首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 50 毫秒
1.
The absorption properties of the water vapor continuum and a number of weak bands for H2O, O2, CO2, CO, N2O, CH4, and O3 in the solar spectrum are incorporated into the Fu-Liou radiation parameterization program by using the correlated k-distribution method (CKD) for the sorting of absorption lines. The overlap absorption of the H2O lines and the H2O continuum (2500-14500 cm^-1) are treated by taking the two gases as a single-mixture gas in transmittance calculations. Furthermore, in order to optimize the computation efforts, CO2 and CH4 in the spectral region 2850-5250 cm^-1 are taken as a new singlemixture gas as well. For overlap involving other absorption lines in the Fu-Liou spectral bands, the authors adopt the multiplication rule for transmittance computations under which the absorption spectra for two gases are assumed to be uncorrelated. Compared to the line-by-line (LBL) computation, it is shown that the errors in fluxes introduced by these two approaches within the context of the CKD method are small and less than 0.48% for the H20 line and continuum in the 2500-14500 cm^-1 solar spectral region, -1% for H2O (line) H2O (continuum) CO2 CH4 in the spectral region 2850-5250 cm^-1, and -1.5% for H2O (line) H2O (continuum) O2 in the 7700-14500 cm^-1 spectral region. Analysis also demonstrates that the multiplication rule over a spectral interval as wide as 6800 cm^-1 can produce acceptable errors with a maximum percentage value of about 2% in reference to the LBL calculation. Addition of the preceding gases increases the absorption of solar radiation under all sky conditions. For clear sky, the increase in instantaneous solar absorption is about 9%-13% (-12 W m^-2) among which the H20 continuum produces the largest increase, while the contributions from O2 and CO2 rank second and third, respectively. In cloudy sky, the addition of absorption amounts to about 6-9 W m^-2. The new, improved program with the incorporation of the preceding gases produces a smaller solar absorption in clouds due to the reduced solar flux reaching the cloud top.  相似文献   

2.
The absorption properties of the water vapor continuum and a number of weak bands for H2O, O2, CO2, CO, N2O, CH4, and O3 in the solar spectrum are incorporated into the Fu-Liou radiation parameterization program by using the correlated k-distribution method (CKD) for the sorting of absorption lines. The overlap absorption of the H2O lines and the H2O continuum (2500-14500 cm-1) are treated by taking the two gases as a single-mixture gas in transmittance calculations. Furthermore, in order to optimize the computation efforts, CO2 and CH4 in the spectral region 2850-5250 cm-1 are taken as a new single-mixture gas as well. For overlap involving other absorption lines in the Fu-Liou spectral bands, the authors adopt the multiplication rule for transmittance computations under which the absorption spectra for two gases are assumed to be uncorrelated. Compared to the line-by-line (LBL) computation, it is shown that the errors in fluxes introduced by these two approaches within the context of the CKD method are small and less than 0.48% for the H2O line and continuum in the 2500-14500 cm-1 solar spectral region, -1% for H2O (line) H2O (continuum) CO2 CH4 in the spectral region 2850-5250 cm-1, and -1.5% for H2O (line) H2O (continuum) O2 in the 7700-14500 cm-1 spectral region. Analysis also demonstrates that the multiplication rule over a spectral interval as wide as 6800 cm-1 can produce acceptable errors with a maximum percentage value of about 2% in reference to the LBL calculation. Addition of the preceding gases increases the absorption of solar radiation under all sky conditions. For clear sky, the increase in instantaneous solar absorption is about 9%-13% (~12 W m~2) among which the H2O continuum produces the largest increase, while the contributions from O2 and CO2 rank second and third, respectively. In cloudy sky, the addition of absorption amounts to about 6-9 W m-2. The new, improved program with the incorporation of the preceding gases produces a smaller solar absorption in clouds due to the reduced solar flux reaching the cloud top.  相似文献   

