首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
As shown by statistical results, in the 23rd solar activity cycle the variation of the latitudes of rotating sunspots with time exhibits a butterfly pattern. We have studied the variations with phase for the mean square errors among the 4 fitting curves of the 2 wings of the butterfly diagram of sunspots and the 2 wings of the butterfly diagram of rotating sunspots in the 23rd solar activity cycle. The results show that a systematic time delay exists not only between the northern and southern hemispheres of the butterfly diagram of sunspots, but also between the northern and southern hemispheres of the butterfly diagram of rotating sunspots, even between the butterfly diagrams of the sunspots and rotating sunspots in the same hemisphere. This means that the 23rd-cycle sunspot activities in the northern and southern hemispheres happened not simultaneously, that a systematic time delay or advance (phase difference) exists between the northern and southern hemispheres, that the southern hemisphere lags behind the northern hemisphere, that a phase difference exists between the butterfly diagram of rotating sunspots and the butterfly diagram of sunspots in the 23rd cycle, and that the butterfly diagram of rotating sunspots lags behind that of sunspots. The observed delay is a little less than the theoretical value predicted by the dynamo model.  相似文献   

2.
The data of light variations of six blazars with low peak frequencies (i.e., BL Lacerta, 0235+164, OQ530, 0716+714, 3C 345, and 3C 273) at 4.8, 8, 14.5, 22 and 37 GHz in the recent thirty years have been collected from immense amount of literature. By using the method of discrete correlation function the correlations and delays of the light curves of these six sources at the 5 wavebands are analyzed. With the method of structural function, the periods and timescales of the light variations of these six sources are analyzed, and their amplitudes of light variations are compared and analyzed. As revealed by the result of analysis, among the six blazars the amplitudes of light variations of 0716+714 and 0235+164 are relatively large, and those of 3C 345 and OQ 530 are less. The amplitudes of light variations of 3C 273 and BL Lacertae are relatively smaller. As shown by the multi-waveband analysis of delays between two neighboring wavebands, 0235+164 exhibits the tendency of variation that the high-frequency wavebands precede the low-frequency wavebands. On the whole, 3C 345 exhibits the tendency that the high-frequency wavebands lag be-hind the low-frequency wavebands. The analyses of the other blazars show that in a part of radio wavebands there appears the tendency of variation that the high-frequency waveband leads the low-frequency waveband. Yet in the other radio wavebands there appears the tendency that the high-frequency waveband lags behind the low-frequency waveband. As revealed by the results of analyses with the method of structural function, the timescale, fitted slope, and period of light variations of 3C 345 are larger than those of the other five blazars with low peak frequencies. This demonstrates that the activity of 3C 345 is comparatively weaker than the other five sources, and implies that in the interior of 3C 345 there may exist some physical processes which are different from those of the other five blazars with low peak frequencies.  相似文献   

3.
The central compact object for some gamma-ray bursts (GRBs) may be a strongly magnetized millisecond pulsar. It can inject energy to the outer shock of the GRB by through the magnetic dipole radiation, and therefore causes the shallow decay of the early afterglow. Recently, from a large number of GRB X-ray afterglows observed by Swift/XRT(X-ray telescope), it is revealed that many of them exhibit the shallow decay about 102∼104 s after the burst prompt emission. We have fitted the X-ray afterglow light curves of 11 GRBs by using the energy injection model of a magnetar with the rotation period in the millisecond order of magnitude. The obtained result shows the validity and universality of the magnetar energy injection model in explaining the shallow decay of afterglows, and simultaneously provides some constraints on the magnetic field strength and rotation period of the central magnetar.  相似文献   

4.
High resolution photographic spectra of two fireballs have been analyzed. The fireballs were produced by meteoroids of asteroidal origin of the mass of the order of 1 kg. Temperature, size, and mass of the vapor cloud around the meteoroid was derived at selected points along the trajectory. Abundances of 11 elements, including lithium, were determined. The abundances of refractory elements in the vapors of the first meteoroid indicate that only 90–95% of the ablated material was vaporized. The meteoroid was likely a chondritic body. Relative stability of the vapor cloud was disturbed for 0.1 s after a major fragmentation of the meteoroid at the height of 42 km. Size and mass of the cloud decreased after the fragmentation and this enabled more intensive heat transfer from the incoming airflow. Both the vapor temperature and the vaporization temperature of the ablated melt increased. A brief millisecond flare of the fireball was produced under these conditions by a violent vaporization of small amount of material. The composition of the vapors of the second meteoroid can be explained either by an anomalous meteoroid composition with severely depleted Al, Ca, and Mg or by highly incomplete evaporation of the ablated material reaching only about 50%.  相似文献   

