首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The behaviour of arsenic in muddy sediments of the Bay of Biscay (France)   总被引:1,自引:0,他引:1  
We have studied particulate and dissolved arsenic species in sediment and porewaters at sites in the Bay of Biscay, France, ranging in depths from 150 to 2,800 m. At all stations, major redox species (oxygen, nitrate, ammonia, total and reactive iron and manganese, sulphate and sulphur) reflect early diagenetic depth sequences of redox reactions comparable to other marine environments. Vertical distributions of dissolved and particulate As species and major redox species are related to changes in redox conditions and their major carrier phases, such as Fe and Mn-oxides. Arsenic diagenesis appears strongly dependent on Fe cycling. A subsurface maximum of dissolved As and surface enrichment of particulate As correspond to dissolution and precipitation of Fe (III) phases. Except for the shallowest and most bioturbated site, flux calculations show three different vertical diffusive As fluxes: two upwards and one downwards. Phase changes of recycled As result in local accumulations of reactive As at different redox fronts. Mass-balance calculations indicate that the upward As flux toward the oxidized layer can explain the enrichment of HCl extractable particulate As in this layer. A portion of the upward diffusing As can escape the sediment and may be fixed onto settling Fe-oxides by adsorption or co-precipitation and contribute to reactive particulate As input (i.e., As is recycled across the water sediment interface).  相似文献   

2.
Metre-scale lithologic cycles, visible in core and on logs from Maastrichtian chalks of the Dan Field, were examined to determine their mechanisms of deposition and relation to hydrocarbon production. The lower parts of cycles consist of porous, cream-coloured, largely non-stylolitic, commonly laminated chalk with limited bioturbation (mainly escape burrows). Cycles are capped by thinner intervals of white to grey, hard, stylolitic chalk with concentrations of bioclastic material, intense burrowing and few preserved primary sedimentary structures. The cycle caps contain nearly twice as much Mg as compared to the more porous parts of cycles and also have slightly larger δ18O values (?4·1‰ for the caps; ?4·4‰ for porous zones). There is a significant reduction of average cycle thickness, as well as total thickness of the Maastrichtian chalk section, from SW to NE across the Dan Field. The cycle thinning largely results from a reduced thickness of porous chalks from the lower parts of cycles and thus is reflected in lower average porosity and permeability on the NE side of the field. These data indicate that episodic winnowing removed fine-grained constituents from highstanding northeastern areas. Porous cycle bases were deposited at relatively high rates that precluded complete bioturbation; preserved laminae, coupled with escape burrows, reflect episodic sediment influx in areas that flank the seafloor highs. Cycle tops apparently accumulated more slowly (throughout the region, but especially on seafloor highs), perhaps because of reduced productivity of planktic organisms. Slower sedimentation allowed more complete bioturbation and destruction of sedimentary structures, and also led to incipient high-magnesium calcite seafloor cementation (sufficient to yield firmer sediment and enhanced burrow preservation, but not to form true hardgrounds). Thus, the elevated magnesium contents and reduced porosity of the cycle caps reflect very early diagenetic processes that were only partially modified by burial diagenesis. Rates of chalk deposition, as inferred from physical and geochemical evidence, appear to be a significant control on reservoir characteristics in North Sea chalks. The highest average porosities and permeabilities are found in areas with the highest sediment accumulation rates where seafloor diagenesis is minimized. Topographic depressions at the time of sedimentation can thus be expected to have the best production characteristics, and synsedimentary topographic highs should have the thinnest sections and the poorest petrophysical properties.  相似文献   

3.

