首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, the climate mean, variability, and dominant patterns of the Northern Hemisphere wintertime mean 200 hPa geopotential height (Z200) in a CMIP and a set of AMIP simulations from the National Centers for Environmental Prediction (NCEP) Climate Forecast System Version 2 (CFSv2) are analyzed and compared with the NCEP/NCAR reanalysis. For the climate mean, it is found that a component of the bias in stationary waves characterized with wave trains emanating from the tropics into both the hemispheres can be attributed to the precipitation deficit over the Maritime continent. The lack of latent heating associated with the precipitation deficit may have served as the forcing of the wave trains. For the variability of the seasonal mean, both the CMIP and AMIP successfully simulated the geographical locations of the major centers of action, but the simulated intensity was generally weaker than that in the reanalysis, particularly for the center over the Davis Strait-southern Greenland area. It is also noted that the simulated action center over Aleutian Islands was southeastward shifted to some extent. The shift was likely caused by the eastward extension of the Pacific jet. Differences also existed between the CMIP and the AMIP simulations, with the center of actions over the Aleutian Islands stronger in the AMIP and the center over the Davis Strait-southern Greenland area stronger in the CMIP simulation. In the mode analysis, the El Nino-Southern Oscillation (ENSO) teleconnection pattern in each dataset was first removed from the data, and a rotated empirical orthogonal function (REOF) analysis was then applied to the residual. The purpose of this separation was to avoid possible mixing between the ENSO mode and those generated by the atmospheric internal dynamics. It was found that the simulated ENSO teleconnection patterns from both model runs well resembled that from the reanalysis, except for a small eastward shift. Based on the REOF modes of the residual data, six dominant modes of the reanalysis data had counterparts in each model simulation, though with different rankings in explained variance and some distortions in spatial structure. By evaluating the temporal coherency of the REOF modes between the reanalysis and the AMIP, it was found that the time series associated with the equatorially displaced North Atlantic Oscillation in the two datasets were significantly correlated, suggesting a potential predictability for this mode.  相似文献   

2.
Summary Interannual variability in the activity of fluctuations with subseasonal time scales is investigated based upon observed data of the extratropical Northern Hemisphere circulation over the recent 38 winters. Their activity is represented in the root mean square (RMS) field of filtered geopotential height in which the fluctuations with time scales between 10 days and a season are retained. The singular value decomposition (SVD) was applied to the covariance matrix between the seasonal mean and RMS fields for the 500-hPa height.The leading SVD mode for the north Pacific represents the strong relationship between the polarity of the Pacific/North American (PNA) pattern in the seasonal-mean anomalies and the amplitude of a meridionally-oriented dipole-like oscillation within the season. It tends to be more active when the seasonal-mean jet stream is strongly diffluent over the central Pacific than when the jet is extended zonally across the Pacific. The leading SVD mode for the north Atlantic is indicative of stronger intraseasonal fluctuations near Greenland in the presence of anticyclonic seasonal-mean anomalies associated with the North Atlantic Oscillation (NAO).The intraseasonal variability in the extratropics is strongly correlated with the underlying sea surface temperature (SST) anomalies, and that in the north Pacific also exhibits significant but rather weak correlation with SST anomalies in the equatorial Pacific. The activity of the atmospheric intraseasonal fluctuations is found to be modulated in accordance with interdecadal variability in the seasonal-mean circulation and SST.On leave from Department of Earth & Planetary Physics, University of Tokyo.With 12 Figures  相似文献   

3.

The El Niño/Southern Oscillation (ENSO) strongly influences the large-scale atmospheric circulation over the extratropical North Pacific during boreal winter, which has an important impact on North American winter climate. This study analyses the interdecadal variability of the ENSO teleconnection to the wintertime extratropical North Pacific, over the period 1900–2010, using a range of observationally derived datasets and an ensemble of atmospheric model simulations. The observed teleconnection strength is found to vary substantially over the 20th century. Specifically, 31-year periods in the early-century (1912–1942), mid-century (1946–1976) and the late-century (1980–2010) are identified in the observations when the ENSO teleconnection to the North Pacific circulation are found to be particularly strong, weak and strong respectively. The ENSO teleconnection to the North Pacific in the atmospheric model ensemble is weak in the mid-century period and substantially stronger in the late-century, closely following the variability in the observed ENSO-North Pacific teleconnection. In the early-century, however, the atmospheric model also exhibits a weak teleconnection to the North Pacific, unlike in observations. In a subset of the model realisations that exhibit similar ENSO-North Pacific teleconnection as in observations during the early-century period there are large differences in extratropical circulation but not in equatorial Pacific precipitation anomalies, in contrast to the late-century period. This suggests that the high correlation in the early century period is largely due to internal extratropical variability. The important implications of these results for seasonal predictability and the assessment of seasonal forecasting systems are discussed.