5.
In a previous work (Callegari and Yokoyama, Celest. Mech. Dyn. Astr. 98:5–30, 2007), the main features of the motion of the pair Enceladus–Dione were analyzed in the frozen regime, i.e., without considering the tidal evolution. Here, the results of a great deal of numerical simulations of a pair of satellites similar to Enceladus and Dione crossing the 2:1 mean-motion resonance are shown. The resonance crossing is modeled with a linear tidal theory, considering a two-degrees-of-freedom model written in the framework of the general three-body planar problem. The main regimes of motion of the system during the passage through resonance are studied in detail. We discuss our results comparing them with classical scenarios of tidal evolution of the system. We show new scenarios of evolution of the Enceladus–Dione system through resonance not shown in previous approaches of the problem.  相似文献   

6.
On the basis of Kang et al.’s semi-analytical model of galaxy formation and evolution, the joint formation and evolution of galaxies and their central massive black holes are studied. It is assumed that the activity of quasars is caused by merging of galaxies. Via the introduction of the mass accretion rate of black holes, the bolometric luminosity function of quasars with the redshifts in the region of 0 < z < 4.5 is ascertained. With the respective limitations of the three factors, i.e., the Eddington ratio, black-hole mass function and two-point correlation function, the luminosity function predicted by the model may coincide with observations in the entire range of luminosity. This result reveals that the constant Eddington ratio cannot well describe the accretion of black holes, so the Eddington ratio has to be increased with the redshift in a certain range of redshift. The major merging of galaxies is the effective mechanism of triggering the quasar activity, while the minor merging can merely affect the quasars with low and intermediate luminosities. Its effect on the high-luminosity quasars is very small. At the place of z=1, the quasars with extremely high luminosities possess more intense properties of clustering than other quasars.  相似文献   

7.
Interferometry in the visible provides milliarcsecond spatial resolution and thus has been used for studying the circumstellar environment of active hot stars. In this paper I will illustrate how the visibility modulus and phase can be used to better constrain the physics of Be disks through results from the VLA, the MkII and the GI2T interferometers. I will insist on the importance and the potential of coupling high angular resolution with high spectral resolution to the study of Be shells. Finally I will present a possible study of the circumstellar disk of Be stars using the VLTI. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Modern-day synoptic-scale eastern Mediterranean climatology provides a useful context to synthesize the diverse late Pleistocene (60–12 ka) paleohydrologic and paleoenvironmental indicators of past climatic conditions in the Levant and the deserts to its south and east. We first critically evaluate, extract, and summarize paleoenvironmental and paleohydrologic records. Then, we propose a framework of eastern Mediterranean atmospheric circulation features interacting with the morphology and location of the southeast Mediterranean coast. Together they strongly control the spatial distribution of rainfall and wind pattern. This cyclone–physiography interaction enforces the observed rainfall patterns by hampering rainfall generation south and southeast of the latitude of the north Sinai coast, currently at 31°15′.The proposed framework explains the much-increased rains in Lebanon and northern Israel and Jordan as deduced from pollen, rise and maintenance of Lake Lisan, and speleothem formation in areas currently arid and semiarid. The proposed framework also accounts for the southward and eastward transition into semiarid, arid, and hyperarid deserts as expressed in thick loess accumulation at the deserts' margins, dune migration from west to east in the Sinai and the western Negev, and the formation of hyperarid (< 80 mm yr− 1) gypsic–salic soils in the southern Negev and Sinai. Our climatic synthesis explains the hyperarid condition in the southern Negev, located only 200–250 km south of the much-increased rains in the north, probably reflecting a steeper rainfall gradient than the present-day gradient from the wetter Levant into its bordering southern and eastern deserts.At present, the rainiest winter seasons in Lebanon and northern and central Israel are associated with more frequent (+ 20%), deeper Cyprus Lows traversing the eastern Mediterranean at approximately the latitude of southern Turkey. Even these wettest years in northern Israel do not yield above average annual rainfall amounts in the hyperarid southern Negev. This region is mainly influenced by the Active Red Sea Troughs that produce only localized rains. The eastern Mediterranean Cyprus Lows also produce more dust storms and transport higher amounts of suspended dust to the loess area than any other atmospheric pattern. Concurrent rainfall and dust are essential to the late Pleistocene formation of the elongated thick loess zone along the desert northern margin. Even with existing dust storms, the lack of rain and very sparse vegetation account for the absence of late Pleistocene loess sequences from the southern Negev and the formation of hyperarid soils.When the north Sinai coast shifted 30–70 km northwest due to last glacial global sea level lowering, the newly exposed coastal areas supplied the sand and dust to these active eastern Mediterranean cyclones. This enforced the latitude of the northern boundary of the loess zone to be directly due east of the LGM shoreline. This shift of coast to the northwest inhibited rainfall in the southern Levant deserts and maintained their hyperaridity. Concurrently, frequent deep eastern Mediterranean Cyprus Lows were funneled along the northern Mediterranean increasing (probably doubling) the rains in central and northern Israel, Lebanon, southwestern Syria and northern Jordan. These storms and rains formed lakes, forests, and speleothems only a short distance north of the deserts in the southern Levant.  相似文献   