Arsenic (As), iron (Fe), and manganese (Mn) contents were measured in sediment nodules and associated pore waters obtained from sediment cores collected from a salt marsh on Pólvora Island (southern Brazil). Sediment cores were obtained when brackish water dominated the estuary, at two different environments: an unvegetated mudflat colonized by crabs (Neohelice granulata), and a low intertidal stand vegetated by Spartina alterniflora. We determined the percentage of nodules in each depth interval of the cores, along with redox potential, and As, Fe, and Mn contents of the nodules. The mineralogy of the nodules was investigated, and results showed they are mainly composed by quartz, phyllosilicates, and amorphous Fe–Mn oxides/oxyhydroxides. Pore water results showed that bioturbation by local crabs supports oxygen penetration to depths of ca. 25 cm below the salt marsh surface, with lower Fe contents in pore water associated with the brackish period. However, S. alterniflora growth appears to have a greater impact on sediment geochemistry of Fe, Mn, and possibly As due to sulfate reduction and the associated decrease in pore water pH. Higher Fe concentrations were observed in the pore waters during the period of brackish water dominance, which also corresponded to the S. alterniflora growth season. The study demonstrates that differences in geochemical conditions (e.g., Fe content) that can develop in salt marsh sediments owing to different types of bioirrigation processes (i.e., bioirrigation driven by crabs versus that related to the growth of S. alterniflora) play important roles in the biogeochemical cycling of As.

  相似文献   

4.
海底沉积物孔隙水钡循环对天然气渗漏的指示   总被引:1,自引:0,他引:1  
冷泉流体的渗漏活动强烈地影响着海底沉积物孔隙水钡循环。冷泉流体中的Ba2+ 向上扩散与孔隙水硫酸盐反应,在硫酸盐—碳氢化合物转化带(SHT)之上沉淀重晶石。随着沉积物的埋藏,先前沉淀的重晶石被埋藏于SHT之下的硫酸盐亏损带,将发生溶解,溶解的钡向上扩散,在SHT之上再次沉淀重晶石。当体系中向上扩散的Ba2+超过埋藏的重晶石中的钡时,在剖面上形成“钡锋”。向上渗漏的碳氢化合物(甲烷为主)通量控制了SHT的深度,二者之间存在很好的地球化学耦合关系,从而,可以用“钡锋”来评价天然气渗漏活动的特征。在总结和分析国际海底冷泉渗漏活动区沉积物孔隙水的甲烷和钡循环的研究进展基础上,综述了海底沉积物孔隙水钡循环对现在和过去天然气渗漏的指示,总结了渗漏成因重晶石的地质和地球化学特征。  相似文献   

5.
Bai  Shuang  Yang  Meilin  Chen  Zheng  Yang  Ming  Ma  Jing  Chen  Xue-Ping  Wang  Fushun 《中国地球化学学报》2021,40(6):961-972
Acta Geochimica - The biogeochemical cycles of sulphur (S), iron (Fe) and nitrogen (N) elements play a key role in the reservoir ecosystem. However, the spatial positioning and interrelationship of...  相似文献   

6.
The Spanish-Portuguese Pyrite Belt covers a large area in the SW part of the Iberian Peninsula from Seville to the westcoast of Portugal. Total reserves of aprox. 1.000 million tons of massive sulphide ores have an average content of 46% S, 42% Fe, and 2–4% Cu+Pb+Zn. The stratiform sulphide deposits and accompanying manganese mineralizations are of synsedimentary-exhalative origin. They occur in a Lower Carboniferous, geosynclinal, volcanic-sedimentary rock sequence, strongly folded during the Hercynian Orogeny. A brief outline of the regional geology of this ore province is given, and the geology of three mining districts is described: Lousal (Portugal), La Zarza and Tharsis (Huelva Province, Spain). A close relationship between sulphide and manganese ores with the submarine, acid alkaline volcanism is emphasized. Solfataric activity is responsible for the formation of sulphides in the final stages of volcanic extrusions. The ore concentration in big deposits (ore-lenses with up to 100 million tons of massive sulphides) has been due to inflows of sulphide muds and/or detrital sulphides into newly formed depressions of a contineously changing seafloor topography due to volcano tectonic movements.  相似文献   

7.
Formation and dissolution of authigenic Fe and Mn (oxyhydr)oxides influence cycling of trace metals in oxic/suboxic surface sediments. We used the diffusive gradients in thin films technique (DGT) to estimate the association of cobalt with iron and manganese oxides. We compared Co, Fe and Mn maxima measured by DGT in the pore waters of fresh and aged marine sediment cores and estimated the Co/Fe and Co/Mn ratios in the metal oxides. A Mn maximum was not visible in DGT concentration profiles of freshly collected sediment cores, but after ageing the sediment, we observed a distinct Mn peak, presumably due to broadening of the depth range over which the various electron acceptors occur. Estimated Co/Mn ratios from both experiments are within the range of literature values for marine sediments, but the value from the aged experiment is at the lower end of the range. This is attributed to stimulation of sulphate reduction and precipitation of cobalt sulphides. The good correlation between Co and Fe maxima in the fresh sediments is attributed to the similarity of their reactions with sulphide rather than Co being released during authigenic Fe oxide reduction.  相似文献   