3.
大气二氧化碳(CO2)探测仪(ACGS, Atmospheric Carbon dioxide Grating Spectrometer)搭载于中国全球二氧化碳观测科学试验卫星(TanSat),通过探测0.76 μm、1.61 μm、2.06 μm波段的反射太阳光谱,采用最优估计算法反演大气CO2浓度。满足高光谱分辨率和高精度CO2浓度反演需求,精确探测光谱波长的变化非常重要。本文以高分辨率太阳参考光谱的夫朗禾费吸收线作为参考基准,利用ACGS对太阳的观测光谱计算了ACGS三个谱段通道中心波长位置在一年内的变化情况。结果显示,三个谱段的波长变化在光谱分辨率10%以内,满足光谱定标精度需求。这种变化可能是由于仪器在轨状态变化引起,特别是在轨运行温度变化引起的。ACGS波长的微小变化需要在产品反演中进行修正。基于独立太阳夫琅禾费吸收线的在轨光谱定标方法不仅可以有效监测ACGS的光谱稳定性,还可以为L2产品的处理的提供参考信息。  相似文献   

4.
Since 1984, about 15000 high quality infrared solar spectra have beenrecorded with state-of-the-art grating and Fourier transform spectrometersat the International Scientific Station of the Jungfraujoch, Switzerland.Nonlinear least squares spectral curve fitting of selected microwindowscontaining isolated and well characterized lines of 20 telluric gases haveallowed to retrieve their total vertical column abundances above thestation, leading to observational data bases essential to derive long- andshort-term changes experienced by these species during the last 12 years. Inthis paper, we focus on atmospheric gases of particular interest within thecontext of the EUROTRAC/TOR (Tropospheric Ozone Research) project; secularevolution as well as seasonal cycles of the minor constituentsCH4, CO and of the trace gasesC2H6, OCS, C2H2, HCNand H2CO are reported and discussed. The long-livedN2O is included as a tracer of the dynamic activity of theatmosphere.  相似文献   

5.
张鹏  石广玉 《气象学报》2003,61(1):85-94
由大气顶射出太阳辐射的形式解出发,结合球形粒子的米散射理论,由反射太阳光谱推导获得了反演整层大气气溶胶粒子体积谱分布的权重函数。在权重函数特征分析的基础上,根据一个简单的线性反演算法,利用大气辐射传输计算模拟的大气顶反射太阳光谱,反演获得了不同气溶胶浓度和复折射率条件下的气溶胶粒子体积谱。结果表明,初步建立了一套自洽的大气气溶胶体积谱分布的反演方法。通过米散射计算获得的反演参数考虑了波长对粒子半径的权重特征,使气溶胶体积谱的反演具有了明确的物理依据;同目前常用的查算表方法相比,简化了反演方案中参数化的复杂程度。  相似文献   

6.
The interaction of the Aretic winter aerosol (Arctic haze) with solar radiation produces changes in the radiation field that result in the enhancement of scattering and absorption processes which alter the energy balance and solar energy distribution in the Arctic atmosphere-surface system. During the second Arctic Gas and Aerosols Sampling Project (AGASP II) field experiment, we measured radiation parameters using the NOAA WP-3D research aircraft as a platform. State-of-the-art instrumentation was used to measure in situ the absorption of solar radiation by the Arctic atmosphere during severe haze events. Simultaneously with the absorption measurements, we determined optical depths, and total, direct, and scattered radiation fields. All optical measurements were made at spectral bands centered at 412, 500, 675, and 778 nm and with a bandpass of 10 nm. With this selection of spectral regions we concentrated on the measurement of the radiative effects of the aerosol excluding most of the contributions by the gaseous components of the atmosphere. An additional measurement performed during these experiments was the determination of total solar spectrum fluxes. The experimentally determined parameters were used to define an aerosol model that was employed to deduce the absorption by the aerosols over the full solar spectrum and to calculate atmospheric heating rate profiles. The analyses summarized above allowed us to deduce the magnitude of the change in some important parameters. For example, we found changes in instantaneous heating rate of up to about 0.6 K/day. Besides the increased absorption (30 to 40%) and scattering of radiation by the atmosphere, the haze reduces the surface absorption of solar energy by 6 to 10% and the effective planetary albedo over ice surfaces by 3 to 6%. The vertical distribution of the absorbing aerosol is inferred from the flux measurements. Values for the specific absorption of carbon are found to be around 6 m2/g for externally mixed aerosol and about 11.7 m2/g for internally mixed aerosol. A complete study of the radiative effects of the Arctic haze should include infrared measurements and calculations as well as physics of the ice, snow, and water surfaces.  相似文献   

