首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A regional climate model is used to investigate the mechanism of interdecadal rainfall variability, specifically the drought of the 1970s and 1980s, in the Sahel region of Africa. The model is the National Center for Environmental Prediction’s (NCEPs) Regional Spectral Model (RSM97), with a horizontal resolution of approximately equivalent to a grid spacing of 50 km, nested within the ECHAM4.5 atmospheric general circulation model (AGCM), which in turn was forced by observed sea surface temperature (SST). Simulations for the July–September season of the individual years 1955 and 1986 produced wet conditions in 1955 and dry conditions in 1986 in the Sahel, as observed. Additional July–September simulations were run forced by SSTs averaged for each month over the periods 1950–1959 and the 1978–1987. These simulations yielded wet conditions in the 1950–1959 case and dry conditions in the 1978–1987 case, confirming the role of SST forcing in decadal variability in particular. To test the hypothesis that the SST influences Sahel rainfall via stabilization of the tropospheric sounding, simulations were performed in which the temperature field from the AGCM was artificially modified before it was used to force the regional model. We modified the original 1955 ECHAM4.5 temperature profiles by adding a horizontally uniform, vertically varying temperature increase, taken from the 1986–1955 tropical mean warming in either the AGCM or the NCEP/National Center for Atmospheric Research Reanalysis. When compared to the 1955 simulations without the added tropospheric warming, these simulations show a drying in the Sahel similar to that in the 1986–1955 difference and to the decadal difference between the 1980s and 1950s. This suggests that the tropospheric warming may have been, at least in part, the agent by which the SST increases led to the Sahel drought of the 1970s and 1980s.  相似文献   

2.
Decadal Sahelian rainfall variability was mainly driven by sea surface temperatures (SSTs) during the twentieth century. At the same time SSTs showed a marked long-term global warming (GW) trend. Superimposed on this long-term trend decadal and multi-decadal variability patterns are observed like the Atlantic Multidecadal Oscillation (AMO) and the inter-decadal Pacific Oscillation (IPO). Using an atmospheric general circulation model we investigate the relative contribution of each component to the Sahelian precipitation variability. To take into account the uncertainty related to the use of different SST data sets, we perform the experiments using HadISST1 and ERSSTv3 reconstructed sets. The simulations show that all three SST signals have a significant impact over West Africa: the positive phases of the GW and the IPO lead to drought over the Sahel, while a positive AMO enhances Sahel rainfall. The tropical SST warming is the main cause for the GW impact on Sahel rainfall. Regarding the AMO, the pattern of anomalous precipitation is established by the SSTs in the Atlantic and Mediterranean basins. In turn, the tropical SST anomalies control the impact of the IPO component on West Africa. Our results suggest that the low-frequency evolution of Sahel rainfall can be interpreted as the competition of three factors: the effect of the GW, the AMO and the IPO. Following this interpretation, our results show that 50% of the SST-driven Sahel drought in the 1980s is explained by the change to a negative phase of the AMO, and that the GW contribution was 10%. In addition, the partial recovery of Sahel rainfall in recent years was mainly driven by the AMO.  相似文献   

3.
The effect of vegetation feedback on decadal-scale Sahel rainfall variability is analyzed using an ensemble of climate model simulations in which the atmospheric general circulation model ICTPAGCM (“SPEEDY”) is coupled to the dynamic vegetation model VEGAS to represent feedbacks from surface albedo change and evapotranspiration, forced externally by observed sea surface temperature (SST) changes. In the control experiment, where the full vegetation feedback is included, the ensemble is consistent with the observed decadal rainfall variability, with a forced component 60 % of the observed variability. In a sensitivity experiment where climatological vegetation cover and albedo are prescribed from the control experiment, the ensemble of simulations is not consistent with the observations because of strongly reduced amplitude of decadal rainfall variability, and the forced component drops to 35 % of the observed variability. The decadal rainfall variability is driven by SST forcing, but significantly enhanced by land-surface feedbacks. Both, local evaporation and moisture flux convergence changes are important for the total rainfall response. Also the internal decadal variability across the ensemble members (not SST-forced) is much stronger in the control experiment compared with the one where vegetation cover and albedo are prescribed. It is further shown that this positive vegetation feedback is physically related to the albedo feedback, supporting the Charney hypothesis.  相似文献   