8.
Pore water and solid phase from surface sediments of the continental slope off Uruguay and from the Argentine Basin (southwestern Atlantic) were investigated geochemically to ascribe characteristic early diagenetic reactions of iron and manganese. Solid-phase iron speciation was determined by extractions as well as by Mössbauer spectroscopy. Both methods showed good agreement ( <6% deviation) for total-Fe speciation. The proportion of easy reducible iron oxyhydroxide relative to total-Fe oxides decreased from the continental slope to the deep sea which is attributed to an increase in crystallinity during transport as well as to a general decrease of iron mobilization. The product of iron reoxidation is Fe oxyhydroxide which made up less than 5% of total Fe. In addition to this fraction, a proportion of smectite bound iron was found to be redox reactive. This fraction made up to 10% of total Fe in sediments of the Argentine Basin and was quantitatively extracted by 1?N HCl. The redox reactive Fe(+II) fraction of smectite was almost completely reoxidized within 24?h under air atmosphere and may therefore considerably contribute to iron redox cycling if bioturbation occurs. In the case of the slope sediments we found concurrent iron and manganese release to pore water. It is not clear whether this is caused by dissimilatory iron and manganese reduction at the same depth or dissimilatory iron reduction alone inducing Mn(+IV) reduction by (abiotic) reaction with released Fe2+. The Argentine Basin sediment showed a significant manganese solid-phase enrichment above the denitrification depth despite the absence of a distinct pore-water gradient of Mn. This implies a recent termination of manganese mobilization and thus a non-steady-state situation with respect to sedimentation or to organic carbon burial rate.  相似文献   

9.
Spatial variation in salinity, pH, redox potential, and in the concentrations of dissolved Mn, Fe2+ and sulphides in pore water were investigated in a mangrove system in the state of São Paulo (Brazil). Total organic C (TOC), S, Fe and Mn were analyzed in the solid phase, along with acid volatile sulphide (AVS), density of roots and percentage of sand. Five zones, situated along the length of a 180 m transect were considered in the study. Four of these were colonized by different species of vascular plants (Spartina, Laguncularia, Avicennia and Rhizophora) and were denominated soils; the other was not colonized by vegetation, and was denominated sediment. The results indicated important differences between the physicochemical conditions of the pore water in the vegetated zones and the sediment. In the former, two geochemical environments were identified, based on soil depths. The upper 20 cm contained the largest quantity of roots, and the conditions were oxic (Eh > 350 mV) or suboxic (Eh: 100–350 mV), acidic, and with high concentrations of Fe and Mn in the pore water. Below this depth, the soil became anoxic, the concentration of sulphides (HS) increased significantly and the concentrations of dissolved Fe and Mn decreased significantly. The total S and the AVS fraction increased with depth, while TOC concentrations decreased, indicating that the decreases in Fe and Mn were due to the precipitation of metal sulphides. However, clear differences among the vegetated zones were not observed. The sediment was always anoxic, but with low concentrations of sulphide in the interstitial water, and was neutral or slightly alkaline. As in the soils, the concentrations of sulphides and total S increased significantly with depth, indicating that the conditions favoured the synthesis and stability of metal sulphides.  相似文献   

10.
The Tyndrum Pb+Zn veins, hosted by late Proterozoic quartzites, were probably generated in the Tournaisian (360 Ma). By determination of sulphur isotopic ratios of vein minerals three aspects of the Tyndrum mineralization were addressed, (i) sulphate sulphur sources; (ii) reduced sulphur source; (iii) isotopic equilibrium in the vein system including geothermometry. Twelve galenas have δ34S values ranging from +3.55 ‰ to +6.38 ‰ (this excludes one value of +11.21 ‰ from a large but nearly barren quartz vein). Other sulphides are enriched or depleted in 34S in the sense expected for isotopic equilibrium although there is no evidence for isotopic equilibrium between the vein minerals. The sulphide sulphur source was probably in the Dalradian metasediments where disseminated pyrite averages +6 ‰. Baryte had δ34S values averaging 14 ‰ and was therefore not in isotopic equilibrium with sulphides: a continental groundwater source is most likely.  相似文献   

