首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Trace amounts (from nanogram to microgram levels) of bromine and iodine were determined by inductively coupled plasma-mass spectrometry (ICP-MS) in twenty-three geochemical reference materials issued by the GSJ, USGS, IAEA etc. The pyrohydrolysis technique was used to separate bromine and iodine from samples analysed in the form of powder. The accuracy and precision of the experimental values were assessed by the comparative analysis of well established reference materials such as USGS AGV-1, BCR-1 and IGGE GBW07312. The measured values agreed well with reported values within a 10% error range. We also report reliable new data for these elements in these geochemical reference materials.  相似文献   

2.
Thirty two geochemical reference samples have been analysed for their iodine contents by a pyrohydrolysis extraction technique, followed by colourimetry. In spite of the existence of few reported values for iodine, limiting comparison with results from this study, the four available "reference" values show good agreement with the work reported here.  相似文献   

3.
The concentration of boron was determined in twenty one geochemical reference materials (silicate rocks) by isotope dilution inductively coupled plasma-mass spectrometry. Boron was extracted from the rocks using HF digestion, suppressing boron volatilisation through boron-mannitol complexation. Sample solutions, in a diluted HCl matrix, were analysed by ICP-MS without any separation of boron from the matrix elements. The results obtained were in agreement with the literature data and indicate that using the described procedure, trace amounts of boron can be very easily determined in complex matrices with rapidity and precision. With the instrumentation and reagents used in this study, this procedure can be used for the determination of 0.5 μg g−1 boron in a 15 0 mg silicate rock sample. Replicate analyses of the twenty one geochemical reference materials (GRM), ranging in boron concentration from 1.35 to 15 7 μg g−1, yielded precisions (relative standard deviation) varying between 0.9 and 9.8%.  相似文献   

4.
We report new data for thirty seven elements determined in twenty six Chinese geochemistry reference materials using inductively coupled plasma-mass spectrometry and a reliable and simple dissolution technique. One hundred milligrams of sample were digested with 1 ml of HF and 0.5 ml of HNO3 in PTFE-lined stainless steel bombs heated to 200 °C for 12 hours. Insoluble residues were dissolved using 6 ml of 40% v/v HNO3 heated to 140 C for 3 hours. Analytical calibration was accomplished using aqueous standard solutions. Rhodium was used as an internal standard to correct for matrix effects and instrument drift. Precisions were typically better than 5% RSD. Most of the data presented here agree well with the published certified values. For the elements Zr, Hf and most other trace elements, the measured values were less than 10% in error when compared to certified values.  相似文献   

5.
Data was obtained for the rare earth elements (REE) by instrumental neutron activation analysis (INAA) and inductively coupled plasma-mass spectrometry (ICP-MS) in twenty geological reference materials. In general, the precision obtained by ICP-MS is better for the light REE, decreasing with increasing atomic number. This is partly a result of the occurrence of the heavy REE at low concentrations. The precision of the data obtained by INAA is good (5% RSD). The data obtained also showed that for the elements determined by both methods, the accuracy is similar for the light REE and better for the middle and heavy REEs by INAA. Higher uncertainty is achieved by ICP-MS mainly for elements at very low concentrations, occurring at about ten times the chondritic values.  相似文献   

6.
We present a multi-element technique for the simultaneous determination of twelve trace elements in geological materials by combined isotope dilution (ID) sector field inductively coupled plasma-mass spectrometry (SF-ICP-MS) following simple sample digestion. In addition, the concentrations of fourteen other trace elements have been obtained using the ID determined elements as internal standards. This method combines the advantages of ID (high precision and accuracy) with those of SF-ICP-MS (multi-element capability, fast sample processing without element separation) and overcomes the most prevailing drawbacks of ICP-MS (matrix effects and drift in sensitivity). Trace element concentration data for BHVO-1 (n = 5) reproduced to within 1–3% RSD with an accuracy of 1–2% relative to respective literature values for ID values and 2–3% for all other values. We have applied this technique to the analysis of seventeen geological reference materials from the USGS, GSJ and IAG. The sample set also included the new USGS reference glasses BCR-2G, BHVO-2G and BIR-1G, as well as the MPI-DING reference glasses KL2-G and ML3B-G, and NIST SRM 612. Most data agreed within 3–4% with respective literature data. The concentration data for the USGS reference glasses agreed in most cases with respective data of the original rock powder within the combined standard uncertainty of the method (2–3%), except the U concentration of BIR-1G, which showed a three times higher concentration compared to BIR-1.  相似文献   