7.
X波段双偏振雷达反演雨滴谱方法研究   总被引:3,自引:1,他引:2  
X波段双偏振雷达观测参数能够完成雨滴谱反演,但是由于X波段雷达波长较短,降水观测时存在较大的衰减,本文采用自适应约束算法进行反射率和差分反射的衰减订正。通过对雨滴模型的散射模拟以及对雨滴谱进行Gamma谱拟合,建立了雨滴谱参数与双偏振雷达目标参数之间的函数关系和雨滴谱参数相互之间的关系,用于进行雨滴谱反演。将雨衰减订正前后的雷达目标参数进行雨滴谱反演并与实测雨滴谱进行对比,结果表明,所建立的X波段双偏振雷达反演雨滴谱方法能够较好地反演雨滴谱,并且经过订正后反演得到的雨滴谱在浓度、尺度和谱形上都优于订正前的反演结果,通过对距离高度扫描和平面位置扫描数据进行雨滴谱反演,可以得到雨滴谱参数的垂直结构和水平分布,可用以进行降水分析。  相似文献   

8.
Methane(CH4) is one of the most important greenhouse gases in the atmosphere, making it worthwhile to study its temporal and vertical distributions in source areas, e.g., North China. For this purpose, a ground-based high-resolution Fourier transform infrared spectrometer(FTIR), the Bruker IFS 125 HR, along with an in-situ instrument, the Picarro G2301, were deployed in Xianghe County(39.8°N,117.0°E), Hebei Province, China. Data have been recorded since June2018. For the FTIR measurements, we used two observation modes to retrieve the mole fraction of CH4: the Total Carbon Column Observing Network(TCCON) method(retrieval algorithm: GGG2014), and the Network for the Detection of Atmospheric Composition Change(NDACC) method(retrieval algorithm: SFIT4). Combining FTIR with in-situ measurements, we found the temporal and vertical distributions of atmospheric CH4 within three vertical layers(near the ground, in the troposphere, and in the stratosphere), and throughout the whole atmosphere. Regarding the diurnal variation of CH4 near the ground, the concentration at night was higher than during the daytime. Regarding the seasonal variation,CH4 was low in spring and high in summer, for all three vertical layers. In addition, there was a peak of CH4 in winter near the ground, both in the troposphere and the whole atmosphere. We found that variation of CH4 in the tropospheric column was close to that of the in-situ measurements near the ground. Furthermore, the variations of CH4 in the stratospheric column could be influenced by vertical motions, since it was higher in summer and lower in winter.  相似文献   

9.
A possibility is considered of measuring the ozone in the upper atmosphere of the Earth using solar occultation sounding without mechanical scanning of the solar disk. The estimates are given of the error and vertical resolution of atmospheric transmission function profile retrieved from the solar radiation measurements carried out by the instrument with the field of view of more than 0.5°. These algorithm elements are computed using the Backus-Gilbert method. It is shown that using the measurements in UV spectrum region carried out in this way, it is possible to retrieve transmission functions with the vertical resolution of 3–4 km and error of not more than 0.003.  相似文献   