11.
Biogeochemistry of metals in aquatic sediments is strongly influenced by bioturbation. To determine the effects of biological transport on cadmium distribution in freshwater sediments, a bioturbation model is explored that describes the conveyor-belt feeding of tubificid oligochaetes. A stepwise modelling strategy was adopted to constrain the many parameters of the model: (i) the tubificid transport model was first calibrated on four sets of microspheres (inert solid tracer) profiles to constrain tubificid transport; (ii) the resulting transport coefficients were subsequently applied to simulate the distribution of both particulate and dissolved cadmium. Firstly, these simulations provide quantitative insight into the mechanism of tubificid bioturbation. Values of transport coefficients compare very well with the literature, and based on this, a generic model of tubificid bioturbation is proposed. Secondly, the application of the model to cadmium dataset sheds a light on the behaviour of cadmium under tubificid bioturbation. Cadmium enters the sediment in two ways. In one pathway, cadmium enters the sediment in the dissolved phase, is rapidly absorbed onto solid particles, which are then rapidly transported to depth by the tubificids. In the other pathway, cadmium is adsorbed to particles in suspension in the overlying water, which then settle on the sediment surface, and are transported downwards by bioturbation. In a final step, we assessed the optimal model complexity for the present dataset. To this end, the two-phase conveyor-belt model was compared to two simplified versions. A solid phase-only conveyor-belt model also provides good results: the dissolved phase should not be explicitly incorporated because cadmium adsorption is fast and bioirrigation is weak. Yet, a solid phase-only biodiffusive model does not perform adequately, as it does not mechanistically capture the conveyor-belt transport at short time-scales.  相似文献   

12.
Sulphur cycling in organic-rich marine sediments from a Scottish fjord   总被引:1,自引:0,他引:1  
In this study, the biogeochemical transformations of sulphur in organic‐rich marine sediments in a Scottish fjord are investigated by a combination of pore water and sediment geochemistry with sulphide diffusive gradient thin‐film probes and sulphate isotopic data (δ34S and δ18O). Particular attention is paid to sulphur cycling in the upper sediment profile where sulphate reduction occurs but free sulphide is below the detection limits of conventional pore water geochemical analysis but quantifiable by sulphide diffusive gradient thin film. In the uppermost part of the sediment core, δ18O sulphate decreased from near‐sea water values to +7‰, indicating that anoxic sulphide oxidation dominated during this interval. Sulphate δ34S remained unchanged as there was no net sulphate reduction (i.e. reduction was balanced by re‐oxidation). Below 4 cm depth, there was a slight increase in sulphate δ34S from 20‰ to 23‰ associated with minor accumulation of iron sulphide. The δ18O of the sulphate also increased, to around +10‰ at 10 cm depth, as a result of the isotopic exchange of sulphate–oxygen with pore water and/or sulphur disproportionation reactions mediated during sulphur cycling. These processes continued to increase the δ18O of the sulphate to 14‰ at 20 cm depth with no further change in the δ34S of the sulphate. Below 20 cm depth, free sulphide is detectable in pore waters and both the δ34S of the sulphate and sulphide increase with depth with an offset controlled by kinetic fractionation during bacterial sulphate reduction. The δ34S of the sedimentary organic fraction shifted towards lower, more bacteriogenic, values with depth in the profile, without any increase in the size of this sulphur pool. Thus, the organic sulphur fraction was open to interaction with bacteriogenic sulphide without the occurrence of net addition. Therefore, caution should be exercised when using sulphur isotopic compositions to infer simple net addition of bacteriogenic sulphide to the organic sulphur fraction.  相似文献   