  相似文献   

4.
Summary An earlier developed multidecadal database of Northern Hemisphere cut-off low systems (COLs), covering a 41 years period (from 1958 to 1998) is used to study COLs interannual variability in the European sector (25°–47.5° N, 50° W–40° E) and the major factors controlling it. The study focus on the influence on COLs interannual variability, of larger scale phenomena such as blocking events and other main circulation modes defined over the Euro-Atlantic region. It is shown that there is a very large interannual variability in the COLs occurrence at the annual and seasonal scales, although without significant trends. The influence of larger scale phenomena is seasonal dependent, with the positive phase of the NAO favoring autumn COL development, while winter COL occurrence is mostly related to blocking events. During summer, the season when more COLs occur, no significant influences were found.  相似文献   

5.
Summary An Empirical Orthogonal Function (EOF) analysis has been applied to NOAA/NESDIS snow concentration data. The major modes of variability in January Northern Hemisphere snow concentration have been extracted and analysed. The analysis was completed separately over Eurasia and North America. Strong, coherent patterns were found for each of the first three EOFs that were analysed over both continents. Over Eurasia the first EOF showed much of Europe as well as western and central Asia in phase but eastern Asia of the opposite phase although the signal was somewhat weaker. North America had a very similar first EOF with a large positive anomaly centered over Montana reaching loadings of over 0.8. East of the Great Lakes, the anomaly changes sign, although again, its magnitude is much smaller.An EOF examination was also made of the anomalous 700 hPa geopotential height fields. These modes of variability were correlated with those of snow cover with the aim of investigating the mechanisms by which the surface boundary snow and the overlying circulation can interact. The stronger correlations were discussed and logical physical scenarios were presented for each. The results indicate that there was no common pattern whereby one medium was always forcing the other but rather a complex array of interactions where each medium could influence the other. To support the physical basis of the relationships being depicted by the EOF study, a case study of January 1981 was made.The presence of intercontinental relationships was also investigated and such relations were strongly suggested. It was proposed that the large scale organisation of the atmosphere between the two continents could go some way to explaining these links in snow variability.With 6 Figures  相似文献   

6.
Using monthly data from the European Center for Medium-Range Weather Forecast 40-year reanalysis (ERA-40), we have revealed a teleconnection pattern over the extratropical Northern Hemisphere through the empirical orthogonal function analysis of summer upper-tropospheric eddy temperature. When temperature is higher (lower) over the Eastern Hemisphere (EH), it is lower (higher) over the Western Hemisphere (WH). The teleconnection manifested by this out-of-phase relationship is referred to as the Asian–Pacific oscillation (APO). The values of an index measuring the teleconnection are high before 1976 and low afterwards, showing a downward trend of the stationary wave at a rate of 4% per year during 1958–2001. The index also exhibits apparent interannual variations. When the APO index is high, anomalous upper-tropospheric highs (lows) appear over EH (WH). The formation of APO is likely associated with a zonal vertical circulation in the troposphere. Unforced control runs of both the NCAR Community Atmospheric Model version 3 and the Community Climate System Model version 3 capture the major characteristics of the teleconnection pattern and its associated vertical structure. The APO variability is closely associated with sea surface temperature (SST) in the Pacific, with a significantly positive correlation between APO and SST in the extratropical North Pacific and a significantly negative correlation in the tropical eastern Pacific. Sensitivity experiments show that the anomalies of SST over these two regions influence the APO intensity, but their effects are opposite to each other. Compared to the observation, the positive and negative anomalous centers of the extratropical tropospheric temperature triggered by the SST anomalies have a smaller spatial scale.  相似文献   