7.
Fluorine, chlorine, bromine, iodine and sulfur were determined in seventeen geological reference materials after extraction by pyrohydrolysis. Fluorine, Cl and S (as sulfate ions) were determined in the extraction solution by ion chromatography with detection limits of around 0.2 mg l−1. Bromine and I were measured by ICP-MS with detection limits of 1 μg l−1 for Br and 0.1 μg l−1 for I. For rock samples, using normal extraction conditions (500 mg of sample and 100 ml of final solution) detection limits were 40 mg kg−1 for F and Cl, 15 mg kg−1 for S, 0.2 mg kg−1 for Br and 0.02 mg kg−1 for I. These detection limits may be improved by increasing the amount of sample and hence the concentration of the final solution. Water was also determined using an extraction technique based on H2O degassing, reduction on zinc at 1000 °C and H2 manometry. Our results for fluorine, chlorine, sulfur and water are in good agreement with literature data. Very few reference materials have recommended values for bromine and especially for iodine. Among the analysed samples, three are new reference materials: BHVO-2, BCR-2 and AGV-2.  相似文献   

8.
The platinum-group elements (PGE) and gold have been determined in twenty international rock reference materials by inductively coupled plasma-mass spectrometry (ICP-MS) after pre-concentration by a nickel sulfide fire assay. It was possible to achieve determination limits for a 50 g sample that ranged from 1 pg g-1 (Rh) to 23 pg g-1 (Au). Compared to published certified and recommended values for rock reference materials, the trueness of the method was found to be good. However, in some cases we observed large deviations for all elements in the sub 10 ng g-1 range within individual reference sample splits. Our results show that the PGE and Au are inhomogeneously distributed in the reference materials analysed here, where they are present in low concentrations, using 50 g test portions.  相似文献   

9.
Rare earth element analyses are widely used in geology, environmental science and archaeology. Over the past decade inductively coupled plasma-mass spectrometry has become an important source of rare earth data on geological material. However, ICP-MS analysis of rock samples without pre-concentration can be problematic because of complex sample matrices that can generate significant molecular isobaric interferences on rare earth peaks and which need to be corrected. Such problems are exacerbated for ultramafic rocks because the low levels of rare earth elements demand more concentrated solutions in order to maintain signals above background levels. These high solid loads result in intra-run changes in instrument sensitivity which need to be monitored. Pre-concentration chemistries have been developed in order to avoid high solid loads but these are time-consuming and must offer quantitative recoveries or use a yield tracer. Here, we describe an alternative method for rare earth element analysis by ICP-MS, which involves no pre-concentration and is, therefore, able to deliver data rapidly. Our approach is to apply an external correction procedure, based on the analysis of a reference material closely matched in composition to the unknown samples, which allows correction for both interferences and variations in instrument sensitivity. Testing this method, we obtained accurate rare earth element results for basaltic rocks with a precision of about 2% (1s). We demonstrate that the method is also applicable to ultramafic rocks with abundances at ultra-trace (ng g−1) level and present data for twelve separate dissolutions of the peridotite USGS PCC-1 and four separate dissolutions of the dunite DTS-1 reference materials. The repeatability of the data is between 3% and 9% (1s).  相似文献   

10.
地质标准物质不确定度评估方法初探   总被引:9,自引:9,他引:0  
郑存江 《岩矿测试》2005,24(4):284-286
在分析地质标准物质标准值不确定度来源的基础上,提出了在多个实验室协作研制地质标准物质时,协作单位除提供重现性检测数据外,还应分别提供各项目检测数据的合成不确定度。分析方法或实验室之间的平均值的合成不确定度按不等精度方法处理。标准物质标准值的不确定度由分析方法、检测实验室、样品均匀性和样品稳定性的不确定度合成后乘以扩展不确定度置信水平下的包含因子而得。  相似文献   