4.
Recent studies have suggested that sea surface temperature (SST) is an important source of variability of the North Atlantic Oscillation (NAO). Here, we deal with four basic aspects contributing to this issue: (1) we investigate the characteristic time scales of this oceanic influence; (2) quantify the scale-dependent hindcast potential of the NAO during the twentieth century as derived from SST-driven atmospheric general circulation model (AGCM) ensembles; (3) the relevant oceanic regions are identified, corresponding SST indices are defined and their relationship to the NAO are evaluated by means of cross spectral analysis and (4) our results are compared with long-term coupled control experiments with different ocean models in order to ensure whether the spectral relationship between the SST regions and the NAO is an intrinsic mode of the coupled climate system, involving the deep ocean circulation, rather than an artefact of the unilateral SST forcing. The observed year-to-year NAO fluctuations are barely influenced by the SST. On the decadal time scales the major swings of the observed NAO are well reproduced by various ensembles from the middle of the twentieth century onward, including the negative state in the 1960s and part of the positive trend afterwards. A six-member ECHAM4-T42 ensemble reveals that the SST boundary condition affects 25% of total decadal-mean and interdecadal-trend NAO variability throughout the twentieth century. The most coherent NAO-related SST feature is the well-known North Atlantic tripole. Additional contributions may arise from the southern Pacific and the low-latitude Indian Ocean. The coupled climate model control runs suggest only the North Atlantic SST-NAO relationship as being a true characteristic of the coupled climate system. The coherence and phase spectra of observations and coupled simulations are in excellent agreement, confirming the robustness of this decadal-scale North Atlantic air–sea coupled mode.  相似文献   

5.
This study assesses the detectability of external influences in changes of precipitation extremes in the twentieth century, which is explored through a perfect model analysis with an ensemble of coupled global climate model (GCM) simulations. Three indices of precipitation extremes are defined from the generalized extreme value (GEV) distribution: the 20-year return value (P 20), the median (P m), and the cumulative probability density as a probability-based index (PI). Time variations of area-averages of these three extreme indices are analyzed over different spatial domains from the globe to continental regions. Treating all forcing simulations (ALL; natural plus anthropogenic) of the twentieth century as observations and using a preindustrial control run (CTL) to estimate the internal variability, the amplitudes of response patterns to anthropogenic (ANT), natural (NAT), greenhouse-gases (GHG), and sulfate aerosols (SUL) forcings are estimated using a Bayesian decision method. Results show that there are decisively detectable ANT signals in global, hemispheric, and zonal band areas. When only land is considered, the global and hemispheric detection results are unchanged, but detectable ANT signals in the zonal bands are limited to low latitudes. The ANT signals are also detectable in the P m and PI but not in P 20 at continental scales over Asia, South America, Africa, and Australia. This indicates that indices located near the center of the GEV distribution (P m and PI) may give better signal-to-noise ratio than indices representing the tail of the distribution (P 20). GHG and NAT signals are also detectable, but less robustly for more limited extreme indices and regions. These results are largely insensitive when model data are masked to mimic the availability of the observed data. An imperfect model analysis in which fingerprints are obtained from simulations with a different GCM suggests that ANT is robustly detectable only at global and hemispheric scales, with high uncertainty in the zonal and continental results.  相似文献   

6.
The output of several multi-century simulations with a coupled ocean–atmosphere general circulation model is examined with respect to the variability of global storm activity in winter on time scales of decades and longer. The frequency of maximum wind speed events within a grid box, using the lower limits on the Beaufort wind speed scale of 8 and 10 Bft as thresholds, is taken as the characteristic parameter. Two historical climate runs with time-dependent forcing of the last five centuries, one control simulation, and three climate change experiments are considered. The storm frequency shows no trend until recently. Global maps for the industrially influenced period hardly differ from pre-industrial maps, even though significant temperature anomalies temporarily emerge in the historical runs. Two indicators describing the frequency and the regional shift of storm activity are determined. In historical times they are decoupled from temperature. Variations in solar and volcanic forcing in the historical simulations as well as in greenhouse gas concentrations for the industrially influenced period are not related to variations in storm activity. Also, anomalous temperature regimes like the Late Maunder Minimum are not associated with systematic storm conditions. In the climate change experiments, a poleward shift of storm activity is found in all three storm track regions. Over the North Atlantic and Southern Ocean, storm activity increases, while it decreases over the Pacific Ocean. In contrast to the historical runs, and with the exception of the North Pacific storm frequency index, the storm indices parallel the development of temperature, exceeding the 2 σ-range of pre-industrial variations in the early twenty-first century.  相似文献   