9.
Investigating space plasma turbulence from single-point measurements is known to be characterized by unavoidable ambiguities in disentangling temporal and spatial variations. Solving this problem has been one of the major goals of the Cluster mission. For that purpose multipoint measurements techniques, such as the k-filtering, have been developed. Such techniques combine several time series recorded simultaneously at different points in space to estimate the corresponding energy density in the wavenumber space. Here we apply the technique to both simulated and Cluster magnetometer data in the solar wind (SW) and investigate the errors and limitations that arise due to the separation of the spacecraft and the quality of the tetrahedral configuration. Specifically, we provide an estimation of the minimum and maximum scales that can be accurately measured given a specific distance between the satellites and show the importance of the geometry of the tetrahedron and the relationship of that geometry to spatial aliasing. We also present recent results on characterizing small scale SW turbulence and provide scientific arguments supporting the need of new magnetometers having better sensitivity than the existing ones. Throughout the paper we emphasize technical challenges and their solutions that can be considered for a better preparation of the Cross-Scale mission.  相似文献   

10.
Ephemerides of planetary satellites are needed to address many problems. These ephemerides are used for subsequent observations. A comparison of the available ephemerides with new observations allows the accuracy of the former to be assessed. However, the precision of the ephemerides must be known a priori when solving the tasks. In this paper we formulate and solve the problem of estimating the precision of the ephemerides of outer planetary satellites derived from observations when applied up to the future moments.The methods of assessing the precision of ephemerides involve producing a set of samples of the same ephemeris inferred from observations with different samples of Monte Carlo generated random errors (RO) superimposed onto it. The statistical parameters of simulated observational errors are based on the results of the reduction of real satellite observations. We compute the deviations of the samples of the ephemeris from the standard ephemeris inferred from real observations and adopt the root-mean-square deviation of the apparent coordinates as the precision of the ephemeris. We also use alternative methods: one based on the matrix of covariances of parameter errors (RP), and another one based on bootstrap samples of observations (BS).We use three methods (RO, RP, and BS) to estimate the precision of the ephemerides of all the 107 outer planetary satellites over the 2010-2020 time interval. The precision of the ephemerides of different satellites varies from 0.05 to 4.0 arcsec. For a number of satellites new observations are of vital importance for maintaining the precision of the ephemerides at a level that would allow identification of satellites during the reduction of observations. For some satellites the precision of their ephemerides is of the order of the sizes of their orbits and such satellites can be considered to have been lost. We show that the method of bootstrap samples (BS) can give doubtful results in the cases where there are few observations, which covered a time interval that is shorter than the orbital period of the satellite.Our results suggest obtaining more precise ephemeris making new observations at the times of maximum estimated errors of the ephemeris.All the inferred estimates of the precision of ephemerides are available from the MULTI-SAT ephemeris server: www.imcce.fr/sat (IMCCE), www.sai.msu.ru/neb/nss/index.htm (SAI).  相似文献   

11.
喷流的研究是天文学和天体物理学中最使人兴趣的课题之一。在本文中,陈述了河外射电源中喷流在现阶段的观测阶段,讨论了某些典型的高能天体中喷流的特性。第一部分所涉及的内容包括喷流的定义,产生和传播;也包括喷流的不对称性和统一的解释模式的讨论。  相似文献   