11.
A method is described to estimate the chemical form of gold (Au) in a variety of geological reference samples, combining a sequential extraction scheme with graphite furnace atomic absorption spectrometry, after extraction of Au as iodide or chloride with methyl isobutyl ketone. The fractions dissolved by sequential extraction are empirically defined as the exchangeable, amorphous, metallic, aqua regia-soluble and residual fractions. The amounts of Au in the amorphous fraction have been derived mainly from oxide or amorphous phases, and the chemical forms of Au are considered to be mostly amorphous and partly metallic. The metallic fraction of Au is likely to exist as submicroscopic grains of native metal which are relatively free from the rock-forming minerals, whereas the aqua regia-soluble or residual fraction of Au may be bound more intimately perhaps as inclusions or solid solutions of either native metal or electrum in most cases. Satisfactory agreement was observed between the sum of the Au values from exchangeable to residual fractions and the reported total Au values, except for a few samples which contained a large amount of reducing materials. Analytical results of Au for twenty six geological reference materials are tabulated, and geochemical and mineralogical features are discussed.  相似文献   

12.
地质标准物质十年回顾   总被引:10,自引:5,他引:5  
金秉慧 《岩矿测试》2003,22(3):188-200
回顾了1992年以来国内外地质标准物质的主要情况。简单介绍了国际标准化组织在此期间颁布的有关文件。讨论了建立溯源性、均匀性检验等方面的一些问题。  相似文献   

13.
Data on thirty-four minor and trace elements including all rare earth elements (REE) are reported for two kimberlitic international reference materials (SARM-39, MINTEK, RSA and MY-4, IGEM, Russia) by inductively coupled plasma-mass spectrometry (ICP-MS), some of them for the first time. Four digestion techniques (open acid, closed vessel acid, microwave and lithium metaborate fusion digestion) were used for the decomposition of samples for analysis by ICP-MS. Three other reference materials (USGS BHVO-1, CRPG BR-1 and ANRT UB-N) were analysed simultaneously using the same analytical methodology to assess the precision and accuracy of the determinations. The data obtained in this study compare well with working values wherever such values are available for comparison. Though open acid digestion was found to be very rapid, effective and convenient for the determination of several trace elements in kimberlitic samples, recoveries for heavy rare earth elements (HREE) were lower than the respective recoveries obtained by the other decomposition techniques used. The precision obtained was better than ± 6% RSD in the majority of cases with comparable accuracy. Chondrite-normalised plots of each RM for all the digestion techniques were smooth. The new data reported on the two kimberlitic reference materials make these samples useful for future geochemical studies of kimberlitic rocks.  相似文献   

14.
Abundances of twenty four trace elements, including Y and fourteen rare earth elements (REE), are reported for eighty six geological reference materials and four proficiency testing samples. Analytical data were obtained by ICP-MS using solution nebulisation after mixed acid digestion (HF-HClO4) under pressure. Analysed samples cover a wide range of element concentrations and mineralogical compositions, including samples for which there are few previously published data. Precision for elemental determinations in nearly 90% of the samples analysed is better than 5%. Accuracy, estimated by comparison with data from compilations is better than 6% for well characterized reference materials. Results obtained for samples that are low in trace elements are often significantly lower than compiled reference values. A critical discussion of the compiled data sets, especially for Y and the REEs, indicates that some reference values seem to be erroneous.  相似文献   

15.
Although sulfur is a relatively abundant element, measurement results with small uncertainties remain challenging to achieve, especially at S mass fractions below 100 μg g-1. We report > 1700 measurement results of S for thirty-seven geological reference materials including igneous, metamorphic and sedimentary rocks, and one soil. Measurement results were obtained in two laboratories (Macquarie GeoAnalytical and Géosciences Montpellier) over a long period of time ≈ 25 years (1997–2022), using several measurement procedures: X-ray fluorescence, high temperature iodo titration and elemental analysers equipped with thermal conductivity and/or infra-red detectors. Sulfur mass fractions for these diverse geological reference materials range between 5.5 and 11,395 μg g-1. While the comprehensive data set reported here should contribute significantly to a better characterisation of the S mass fractions of widely used geological reference materials, computed uncertainties, data distribution and comparison to published values still indicate heterogeneous distribution of S carrier(s) and analytical bias.  相似文献   