7.
The Twentieth Century Reanalysis (20thCR) dataset released in 2010 covers the period 1871-2010 and is one of the longest reanalysis datasets available worldwide. Using ERA-40, ERA-Interim and NCEP-NCAR reanalysis data, as well as HadSLP2 data and meteorological temperature records over eastern China, the performances of 20thCR in reproducing the spatial patterns and temporal variability of the East Asian winter monsoon (EAWM) are examined. Results indicate that 20thCR data: (1) can accurately reproduce the most typical configuration patterns of all sub-factors differences in the main circulation fields over East Asia involved in the EAWM system, albeit with some in comparison to ERA-40 reanalysis data; (2) is reliable and stable in describing the temporal variability of EAWM since the 1930s; and (3) can describe the high-frequency variability of EAWM better than the low-frequency fluctuations, especially in the early period. In conclusion, caution should be taken when using 20thCR data to study interdecadal variabilities or long-term trends of the EAWM, especially prior to the 1930s.  相似文献   

8.
Water resources systems are designed and operated on assumption of stationary hydrology. Existence of trends and other changes in the data invalidates this assumption, and detection of the changes in hydrological time series should help us revise the approaches used in assessing, designing and operating our systems. In addition, trend and step change studies help us understand the impact of man’s activities (e.g. urbanisation, deforestation, dam construction, agricultural activities, etc.) on the hydrological cycle. Trends and step changes in the seasonal and annual total rainfall for 20 stations in the Lake Victoria basin were analysed. The seasonal rainfall for any station in a given year was defined in two ways: (1) fixed time period where the rainy seasons were taken as occurring from March–May (long rains) and from October–December (short rains); and (2) variable periods where the rainy seasons were taken as the three consecutive months with maximum total rainfall covering the period of January–June (long rains) and July–December (short rains), to take into account the fact that the onset of rainy seasons within the basin varies from year to year and from one station to the next. For each station, sub datasets were derived covering different periods (all available data at the station, 1941–1980, 1961–1990, 1971–end of each station’s time series). The trends were analysed using the Mann-Kendall method, while the step changes were analysed using the Worsley Likelihood method. The results show that positive trends predominate, with most stations showing trend being located in the northern part of the basin, though this pattern is not conclusive. In all, 17% of the cases have trends, of which 67% are positive. The 1960s represent a significant upward jump in the basin rainfall. Seasonal rainfall analysis shows that the short rains tend to have more trends than the long rains. The impact of the varying month of onset of the rainy season is that the results from analyzing the fixed-period and variable-period time series are rarely the same, meaning the two series have different characteristics. It may be argued that the variable-period time series are more reliable as a basis for analysing trends and step changes, since these time series reflect more closely the actual variability in rainy seasons from one year to the next. The fixed-period analysis would, on the other hand, find more practical use in planning.  相似文献   