13.
The Maastrichtian chalk of the southern Central Graben, Danish North Sea, is a homogeneous pure white coccolithic chalk mudstone deposited in a deep epeiric shelf sea, which covered large parts of northern Europe. The sediment displays a pronounced cyclicity marked by decimetre‐thick bioturbated beds alternating with slightly thinner non‐bioturbated, mainly laminated beds. The laminated half‐cycles consist of alternating millimetre‐thick, graded, high‐porosity laminae and non‐graded, low‐porosity laminae. The cyclicity has been interpreted previously as caused by periods of slow background sedimentation and bioturbation interrupted by periods of rapid deposition of laminated beds, with the latter reflecting random and local resedimentation processes. Based on textural and structural analysis, the millimetre‐scale, non‐graded laminae are interpreted as having been deposited directly from pelagic rain of pelleted coccoliths representing the primary production. The graded laminae were deposited from small‐volume, low‐density turbidity currents and suspension clouds. The sedimentation rates of the cyclical chalk are similar to those known elsewhere, and the lamination is interpreted as having been preserved from destruction through bioturbation by anoxic conditions at the seafloor. Bioturbated–laminated cycles are thus formed by slow sedimentation during alternating seafloor redox conditions probably on a Milankovitch scale. A direct implication of this interpretation is that the cycles are areally widespread, probably extending throughout the southern Central Graben area and may be useful for correlation and high‐resolution cyclostratigraphy in the chalk fields of the Danish North sea. If the laminated half‐cycles represent a few rapid resedimentation events, with a high sedimentation rate as suggested by most workers, then the sediment would not be truly cyclic, but would represent event sedimentation within a pelagic background represented by the bioturbated beds. In this case, the cycles would have very limited potential for correlation.  相似文献   

14.
孙云明  宋金明 《地质论评》2001,47(5):527-534
海洋沉积物中的N和P随沉积物的粒度由粗到细,含量逐渐升高,而Si则降低;积物中N、P、Si的含量还随海区、输入源、季节、动力学过程及生物生产过程不同而变化.控制海洋沉积物-海水界面N、P、Si沉积、释放及循环的因素,包括有机质和溶解氧的浓度、有机质中C、N、P、Si的相对比例、沉积物-海水界面附近的氧化还原环境、生物扰动、温度、水深、pH值、不同形态S的浓度、金属离子以及水动力条件等.一般其综合作用的表现是,沉积物-海水界面之间NH+4、PO3-4和Si(OH)4从沉积物向上覆水扩散转移,而硝酸盐和亚硝酸盐的通量方向相反,通量的大小随着海区的不同差别较大.  相似文献   

15.
Most magmatic-hydrothermal Cu deposits are genetically linked to arc magmas. However, most continental or oceanic arc magmas are barren, and hence new methods have to be developed to distinguish between barren and mineralised arc systems. Source composition, melting conditions, the timing of S saturation and an initial chalcophile element-enrichment represent important parameters that control the potential of a subduction setting to host an economically valuable deposit. Brothers volcano in the Kermadec island arc is one of the best-studied examples of arc-related submarine magmatic-hydrothermal activity. This study, for the first time, compares the chemical and mineralogical composition of the Brothers seafloor massive sulphides and the associated dacitic to rhyolitic lavas that host the hydrothermal system. Incompatible trace element ratios, such as La/Sm and Ce/Pb, indicate that the basaltic melts from L’Esperance volcano may represent a parental analogue to the more evolved Brothers lavas. Copper-rich magmatic sulphides (Cu?>?2 wt%) identified in fresh volcanic glass and phenocryst phases, such as clinopyroxene, plagioclase and Fe–Ti oxide suggest that the surrounding lavas that host the Brothers hydrothermal system represent a potential Cu source for the sulphide ores at the seafloor. Thermodynamic calculations reveal that the Brothers melts reached volatile saturation during their evolution. Melt inclusion data and the occurrence of sulphides along vesicle margins indicate that an exsolving volatile phase extracted Cu from the silicate melt and probably contributed it to the overlying hydrothermal system. Hence, the formation of the Cu-rich seafloor massive sulphides (up to 35.6 wt%) is probably due to the contribution of Cu from a bimodal source including wall rock leaching and magmatic degassing, in a mineralisation style that is hybrid between Cyprus-type volcanic-hosted massive sulphide and subaerial epithermal–porphyry deposits.  相似文献   