12.
Sedimentological investigations in Pålamalm, one of the few elongated, flat-topped, raised glaciofluvial deposits of the Stockholm area, show that the deposit was formed in a subglacial tunnel environment during the early Preboreal. The study provides evidence for dynamic links between the morphology of a subglacial conduit, the regional subglacial discharge, and the regional ice-sheet dynamics. The general morphology of the deposit and the lateral esker displacement are parts of a regional pattern.The development and interrelations of the eight distinguished lithofacies at Pålamalm provides evidence for the triggering mechanism responsible for the deposition of this 3-km-long glaciofluvial deposit. Strongly deformed gravels occur close to large dead-ice structures. The occurrence of another elongated and flat-topped glaciofluvial deposit, Jordbromalm, further to the east suggests a sudden regional subglacial outburst (jökulhlaup) in the area. The sudden, intensive enhancement of water discharge in Pålamalm is probably due to the same outburst. This is assumed to have caused the ice roof of the conduit to collapse. The high meltwater-pressure gradient caused the diameter of the conduit to increase rapidly. In addition, the subglacial tunnel took a new route because the original course became blocked by large ice blocks that had fallen from the roof.The steep flanks of the deposit, the presence of large dead-ice depressions along the central part of the deposit and the appearance of two different tunnel-core facies in the main cross-section of the Pålamalm deposit support the hypothesis of a course change after the jökulhlaup. A probable late-glacial crustal rebound in response to the rapid deglaciation in the area may have been the triggering mechanism for the abrupt discharge of the subglacial lake.  相似文献   

13.
The BepiColombo space mission is one of the European Space Agency's cornerstone projects; it is planned for launch in 2013 to study the planet Mercury. One of the imaging instruments of BepiColombo is a STereo Camera (STC), whose main scientific objective is the global stereo mapping of the entire surface of Mercury. STC will permit the generation of a Digital Terrain Model (DTM) of Mercury's surface, improving the interpretation of morphological features at different scales and clarifying the stratigraphic relationships between different geological units.To evaluate the effectiveness of the STC-derived DTM for geological purposes, a series of simulations has been performed to find out to what extent the errors expected in the DTM may prevent the correct classification and interpretation of geological features. To meet this objective, Earth analogues (a crater, a lava cone and an endogenous dome) of likely components of the Hermean surface, small enough to be near the detection limit of the STC, were selected and a photorealistic three-dimensional (3D) model of each feature was generated using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) stereo images. Stereoscopic pairs of synthetic images of each feature were then generated from the 3D model at different locations along the BepiColombo orbit. For each stereo pair, the corresponding Hermean DTM was computed using image correlation and compared to the reference data to assess the loss of detail and interpretability. Results show that interpretation and quantitative analysis of simple craters morphologies and small volcanic features should be possible all along the periherm orbit arc. At the apoherm only the larger features can be unequivocally distinguished, but they will be reconstructed to a poor approximation.  相似文献   

14.
The accurate computation of families of periodic orbits is very important in the analysis of various celestial mechanics systems. The main difficulty for the computation of a family of periodic orbits of a given period is the determination within a given region of an individual member of this family which corresponds to a periodic orbit. To compute with certainty accurate individual members of a specific family we apply an efficient method using the Poincaré map on a surface of section of the considered problem. This method converges rapidly, within relatively large regions of the initial conditions. It is also independent of the local dynamics near periodic orbits which is especially useful in the case of conservative dynamical systems that possess many periodic orbits, often of the same period, close to each other in phase space. The only computable information required by this method is the signs of various function evaluations carried out during the integration of the equations of motion. This method can be applied to any system of celestial mechanics. In this contribution we apply it to the photogravitational problem.  相似文献   

15.
VLTI interferometry will allow imaging of galactic and extragalactic sources with milliarcsecond angular resolution. For moderately bright sources the spectral resolution will be of the order of 10000. These capabilities will allow detailed studies of solar system objects, stars, proto-planetary systems and the detection of hot extra-solar planets. The observations of galactic nuclei will allow unprecedented measurements of physical parameters in these systems. VLTI will be a prime instrument to study the immediate environment of the massive black hole at the center of the Milky Way. With the exception of a few `self-referencing' sources the observations of extragalactic nuclei will benefit from an extended capability for simultaneous measurements of nearby reference sources for fringe tracking. With beam combination instruments like AMBER, MIDI, PRIMA, and GENIE the VLTI will reach full maturity at a time when other interferometric instruments at different wavelengths will be fully operational. Most important are ALMA (in the mm- and sub-mm-domain), LOFAR and SKA (in the radio meter to centimeter domain) and of course VLB-networks in the radio, and other – at that time –well developed interferometers in the optical. A major scientific potential of future scientific VLTI programs will lie in an efficient combination of these high angular resolution capabilities. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
17.
Pleistocene glaciolacustrine sediments of the Kleszczów Graben (the Be chatów outcrop, central Poland) record the origin, development, and decay of a glacial lake formed in the area of a subsiding basin during the advance of the Elsterian ice sheet. The sediments represent a transition from glaciofluvial to glaciolacustrine facies at the bottom part, and from glaciolacustrine to glacial facies at the top. The glaciolacustrine facies represent a few environments inside the lake basin, from the marginal sub-aqueous slope through the bottom part to the sub-aqueous fan. The contact of the glaciolacustrine facies and the overlying glacial till is erosional, and implies that a considerable part of the shallow-water lake facies was eroded.The lake existed for not longer than 600 years, but its development proceeded under the conditions of the Kleszczów Graben subsidence and the approach of the Elsterian ice sheet. Both factors influenced the sedimentation processes. The tectonic and climatic factors were recognised on the basis of facies analysis of lithofacies associations, and of their vertical and lateral changes.  相似文献   