9.
Research on the forcing of drought and pluvial events over North America is dominated by general circulation model experiments that often have operational limitations (e.g., computational expense, ability to simulate relevant processes, etc). We use a statistically based modeling approach to investigate sea surface temperature (SST) forcing of the twentieth century pluvial (1905?C1917) and drought (1932?C1939, 1948?C1957, 1998?C2002) events. A principal component (PC) analysis of Palmer Drought Severity Index (PDSI) from the North American Drought Atlas separates the drought variability into five leading modes accounting for 62% of the underlying variance. Over the full period spanning these events (1900?C2005), the first three PCs significantly correlate with SSTs in the equatorial Pacific (PC 1), North Pacific (PC 2), and North Atlantic (PC 3), with spatial patterns (as defined by the empirical orthogonal functions) consistent with our understanding of North American drought responses to SST forcing. We use a large ensemble statistical modeling approach to determine how successfully we can reproduce these drought/pluvial events using these three modes of variability. Using Pacific forcing only (PCs 1?C2), we are able to reproduce the 1948?C1957 drought and 1905?C1917 pluvial above a 95% random noise threshold in over 90% of the ensemble members; the addition of Atlantic forcing (PCs 1?C2?C3) provides only marginal improvement. For the 1998?C2002 drought, Pacific forcing reproduces the drought above noise in over 65% of the ensemble members, with the addition of Atlantic forcing increasing the number passing to over 80%. The severity of the drought, however, is underestimated in the ensemble median, suggesting this drought intensity can only be achieved through internal variability or other processes. Pacific only forcing does a poor job of reproducing the 1932?C1939 drought pattern in the ensemble median, and less than one third of ensemble members exceed the noise threshold (28%). Inclusion of Atlantic forcing improves the ensemble median drought pattern and nearly doubles the number of ensemble members passing the noise threshold (52%). Even with the inclusion of Atlantic forcing, the intensity of the simulated 1932?C1939 drought is muted, and the drought itself extends too far into the southwest and southern Great Plains. To an even greater extent than the 1998?C2002 drought, these results suggest much of the variance in the 1932?C1939 drought is dependent on processes other than SST forcing. This study highlights the importance of internal noise and non SST processes for hydroclimatic variability over North America, complementing existing research using general circulation models.  相似文献   

10.
11.
The ability of the ARPEGE AGCM in reproducing the twentieth century Sahelian drought when only forced by observed SST time evolution has been characterized. Atmospheric internal variability is shown to have a strong contribution in driving the simulated precipitation variability over the Sahel at decadal to multi-decadal time scales. The simulated drought is associated with a southward shift of the continental rainbelt over central and eastern Sahel, associated with an inter-hemispheric SST mode (the southern hemisphere oceans warming faster than the northern ones after 1970). The analysis of idealized experiments further highlights the importance of the Pacific basin. The related increase of the tropospheric temperature (TT) over the tropics is then suggested to dry the margin of convection zones over Africa, in agreement with the so-called “upped-ante” mechanism. A simple metric is then defined to determine the ability of the CMIP3 coupled models in reproducing both the observed Sahel drying and these mechanisms, in order to determine the reliability of the twenty-first century scenarios. Only one model reproduces both the observed drought over the Sahel and consistent SST/TT relationships over the second half of the twentieth century. This model predicts enhanced dry conditions over the Sahel at the end of the twenty-first century. However, as the mechanisms highlighted here for the recent period are not stationary during the twenty-first century when considering the trends, similarities between observed and simulated features of the West African monsoon for the twentieth century are a necessary but insufficient condition for a trustworthy prediction of the future.  相似文献   

12.
An objective cyclone tracking algorithm is applied to twentieth century reanalysis (20CR) 6-hourly mean sea level pressure fields for the period 1871–2010 to infer historical trends and variability in extra-tropical cyclone activity. The tracking algorithm is applied both to the ensemble-mean analyses and to each of the 56 ensemble members individually. The ensemble-mean analyses are found to be unsuitable for accurately determining cyclone statistics. However, pooled cyclone statistics obtained by averaging statistics from individual members generally agree well with statistics from the NCEP-NCAR reanalyses for 1951–2010, although 20CR shows somewhat weaker cyclone activity over land and stronger activity over oceans. Both reanalyses show similar cyclone trend patterns in the northern hemisphere (NH) over 1951–2010. Homogenized pooled cyclone statistics are analyzed for trends and variability. Conclusions account for identified inhomogeneities, which occurred before 1949 in the NH and between 1951 and 1985 in the southern hemisphere (SH). Cyclone activity is estimated to have increased slightly over the period 1871–2010 in the NH. More substantial increases are seen in the SH. Notable regional and seasonal variations in trends are evident, as is profound decadal or longer scale variability. For example, the NH increases occur mainly in the mid-latitude Pacific and high-latitude Atlantic regions. For the North Atlantic-European region and southeast Australia, the 20CR cyclone trends are in agreement with trends in geostrophic wind extremes derived from in-situ surface pressure observations. European trends are also consistent with trends in the mean duration of wet spells derived from rain gauge data in Europe.  相似文献   

