋活动规律具有必要性和可行性。  相似文献   

18.
The convection and planetary boundary layer (PBL) processes play significant role in the genesis and intensification of tropical cyclones (TCs). Several convection and PBL parameterization schemes incorporate these processes in the numerical weather prediction models. Therefore, a systematic intercomparison of performance of parameterization schemes is essential to customize a model. In this context, six combinations of physical parameterization schemes (2 PBL Schemes, YSU and MYJ, and 3 convection schemes, KF, BM, and GD) of WRF-ARW model are employed to obtain the optimum combination for the prediction of TCs over North Indian Ocean. Five cyclones are studied for sensitivity experiments and the out-coming combination is tested on real-time prediction of TCs during 2008. The tracks are also compared with those provided by the operational centers like NCEP, ECMWF, UKMO, NCMRWF, and IMD. It is found that the combination of YSU PBL scheme with KF convection scheme (YKF) provides a better prediction of intensity, track, and rainfall consistently. The average RMSE of intensity (13?hPa in CSLP and 11?m?s?1 in 10-m wind), mean track, and landfall errors is found to be least with YKF combination. The equitable threat score (ETS) of YKF combination is more than 0.2 for the prediction of 24-h accumulated rainfall up to 125?mm. The vertical structural characteristics of cyclone inner core also recommend the YKF combination for Indian seas cyclones. In the real-time prediction of 2008 TCs, the 72-, 48-, and 24-h mean track errors are 172, 129, and 155?km and the mean landfall errors are 125, 73, and 66?km, respectively. Compared with the track of leading operational agencies, the WRF model is competing in 24?h (116?km error) and 72?h (166?km) but superior in 48-h (119?km) track forecast.  相似文献   

19.
A high-resolution storm surge model of Apalachee Bay in the northeastern Gulf of Mexico is developed using an unstructured grid finite-volume coastal ocean model (FVCOM). The model is applied to the case of Hurricane Dennis (July 2005). This storm caused underpredicted severe flooding of the Apalachee Bay coastal area and upriver inland communities. Accurate resolution of complicated geometry of the coastal region and waterways in the model reveals processes responsible for the unanticipated high storm tide in the area. Model results are validated with available observations of the storm tide. Model experiments suggest that during Dennis, excessive flooding in the coastal zone and the town of St. Marks, located up the St. Marks River, was caused by additive effects of coincident high tides (~10–15% of the total sea-level rise) and a propagating shelf wave (~30%) that added to the locally wind-generated surge. Wave setup, the biggest uncertainty, is estimated on the basis of empirical and analytical relations. The Dennis case is then used to test the sensitivity of the model solution to vertical discretization. A suite of model experiments is performed with varying numbers of vertical sigma (σ) levels, with different distribution of σ-levels within the water column and a varying bottom drag coefficient. The major finding is that the storm surge solution is more sensitive to resolution within the velocity shear zone at mid-depths compared to resolution of the upper and bottom layer or values of the bottom drag coefficient.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号