10.
In order to correctly use the column-averaged atmospheric CO_2 dry-air mole fraction(XCO_2) data in the CO_2 flux studies, XCO_2 measurements retrieved from the Orbiting Carbon Observatory-2(OCO-2) in 2015 were compared with those obtained from the global ground-based high-resolution Fourier Transform Spectrometer(FTS) participating in the Total Carbon Column Observing Network(TCCON). The XCO_2 retrieved from three observing modes adopted by OCO-2, i.e., nadir, target, and glint, were separately validated by the FTS measurements at up to eight TCCON stations located in different areas. These comparisons show that OCO-2 glint mode yields the best qualitative estimations of CO_2 concentration among the three operational approaches. The overall results regarding the glint mode show no obvious systematic biases. These facts may indicate that the glint concept is appropriate for not only oceans but also land regions. Negative systematic biases in nadir and target modes have been found at most TCCON sites. The standard deviations of XCO_2 retrieved from target and nadir modes within the observation period are similar, and larger than those from glint mode. We also used the FTS site in Beijing, China, to assess the OCO-2 XCO_2 in 2016. This site is located in a typical urban area, which has been absent in previous studies. Overall, OCO-2 XCO_2 agrees well with that from FTS at this site. Such a study will benefit the validation of the newly launched TanSat products in China.  相似文献   

11.
用卫星资料分析中国区域CO柱总量时空分布特征   总被引:2,自引:1,他引:2       下载免费PDF全文
该文利用国际先进在轨星载探测仪器SCIMACHY/ENVISAT和MOPITT/TERRA的一氧化碳(CO)柱总量观测资料,比较两个载荷的观测结果发现,二者在陆地区域的观测数据一致性较好,且与我国本底站近地面观测结果有比较一致的时间变化态势,表明CO柱总量卫星观测值可以很好地反映其在我国大气中的时空分布特性。利用MOPITT长时间的观测数据(2000年3月—2009年2月)对中国区域CO柱总量时空分布特性进行了分析,研究结果显示:我国东部地区CO柱总量显著高于西部地区,两个地区的CO柱总量年平均值9年内均呈上升态势,西部地区平均年增长率是千分之一的量级,东部地区年增长率约为1.0%。中国区域CO柱总量分布随季节变化显著,春季CO柱总量平均值最高,但是CO柱总量最小值,在东部地区出现在夏季,而西部地区出现在秋季。  相似文献   

12.
In order to avoid accidents due to aircraft icing, an algorithm for identifying supercooled water was studied. Specifically, a threshold method based on millimeter wave radar, lidar, and radiosonde was used to retrieve the coverage area of supercooled water and a fuzzy logic algorithm was used to classify the observed meteorological targets. The macrophysical characteristics of supercooled water could be accurately identified by combing the threshold method with the fuzzy logic algorithm. In order to acquire microphysical characteristics of supercooled water in a mixed phase, the unimodal spectral distribution of supercooled water was extracted from a bimodal or trimodal spectral distribution of a mixed phase cloud, which was then used to retrieve the effective radius and liquid water content of supercooled water by using an empirical formula. These retrieved macro- and micro-physical characteristics of supercooled water can be used to guide aircrafts during takeoff, flight, and landing to avoid dangerous areas.  相似文献   

13.
A method to tighten the cloud screening thresholds based on local conditions is used to provide more stringent schemes for Orbiting Carbon Observatory-2(OCO-2) cloud screening algorithms. Cloud screening strategies are essential to remove scenes with significant cloud and/or aerosol contamination from OCO-2 observations, which helps to save on the data processing cost and ensure high quality retrievals of the column-averaged CO2 dry air mole fraction(XCO2). Based on the rad...  相似文献   

14.
The comparison between the precipitable water vapor w obtained by classical sounding and that obtained by high resolution measurements of spectral solar direct irradiance in the 400–1000 nm spectral range is shown. Three different water vapor absorption functions in the πστ band are used to determine the water vapor w by optical measurements. An episode of attenuation of direct solar irradiance by cirrus clouds is also shown.  相似文献   