13.
Sumant Nigam  Bin Guan 《Climate Dynamics》2011,36(11-12):2279-2293
The twentieth century record of the annual count of Atlantic tropical cyclones (TCs) is analyzed to develop consistent estimates of its natural variability and secular change components. The analysis scheme permits development of multidecadal trends from natural variability alone, reducing aliasing of the variability and change components. The scheme is rooted in recurrent variability modes of the influential SST field and cognizant of Pacific-Atlantic links. The origin of increased cyclone counts in the early 1930s, suppressed counts in 1950?C1960s, and the recent increase (since 1990s) is investigated using the count data set developed by Landsea et al. (J Clim 23: 2508?C2519, 2010). We show that annual TC counts can be more closely reconstructed from Pacific and Atlantic SSTs than SST of the main development region (MDR) of Atlantic TCs; the former accounting for ~60% of the decadal count variance as opposed to ~30% for MDR SST. Atlantic Multidecadal Oscillation (AMO) dominates the reconstruction, accounting for ~55% of the natural decadal count variance, followed by the ENSO Non-Canonical and Pan-Pacific decadal variability contributions. We argue for an expansive view of the domain of influential SSTs??extending much beyond the MDR. The additional accounting of count variance by SSTs outside the MDR suggests a role for remotely-forced influences over the tropical Atlantic: the Pan-Pacific decadal mode is linked with decreased westerly wind shear (200?C850?hPa) in its warm phase, much as the AMO impact itself. Non-canonical ENSO variability, in contrast, exerts little influence on decadal timescales. Interestingly, the secular but non-uniform warming of the oceans is linked with increased westerly shear, leading to off-setting dynamical and thermodynamical impacts on TC activity! The early-1930s increase in smoothed counts can be partially (~50%) reconstructed from SST natural variability. The 1950?C1960s decrease, in contrast, could not be reconstructed at all, leading, deductively, to the hypothesis that it results from increased aerosols in this period. The early-1990s increase is shown to arise both from the abatement of count suppression maintained by SST natural variability and the increasing SST secular trend contribution; the abatement is related to the AMO phase-change in early-1990s. Were it not for this suppression, TC counts would have risen since the early 1970s itself, tracking the secular change contribution. The analysis suggests that when SST natural variability begins to significantly augment counts in the post-1990 period??some evidence for which is present in the preceding decade??Atlantic TC counts could increase rapidly on decadal timescales unless offset by SST-unrelated effects which apparently account for a non-trivial amount (~40%) of the decadal count variance.  相似文献   

14.
Based on observations made during recent decades, reconstructed precipitation for the period A.D. 1736–2000, dry–wet index data for A.D. 500–2000, and a 1000-yr control simulation using the Community Earth System Model with fixed pre-industrial external forcing, the decadal variability of summer precipitation over eastern China is studied. Power spectrum analysis shows that the dominant cycles for the decadal variation of summer precipitation are: 22–24 and quasi-70 yr over the North China Plain; 32–36, 44–48, and quasi-70 yr in the Jiang–Huai area; and 32–36 and 44–48 yr in the Jiang–Nan area. Bandpass decomposition from observation, reconstruction, and simulation reveals that the variability of summer precipitation over the North China Plain, Jiang–Huai area, and Jiang–Nan area, at scales of 20–35, 35–50, and 50–80 yr, is not consistent across the entire millennium. We also find that the warm (cold) phase of the Pacific Decadal Oscillation generally corresponds to dry (wet) conditions over the North China Plain, but wet (dry) conditions in the Jiang–Nan area, from A.D. 1800, when the PDO became strengthened. However, such a correspondence does not exist throughout the entire last millennium. Data–model comparison suggests that these decadal oscillations and their temporal evolution over eastern China, including the decadal shifts in the spatial pattern of the precipitation anomaly observed in the late 1970s, early 1990s, and early 2000s, might result from internal variability of the climate system.  相似文献   

15.
Summary  An analysis of day-to-day variability was performed on two century-long daily minimum and maximum temperature series from Switzerland. Warmer temperatures during the 20th century have been accompanied by a reduction in day-to-day variability, particularly for minimum temperatures and for winter. There is a significant negative correlation between day-to-day variability and the skewness of the temperature distribution, particularly in winter and for minimum temperatures. Lower variability is linked to a reduced number of cold days and nights. Higher NAO index values tend to be associated not only with warmer temperatures but also with lower day-to-day variability. This paper confirms that the temperature warming during the 20th century has happened mainly through the loss of the coldest part of the series, not only in the 24-hour or yearly cycle, but also through the loss of the coldest episodes in each month. Received September 20, 2000 Revised January 8, 2001  相似文献   