16.
This paper presents data on REE and Y, Nb, Zr, Hf, Ta, Th and U abundances for two candidate reference materials (RMs), spinel lherzolite LSHC-1 and amphibole Amf-1, being currently developed at the Institute of Geochemistry SB RAS, Irkutsk. To determine the contents of these elements inductively coupled plasma-mass spectrometry was applied with: (i) solution nebulisation (solution ICP-MS) and (ii) laser ablation (LA-ICP-MS) of fused glass disks. The precision of results obtained by both techniques was better than 6% RSD for most elements. Accuracy was assessed by using the geochemical RMs JB-2, JGb-1 (GSJ) and MAG-1 (USGS). The trace element results by solution ICP-MS for JGb-1 and JB-2 agree with reference values presented by Imai et al. (1995, this Journal) within 1–10%. Significant differences were found for Nb and Ta determinations. The accuracy of LA-ICP-MS results evaluated by RM MAG-1 was within 4%, except for Eu (about 10%). The analytical results obtained for LSHC-1 and Amf-1 by solution ICP-MS and LA-ICP-MS were in good agreement with each other and with INAA and XRF data presented for the certification of these RMs. They can be considered as the indicative values for assigning certified values to the above-mentioned RMs.  相似文献   

17.
This paper presents an adapted anion exchange column chemistry protocol which allowed separation of high-purity fractions of Cu and Zn from geological materials. Isobaric and non-spectral interferences were virtually eliminated for consequent multiple-collector ICP-MS analysis of the isotopic composition of these metals. The procedure achieved ∼ 100% recoveries, thus ensuring the absence of column-induced isotopic fractionation. By employing these techniques, we report isotopic analyses for Cu and Zn from five geological reference materials: BCR-027 blende ore (BCR), δ65Cu = 0.52 ± 0.15‰ (n = 10) and δ66Zn = 0.33 ± 0.07‰ (n = 8); BCR-030 calcined calamine ore (BCR), δ66Zn = -0.06 ± 0.09‰ (n = 8); BCR-1 basalt (USGS), δ66Zn = 0.29 ± 0.12‰ (n = 8); NOD-P-1 manganese nodule (USGS), δ65Cu = 0.46 ± 0.08‰ (n = 10) and δ66Zn = 0.78 ± 0.09‰ (n = 9); SU-1 Cu-Co ore (CCRMP), δ65Cu = -0.018 ± 0.08‰ (n = 10) and δ66Zn = 0.13 ± 0.17‰ (n = 6). All uncertainties are ± 2s; copper isotope ratios are reported relative to NIST SRM-976, and zinc isotope ratios relative to the Lyon-group Johnson Matthey metal (batch 3-0749 L) solution, JMC Zn. These values agree well with the limited data previously published, and with results reported for similar natural sample types. Samples were measured using a GVi IsoProbe MC-ICP-MS, based at the Natural History Museum, London. Long-term measurement reproducibility has been assessed by repeat analyses of both single element and complex matrix samples, and was commonly better than ± 0.07‰ for both δ66Zn and δ65Cu.  相似文献   