7.
In the present study, the authors investigated the relationship between the Arctic Oscillation (AO) and the high-frequency variability of daily sea level pressures in the Northern Hemisphere in winter (November through March), using NCEP/NCAR reanalysis datasets for the time period of 1948/49-2000/01.High-frequency signals are defined as those with timescales shorter than three weeks and measured in terms of variance, for each winter for each grid. The correlations between monthly mean AO index and high-frequency variance are conducted. A predominant feature is that several regional centers with high correlation show up in the middle to high latitudes. Significant areas include mid- to high-latitude Asia centered at Siberia, northern Europe and the middle-latitude North Atlantic east of northern Africa. Theirs trong correlations can also be confirmed by the singular value decomposition analysis of covariance between mean SLP and high-frequency variance. This indicates that the relationship of AO with daily Sea Level Pressure (SLP) is confined to some specific regions in association with the inherent atmospheric dynamics. In middle-latitude Asia, there is a significant (at the 95% level) trend of variance of-2.26% (10yr)^-1. Another region that displays a strong trend is the northwestern Pacific with a significant rate of change of 0.80% (10 yr)^-1. If the winter of 1948/49, an apparent outlier, is excluded, a steady linear trend of 1.51% (10 yr)^-1 shows up in northern Europe. The variance probability density functions (PDFs) are found to change in association with different AO phases. The changes corresponding to high and low AO phases, however, are asymmetric in these regions. Some regions such as northern Europe display much stronger changes in high AO years, whereas some other regions such as Siberia show a stronger connection to low AO conditions. These features are supported by ECMWF reanalysis data. However, the dynamical mechanisms involved in the AO-high frequency SLP variance connection have not been well understood,and this needs further study.  相似文献   

8.
9.
10.
11.
Observed and simulated multidecadal variability in the Northern Hemisphere   总被引:19,自引:5,他引:14  
 Analyses of proxy based reconstructions of surface temperatures during the past 330 years show the existence of a distinct oscillatory mode of variability with an approximate time scale of 70 years. This variability is also seen in instrumental records, although the oscillatory nature of the variability is difficult to assess due to the short length of the instrumental record. The spatial pattern of this variability is hemispheric or perhaps even global in scale, but with particular emphasis on the Atlantic region. Independent analyses of multicentury integrations of two versions of the GFDL coupled atmosphere-ocean model also show the existence of distinct multidecadal variability in the North Atlantic region which resembles the observed pattern. The model variability involves fluctuations in the intensity of the thermohaline circulation in the North Atlantic. It is our intent here to provide a direct comparison of the observed variability to that simulated in a coupled ocean-atmosphere model, making use of both existing instrumental analyses and newly available proxy based multi-century surface temperature estimates. The analyses demonstrate a substantial agreement between the simulated and observed patterns of multidecadal variability in sea surface temperature (SST) over the North Atlantic. There is much less agreement between the model and observations for sea level pressure. Seasonal analyses of the variability demonstrate that for both the model and observations SST appears to be the primary carrier of the multidecadal signal. Received: 8 June 1999 / Accepted: 11 February 2000  相似文献   

12.
In this paper, the anomaly of disturbance height field over Northern Hemisphere due to SST anomaly in the tropical Atlantic Ocean is simulated by using the general circulation model of IAP. A quasi-geostrophic, 34-level spherical coordinate model is also used to compute the distribution of atmospheric circulation anomaly when there is an anomaly of heat source over the tropical Atlantic. The computed results show that, owing to the heat source anomaly over the tropical Atlantic, the EU-pattern anomaly in the winter circulation may be caused. Namely, a ridge will be enhanced over the northwest Europe, a trough will be deepened over Siberia, but a positive anomaly of disturbance height field will be formed over the northeast China, Japan and other areas of East Asia. Moreover, the numerically simulated results show that the above-mentioned EU-pattern anomalies of circulation are due to the propagations of planetary wave train. About 15 days after an anomaly of the heat source over the tropical Atlantic is injected, the EU-pattern anomaly of atmospheric circulation is formed. This is in good agreement with the results analysed theoretically. On the leave from Geophysical Institute, Faculty of Science in Tokyo University, Japan.  相似文献   