15.
In order to provide a long time-series, high spatial resolution, and high accuracy dataset of land surface temperature (LST) for climatic change research, a modified Becker and Li's split-window approach is pro- posed in this paper to retrieve LST from the measurements of Advanced Very High Resolution Radiometer (AVHRR) onboard National Oceanic and Atmospheric Administration (NOAA)-7 to -18 and the Visible and InfraRed Radiometer (VIRR) onboard FY-3A. For this purpose, the Moderate Resolution Transmittance Model (MODTRAN) 4.1 was first employed to compute the spectral radiance at the top of atmosphere (TOA) under a variety of surface and atmosphere conditions. Then, a temperature dataset consists of boundary temperature Ts (which is one of the input parameters to MODTRAN), and channels 4 and 5 brightness temperatures (T4 and T5) were constructed. Note that channels 4 and 5 brightness tempera- tures were simulated from the MODTRAN output spectral radiance by convolving them with the spectral response functions (SRFs) of channels 4 and 5 of AVHRRs and VIRR. The coefficients of modified Becker and Li's split-window approach for various AVHRRs and VIRR were subsequently regressed based on this temperature dataset using the least square method. As an example of validation, one AVHRR satellite image over Beijing acquired at 0312 UTC 27 April 2008 by AVHRR onboard NOAA-17 was selected to retrieve the LST image using the modified Becker and Li's approach. The comparison between this LST image and that from the MODIS level-2 LST product provided by the University of Tokyo in Japan indicates that the correlation coefficient is 0.88, the bias is 0.6 K, and the root mean square deviation (RMSD) is 2.1 K. Furthermore, about 70% and 37% pixels in the LST difference image, which is the result of retrieved LST image from AVHRR minus the corresponding MODIS LST image, have the values within ±2 and ±1 K, respectively.  相似文献   

16.
In order to provide a long time-series,high spatial resolution,and high accuracy dataset of land surface temperature(LST) for climatic change research,a modified Becker and Li’s split-window approach is proposed in this paper to retrieve LST from the measurements of Advanced Very High Resolution Radiometer(AVHRR) onboard National Oceanic and Atmospheric Administration(NOAA)-7 to-18 and the Visible and InfraRed Radiometer(VIRR) onboard FY-3A.For this purpose,the Moderate Resolution Transmittance Model(MODTRAN) 4.1 was first employed to compute the spectral radiance at the top of atmosphere(TOA) under a variety of surface and atmosphere conditions.Then,a temperature dataset consists of boundary temperature T s(which is one of the input parameters to MODTRAN),and channels 4 and 5 brightness temperatures(T 4 and T 5) were constructed.Note that channels 4 and 5 brightness temperatures were simulated from the MODTRAN output spectral radiance by convolving them with the spectral response functions(SRFs) of channels 4 and 5 of AVHRRs and VIRR.The coefficients of modified Becker and Li’s split-window approach for various AVHRRs and VIRR were subsequently regressed based on this temperature dataset using the least square method.As an example of validation,one AVHRR satellite image over Beijing acquired at 0312 UTC 27 April 2008 by AVHRR onboard NOAA-17 was selected to retrieve the LST image using the modified Becker and Li’s approach.The comparison between this LST image and that from the MODIS level-2 LST product provided by the University of Tokyo in Japan indicates that the correlation coefficient is 0.88,the bias is 0.6 K,and the root mean square deviation(RMSD) is 2.1 K.Furthermore,about 70% and 37% pixels in the LST difference image,which is the result of retrieved LST image from AVHRR minus the corresponding MODIS LST image,have the values within ± 2 and ± 1 K,respectively.  相似文献   