18.
A simple, rapid and precise method is described for determining trace elements by laser ablation (LA)-ICP-MS analysis in bulk geological materials that have been prepared as lithium borate glasses following standard procedures for XRF analysis. This approach reliably achieves complete sample digestion and provides for complementary XRF and LA-ICP-MS analysis of a full suite of major and trace elements from a single sample preparation. Highly precise analysis is enabled by rastering an ArF excimer laser (λ= 193nm) across fused samples to deliver a constant sample yield to the mass spectrometer without inter-element fractionation effects during each analysis. Capabilities of the method are demonstrated by determination of twenty five trace elements (Sc, Ti, V, Ga, Rb, Sr, Y, Zr, Nb, Cs, Ba, REE, Hf, Ta, Pb, Th and U) in a diverse range of geological reference materials that includes peridotites, basalts, granites, metamorphic rocks and sediments. More than 90% of determinations are indistinguishable from published reference values at the 95% confidence level. Systematic bias greater than 5% is observed for only a handful of elements (Zr, Nb and U) and may be attributed in part to inaccurate calibration values used for the NIST SRM 612 glass in the case of Zr and Nb. Detection limits for several elements, most notably La, are compromised at ultra-trace levels by impurities in the lithium borate flux but can be corrected for by subtracting appropriate procedural blanks. Reliable Pb analysis has proved problematic due to variable degrees of contamination introduced during sample polishing prior to analysis and from Pt-crucibles previously used to fuse Pb-rich samples. Scope exists for extending the method to include internal standard element/isotope spiking, particularly where integrated XRF analysis is not available to characterise major and trace elements in the fused lithium borate glasses prior to LA-ICP-MS analysis.  相似文献   

19.
Concentrations of halogens (fluorine, chlorine, bromine and iodine) were determined in six geochemical reference materials (BHVO‐2, GS‐N, JG‐1, JR‐1, JB‐1b, JB‐2). Halogens were first extracted from powdered samples using a pyrohydrolysis technique, then hydrolysis solutions were analysed by ion chromatography for F and Cl and inductively coupled plasma‐mass spectrometry for Br and I. The detection limits in solutions were 100 μg l?1 for both F and Cl and 10 ng l?1 for Br and I. Considering the extraction procedure, performed on a maximum of 500 mg of sample and producing 100 ml of pyrohydrolysis solution, detection limits in rock samples were 20 mg kg?1 for F and Cl and 2 μg kg?1 for Br and I. The mean analytical errors on the studied composition ranges were estimated at 10 mg kg?1 for F and Cl, 100 μg kg?1 for Br and 25 μg kg?1 for I. The concentration values, based on repeated (generally > 10) sample analysis, were in good agreement generally with published values and narrowed the mean dispersion around mean values. Large dispersions are discussed in terms of samples heterogeneity and contaminations during sample preparation. Basaltic RMs were found to be more suitable for studies of halogen compositions than differentiated rock material, especially granites – the powders of which were heterogeneous in halogens at the 500 mg level.  相似文献   

20.
Inductively coupled plasma-mass spectrometry is well suited for the precise, accurate and rapid determination of rare earth elements in most geological samples. However, determination of rare earth elements in certain mantle-derived materials, without applying preconcentration techniques, remains problematical due to low natural concentrations (generally < 1 ng g−1). Consequently, USGS reference materials DTS-1 (a dunite) and PCC-1 (a partially serpentinized harzburgite) have only suggested rather than recommended values for the rare earth elements in reference material compilations. We compared results obtained using two ICP-MS instruments: a U-5000AT ultrasonic nebuliser coupled to a PQ2+ quadrupole ICP-MS and an ELEMENT sector field ICP-MS equipped with a MCN-6000 microconcentric desolvating nebuliser, with the suggested literature values for these two reference materials. Precision and accuracy of analytical methods employed by both instruments were demonstrated by excellent relative standard deviations (< 2%) and inter-laboratory agreement (< 5%) for numerous analyses of BHVO-1 and BIR-1, which are well established with rare earth elements contents at the μg g−1 level. Repeat analyses of DTS-1 and PCC-1 at each laboratory indicate that each method is generally precise to better than 5% at sub-g g−1 levels. Furthermore, values from both instruments generally agree to within 10%. Our DTS-1 and PCC-1 values agree reasonably well with selected data reported in the literature (except for Ce and Sm in DTS-1) but exhibit poorer agreement with reported compilation values. With the demonstrated level of precision and accuracy, we contend that these new values for DTS-1 and PCC-1, generated by two different instruments, are the best estimates of the true whole-rock composition of these samples reported to date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号