13.
利用NCEP/NCAR再分析资料,对1948/1949-1999/2000共52个冬季的北太平洋上空中纬度阻塞异常的气修特征进行了统计分析,小波分析和功率谱分析结果表明该区域阻塞发生的频数具有很明显的3-7年的年际振荡和年代际变化特征。同时2-7年带通平均的小波方差谱分析结果表明阻塞的这种年际变化的振幅存在着缓慢下降的趋势,且气候突变在20世纪70年代,这进一步证明了北太平洋上空的阻塞活动具有年代际变化特征。对强阻塞异常的冬季和弱阻塞异常的冬季分别进行合成分析,结果表明,对于阻塞异常强的冬季,北太平洋西向东北方向加强并分裂成两个中心,而SST异常在中纬度太平洋则对应着典型的PDO型,在赤道地区则为类La Nina型的海温分布。而对于阻塞异常弱的冬季则对应截然不同甚至相反的分布特征,即500hPa高度异常场表现为符号相反的PNA型,风暴路径中心在日界线附近呈纬向型分布。同时SST异常在赤道地区则为典型的El Nino型的海温分布。以上结果揭示出北太平洋阻塞活动的年际变化可能主要与热带海温的遥响应相联系,而年代际变化则主要与中纬度局地的PDO型海温及其通过斜压瞬变波的海-气相互作用有关。  相似文献   

14.
Instead of conventional East Asian winter monsoon indices(EAWMIs), we simply use two large-scale teleconnection patterns to represent long-term variations in the EAWM. First, the Urals blocking pattern index(UBI) is closely related to cold air advection from the high latitudes towards western Siberia, such that it shows an implicit linkage with the Siberian high intensity and the surface air temperature(SAT) variations north of 40?N in the EAWM region. Second, the well-known western Pacific teleconnection index(WPI) is connected with the meridional displacement of the East Asian jet stream and the East Asian trough. This is strongly related to the SAT variations in the coastal area south of 40?N in the EAWM region.The temperature variation in the EAWM region is also represented by the two dominant temperature modes, which are called the northern temperature mode(NTM) and the southern temperature mode(STM). Compared to 19 existing EAWMIs and other well-known teleconnection patterns, the UBI shows the strongest correlation with the NTM, while the WPI shows an equally strong correlation with the STM as four EAWMIs. The UBI–NTM and WPI–STM relationships are robust when the correlation analysis is repeated by(1) the 31-year running correlation and(2) the 8-year high-pass and low-pass filter. Hence,these results are useful for analyzing the large-scale teleconnections of the EAWM and for evaluating this issue in climate models. In particular, more studies should focus on the teleconnection patterns over extratropical Eurasia.  相似文献   

15.
北半球阻塞高压的统计分析   总被引:13,自引:1,他引:13  
赵汉光  陈雪珍 《气象》1990,16(3):3-7
  相似文献   

16.
 An ensemble of twenty-three 14-year experiments conducted with the ECHAM-4 GCM has been examined to test the model's capability to simulate the principal modes of interannual variability. The integrations were performed under specified monthly SST between 1979–1993. The analysis was focused on the Southern Hemisphere (SH) extratropics. Empirical orthogonal functions analysis (EOF) using seasonal anomaly fields has been performed to isolate the principal modes that dominate the southern extratropical variability at the interannual time scale. Leading patterns of 500 hPa geopotential height (z500) have been compared with those estimated from the ECMWF re-analysis dataset. The model is able to adequately reproduce the spatial pattern of the annular mode, but it represents the temporal variations of the oscillation less satisfactorily. The model simulation of the Pacific South American (PSA) pattern is better, both in the shape of the pattern and in the temporal evolution. To verify if the capability of the model to adequately simulate the temporal oscillation of the propagating patterns is related to the increased influence of the tropical external forcing, covarying SST-atmospheric modes have been identified by singular value decomposition (SVD). In winter (July-August-September, JAS) the tropical SST variability is highly correlated with the ENSO mode. In summer (January-February-March, JFM) the strength of the teleconnections is related to strong westerly anomalies, disrupted by a meridional out of phase relation near to South America. The large size of the ensemble was exploited by comparing the time-varying model spread and degrees of freedom of the simulated extratropical circulation. Results show that when the extratropical circulation has a few degrees of freedom, the reproducibility is relatively low and the ensemble is governed by a fairly robust zonally symmetric structure of dispersion. Received: 9 May 2000 / Accepted: 30 January 2001  相似文献   