18.
The sets of L-matrices of the second, fourth and eighth orders are constructed axiomatically. The defining relations are taken from the regularization of motion equations for Keplerian problem. In particular, the Levi-Civita matrix and KS-matrix are L-matrices of second and fourth order, respectively. A theorem on the ranks of L-transformations of different orders is proved. The notion of L-similarity transformation is introduced, certain sets of L-matrices are constructed, and their classification is given. An application of fourth order L-matrices for N-body problem regularization is given. A method of correction for regular coordinates in the Runge–Kutta–Fehlberg integration method for regular motion equations of a perturbed two-body problem is suggested. Comparison is given for the results of numerical integration in the problem of defining the orbit of a satellite, with and without the above correction method. The comparison is carried out with respect to the number of calls to the subroutine evaluating the perturbational accelerations vector. The results of integration using the correction turn out to be in a favorable position.  相似文献   

19.
OJ 287 is a BL Lac object which exhibits intense activities of low peak-frequencies. Its energy spectrum in low frequency band is quite similar with those of two other TeV BL Lac objects (i.e., 0716+714 and BL Lacertae). However, the Cerenkov telescope did not detect its TeV rays. By using the observational data of these three heavenly bodies and comparing the discrepan- cies of their minimal periods of light variations and delays at 22 GHz, 37 GHz and B-waveband, we have further investigated the possible reason why the TeV gamma-rays of OJ 287 have not been observed. The results of analyses are as fol- lows. (1) For the minimal periods of light variations, the periods of OJ 287 at 37 GHZ and B-waveband are short. At 22 GHz the results of OJ 287 and 0716+714 are comparable, but the period of OJ 287 is much shorter in comparison with that of BL Lacertae, and this shows that its activity is more intense. However, the TeV gamma-rays of OJ 287 have not been detected, which implies that the radiation of OJ 287 in TeV waveband may have no connection with the minimal periods of light variations in these three low-energy wavebands. (2) In respect of delays, the delay of OJ 287 in the B waveband with respect to 37 GHz is longer than that of 0716+714, but shorter than that of BL Lacertae. Its delay at 37 GHz in respect to 22 GHz is shorter than that of 0716+714. Meanwhile, the delay of BL Lacertae at 37 GHz in respect to 22 GHz is negative, which implies that 22 GHz precedes 37 GHz. Via the comparison and analysis of delays, no obvious differences between OJ 287 and 0716+714 as well as BL Lacertae have been found. On the side of energy spectra, it is quite possible that due to the steep energy spectrum of OJ 287 in TeV waveband, the Cerenkov telescope has not detected the gamma radiation of OJ 287. However, nowadays it is still not clear whether the steep energy spectrum in TeV energy range has some influence on the light variations in low energy realm.  相似文献   

20.
A series of quasi-periodic magnetopause crossings were recorded by the MESSENGER spacecraft during its third flyby of Mercury on 29 September 2009, likely caused by a train of propagating Kelvin–Helmholtz (KH) vortices. We here revisit the observations to study the internal structure of the waves. Exploiting MESSENGER's rapid traversal of the magnetopause, we show that the observations permit a reconstruction of the structure of a rolled-up KH vortex directly from the spacecraft's magnetic field measurements. The derived geometry is consistent with all large-scale fluctuations in the magnetic field data, establishes the non-linear nature of the waves, and shows their vortex-like structure. In several of the wave passages, a reduction in magnetic field strength is observed in the middle of the wave, which is characteristic of rolled-up vortices and is related to the increase in magnetic pressure required to balance the centrifugal force on the plasma in the outer regions of a vortex, previously reported in computer simulations. As the KH wave starts to roll up, the reconstructed geometry suggests that the vortices develop two gradual transition regions in the magnetic field, possibly related to the mixing of magnetosheath and magnetospheric plasma, situated at the leading edges from the perspectives of both the magnetosphere and the magnetosheath.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号