17.
Spectroradiometers using photodiode array detectors (PDAs) are increasingly applied for airborne and ground-based atmospheric measurements of spectral actinic flux densities due to their high time resolution (less than one second). However they have limited sensitivity of ultraviolet (UV) radiation for wavelengths less than about 305 nm. This results in uncertainties of ozone photolysis frequencies derived from spectral actinic flux density measurements using PDA spectrometers. To overcome this limitation a parameterization method is introduced which extrapolates the data towards the wavelength range of limited sensitivity of the PDA spectrometers (less than about 305 nm). The parameterization is based on radiative transfer simulations and is valid for measurements in the lower troposphere. The components of the suggested parameterization are the lower threshold wavelength of the PDA spectrometer, the slant ozone column (ratio of the total ozone column and the cosine of the solar zenith angle), and the ambient temperature. Tests of the parameterization with simulated actinic flux density spectra have revealed an uncertainty of the derived ozone photolysis frequency of ±5%. Field comparisons of the parameterization results with independent measurements of the ozone photolysis frequency were within ±10% for solar zenith angles less than 70^∘. Finally the parameterization was applied to airborne measurements to emphasize the advantage of high time resolution of PDA spectrometers to study ozone photolysis frequency fields in inhomogeneous cloud condtitions.  相似文献   

18.
广州地区太阳分光辐射的某些变化特征   总被引:1,自引:0,他引:1       下载免费PDF全文
利用广州地区1985—1990年的太阳分光辐射的连续观测资料(观测角度为23°11′),研究了广州地区紫外辐射、可见光辐射(光合有效辐射)、近红外辐射的某些特征。结果指出,每年7—10月份各分光辐射及总辐射总量较大。月总辐射中可见光辐射占总辐射的百分比年平均为47.3%,相应的紫外辐射和近红外辐射分别占7.1%和45.6%。文中还分析了晴天条件下分光辐射的变化和1990年紫外辐射变化的某些特征,并分析和讨论了分光辐射与云量、日照时间等因子的相关。  相似文献   

19.
在参考国内外卫星遥感反演地表反照率方法的基础上,提出了一种反演多云地区地表反照率的新方法,称之为组合反演法。对于受云影响而无法获得足够的晴空观测数据的像素点,在遥感地表分类数据和归一化植被指数(NDVI) 数据的辅助下,在其周围的有限范围内选择与其具有相同BRDF形状的像素点,将它们在观测角度上互为补充的晴空观测数据组合成对同一个BRDF形状的一组多角度观测数据,达到一定数量后直接利用线性的RossThick-LiSparse互易核驱动模型反演二向反射分布函数(BRDF)参数。然后,根据“16天”期间平均的当地正午太阳高度角计算反照率。选择青藏高原地区2004年6~8月间5组“16天”的Terra MODIS数据进行的反演试验表明,该方法不仅具有反演多云地区地表反照率的能力,而且能够更好地反映实际的地表信息,反演结果的精度与美国MOD43产品的精度相当。  相似文献   

20.
A New Carrier Gas Type for Accurate Measurement of N$_{2}$O by GC-ECD   总被引:1,自引:0,他引:1  
The accurate measurement of concentration is the basis for determining emission sources and sinks of nitrous oxide (N2O). The detection of N2O showed that the presence of carbon dioxide (CO2 biased the N2O response when pure nitrogen (N2) was used as a carrier gas for gas chromatography (GC) equipped with an electron capture detector (GC-ECD). In this study, laboratory experiments were carried out to explore how the presence of CO2 interferes with the accurate determination of N2O. The aims were to address the extent of the influence to try and explain the underlying mechanism, and to uncover technical options for solving the problem. Three GC carrier gases are discussed: pure nitrogen (DN); a mixture of argon and methane (AM); and a high concentration CO2, which was introduced into the ECD cell with a low flow rate based on DN (DN-CO2). The results show that when DN was used, the existence of CO2 in the ECD cell greatly enhanced the response of N2O, which increased with CO2 content and remained constant when the content reached a limit. Comparisons between the three methods show that the DN method is defective for the accurate determination of N2O. The bias is caused by ifferent electron capture mechanisms of CO2 and N2O and depends heavily on the detector temperature. New GC carrier gas types with make-up gases that can remove the CO2-induced influence, such as the DN-CO2 and DN-CH4 methods reported in this paper, are recommended for the accurate measurement of N2O.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号