16.
17.
The daily discharge time series in the lower Danube basin (Orsova) have been considered for the 1900–2005 period. The extreme value theory (EVT) is applied for the study of daily discharges incorporating some covariates. Two methods are applied for fitting the data to an extreme value distribution: block maxima and peaks over thresholds (POT). Using the block maxima approach associated with the use of the generalised extreme value (GEV) distribution, monthly and seasonal maxima of daily discharge for 1900–2005 have been analysed. Separately the monthly maxima of daily discharge for the 1958–2001 was analysed in order to be compatible with atmospheric circulation available from ERA-40. For performing parameter estimation, the maximum likelihood estimation (MLE) method was used. From the three possible types of GEV distribution, a Weibull distribution fits both the monthly and seasonal maxima of the daily discharges very well. The North Atlantic Oscillation (NAO) and the first ten principal components (PC) of the decomposition in multi-variate empirical orthogonal functions (MEOF) of three atmospheric fields (sea level pressure, 500 hPa and 500–1000 hPa thickness) over the Atlantic-European region (ERA-40), have been introduced as covariates. An improvement over the model without the covariate is found by incorporating NAO as the covariate in location parameter, especially for the spring maxima having the NAO as predictor during the winter. Related to atmospheric circulation influence, the most significant results are obtained by incorporating the first 10 PCs of the MEOF in the location parameter of GEV distribution within a month before the month of the discharge level. Regarding the POT approach associated with generalised Pareto distribution (GPD), different thresholds have been tested for daily discharges in the period 1900–2005, where the maxima were fitted by a bounded (or beta) distribution.  相似文献   

18.
Atmospheric moisture budget and its regulation of the summer (June–July–August) precipitation over the Southeastern United State (SE U.S.) were examined during 1948–2007 using PRECipitation REConstruction over Land and multiple reanalysis datasets. The analysis shows that the interannual variation of SE U.S. summer precipitation can be largely explained by the leading Empirical Orthogonal Function mode showing a spatially homogenous sub-continental scale pattern. Consequently, areal-averaged precipitation was investigated to focus on the large-scale rainfall changes over the SE U.S. The wavelet analysis identifies an increased 2–4 year power spectrum in recent 30 years (1978–2007), suggesting an intensification of the interannual variability. Analysis of the atmospheric moisture budget indicates that the increase in precipitation variability is mainly caused by moisture transport, which exhibits a similar increase in the 2–4 year power spectrum for the same period. Moisture transport, in turn, is largely controlled by the seasonal mean component rather than the subseasonal-scale eddies. Furthermore, our results indicate that dynamic processes (atmospheric circulation) are more important than thermodynamic processes (specific humidity) in regulating the interannual variation of moisture transport. Specifically, the North Atlantic Subtropical High western ridge position is found to be a primary regulator, with the ridge in the northwest (southwest) corresponding to anomalous moisture divergence (convergence) over the SE U.S. Changes in moisture transport consistent with the increased frequency of these two ridge types in recent 30 years favor the intensification of summer precipitation variability.  相似文献   

19.
20.
The measurements obtained during the ECLATS experiment were used in order to determine the surface energy budget of the Sahel region (Niamey, Niger). This expedition was carried out from November 15 to December 10, 1980, during the dry period. Some data were collected by an instrumented aircraft, from which the turbulent fluxes were obtained in the boundary layer around midday; data were also collected at a surface station in order to estimate the surface energy budget continuously by the profile method. The aircraft measurements show the homogeneity of the vertical fluxes over large areas, allowing generalization to the bushy steppe of the Sahel region. The mean diurnal cycle of the energy budget is characterized by high values of ground heat flux and weak values of latent heat flux (deduced from the balance of the energy budget). This cycle is compared with that of the Koorin expedition, performed in similar conditions (tropical savanna in the dry period). We compare the three midday budgets: during Koorin; during ECLATS, at the ground station, and with the aircraft. The important differences that appear in the net radiative flux are explained by the difference in surface albedo.Ecole des Sciences, Université de Niamey, B.P. 10662 Niamey, Niger.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号