17.
潘延  张洋  李舒婷 《气象科学》2022,42(4):440-456
本文评估了36个CMIP5模式和39个CMIP6模式对近期观测中揭示的北半球冬季大气环流与高原冬春气温之间的相关关系的模拟能力。利用最大协方差(MCA)分析方法,计算并比较了观测和模式中冬季北半球200 hPa位势高度场与同后期青藏高原近地面气温的耦合关系。整体而言,大部分CMIP模式能够模拟出显著的冬季北半球大气环流与青藏高原气温之间的相关关系,且CMIP6模式模拟相关特征和作用机制的能力较CMIP5均有所提升。与观测相比,历史情景下36个CMIP5模式中有26个能够模拟出显著的大气环流与同后期高原气温之间的相关关系,其中对于相关的位势高度场空间模态的模拟明显好于对高原气温异常场空间模态的模拟。同情景下39个CMIP6模式中有37个能模拟出显著相关关系,且CMIP6模式更能模拟出观测中MCA模态的位势高度场上北极涛动(AO)和西太平洋遥相关型(WP)反相位叠加的大气环流特征。在对MCA模态时间变率的模拟上,大部分模式都能重现青藏高原整体变暖的趋势,部分模式能够模拟出观测中位势高度场时间主成分的年际变率,并且CMIP6表现要优于CMIP5。对耦合环流型的动力诊断显示,相比CMIP5模式...  相似文献   

18.
A monthly snow accumulation and melt model is used with gridded monthly temperature and precipitation data for the Northern Hemisphere to generate time series of March snow-covered area (SCA) for the period 1905 through 2002. The time series of estimated SCA for March is verified by comparison with previously published time series of SCA for the Northern Hemisphere. The time series of estimated Northern Hemisphere March SCA shows a substantial decrease since about 1970, and this decrease corresponds to an increase in mean winter Northern Hemisphere temperature. The increase in winter temperature has caused a decrease in the fraction of precipitation that occurs as snow and an increase in snowmelt for some parts of the Northern Hemisphere, particularly the mid-latitudes, thus reducing snow packs and March SCA. In addition, the increase in winter temperature and the decreases in SCA appear to be associated with a contraction of the circumpolar vortex and a poleward movement of storm tracks, resulting in decreased precipitation (and snow) in the low- to mid-latitudes and an increase in precipitation (and snow) in high latitudes. If Northern Hemisphere winter temperatures continue to warm as they have since the 1970s, then March SCA will likely continue to decrease.  相似文献   

19.
Summary  High resolution aircraft observations made along flight tracks over inhomogeneous surface in the late wintertime boreal zone are described and compared to 2D mesoscale model simulations with surface properties defined at 2 km resolution from maps. All observations displayed the expected small-scale turbulence. On top of that, the near-surface wind speeds (but not directions) showed mesoscale variations related to local topography and roughness. Upward (but not downward) SW and LW radiative fluxes and ground temperature also displayed mesoscale variability; in SW radiation this was clearly due to local albedo changes. In the sensible heat flux there was strong horizontal variation near the surface in correlation with surface types. The above observed mesoscale along-track variations were reasonably well represented by the mesoscale model simulation. The track-averaged observed sensible and latent heat flux profiles were in rough agreement with a mixing length approach, which used the track-averaged wind, temperature and moisture profiles as input (mimicking a first-order turbulence closure scheme of a GCM). Received September 20, 1999 Revised January 21, 2000  相似文献   

20.
陈文  魏科 《大气科学进展》2009,26(5):855-863
We investigated the interannual variations of the winter stratospheric polar vortex in this paper. EOF analysis shows that two modes of variability dominate the stratospheric polar vortex on interannual timescales. The leading mode (EOF1) reflects the intensity variation of the polar vortex and is characterized by a geopotential height seesaw between the polar region and the mid-latitudes. The second one (EOF2) exhibits variation in the zonal asymmetric part of the polar vortex, which mainly describes the stationary planetary wave activity. As the strongest interannual variation signal in the atmosphere, the QBO has been shown to influence mainly the strength of the polar vortex. On the other hand, the ENSO cycle, as the strongest interannual variation signal in the ocean, has been shown to be mainly associated with the variation of stationary planetary wave activity in the stratosphere. Possible influences of the stratospheric polar vortex on the tropospheric circulation are also discussed in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号