16.
Various Fe–S minerals of the mackinawite–greigite–pyrite association, ubiquitous in biogenic remains from Jurassic mudstones, have been described in detail in an SEM–EDS study. Two diagenetic stages of Fe sulphide formation and preservation in the Jurassic organic skeletons are identified. In the first stage, pyrite formed as euhedra and framboids shortly after deposition, mainly in the interiors of the skeletons which still contained labile organic matter. The second stage of iron sulphide formation was related to the later stages of diagenesis, when the influence of the surrounding sediment was more dominant, although some organic matter was still present in the biogenic skeletons. A Fe-rich carbonate–aluminosilicate cement was then introduced between the earliest iron sulphides and later subsequently sulphidized, to form a metastable iron monosulphide of mackinawite composition and then greigite.  相似文献   

17.
Solid and colloidal iron oxides are commonly involved in early diagenesis. More readily available soluble Fe(III) should accelerate the cycling of iron (Fe) and sulfur (S) in sediments. Experiments with synthetic solutions (Taillefert et al. 2000) showed that soluble Fe(III) (i.e., <50 nm diameter) reacts at a mercury voltammetric electrode at circumneutral pH if it is complexed by an organic ligand. The reactivity of soluble organic-Fe(III) with sulfide is greatly increased compared to its solid equivalent (e.g., amorphous hydrous iron oxides or goethite). We report here data from two different creeks of the Hackensack Meadowlands District (New Jersey) collected with solid state Au/Hg voltammetric microelectrodes and other conventional techniques, which confirm the existence of soluble organic-Fe(III) in sediments and its interaction with sulfide. Chemical profiles in these two anoxic sediments show the interaction between iron and sulfur during early diagenesis. Soluble organic-Fe(III) and Fe(II) are dominant in a creek where sulfide is negligible. This dominance suggests that the reductive dissolution of iron oxides goes through the dissolution of solid Fe(III), then reduction to Fe(II), or that soluble organic-Fe(III) is formed by chemical or microbial oxidation of organic-Fe(II) complexes. In a creek sediment where sulfide occurs in significant concentration, the reductive dissolution of Fe(III) is followed by formation of FeS(aq), which further precipitates. Dissolved sulfide may influence the fate of soluble organic-Fe(III), but the pH may be the key variable behind this process. The high reactivity of soluble organic-Fe(III) and its mobility may result in the shifting of local reactions, at depths where other electron acceptors are used. These data also suggest that estuarine and coastal sediments may not always be at steady state.  相似文献   

18.
Solid phase and pore water chemical data collected in a sediment of the Haringvliet Lake are interpreted using a multi-component reactive transport model. This freshwater lake, which was formed as the result of a river impoundment along the southwestern coast of the Netherlands, is currently targeted for restoration of estuarine conditions. The model is used to assess the present-day biogeochemical dynamics in the sediment, and to forecast possible changes in organic carbon mineralization pathways and associated redox reactions upon salinization of the bottom waters. Model results indicate that oxic degradation (55%), denitrification (21%), and sulfate reduction (17%) are currently the main organic carbon degradation pathways in the upper 30 cm of sediment. Unlike in many other freshwater sediments, methanogenesis is a relatively minor carbon mineralization pathway (5%), because of significant supply of soluble electron acceptors from the well-mixed bottom waters. Although ascorbate-reducible Fe(III) mineral phases are present throughout the upper 30 cm of sediment, the contribution of dissimilatory iron reduction to overall sediment metabolism is negligible. Sensitivity analyses show that bioirrigation and bioturbation are important processes controlling the distribution of organic carbon degradation over the different pathways. Model simulations indicate that sulfate reduction would rapidly suppress methanogenesis upon seawater intrusion in the Haringvliet, and could lead to significant changes in the sediment’s solid-state iron speciation. The changes in Fe speciation would take place on time-scales of 20-100 years.  相似文献   

19.
Fe (III) reduction is a key component of the global iron cycle, and an important control on carbon mineralization. However, little is known about the relative roles and rates of microbial (biotic) iron reduction, which utilizes organic matter, versus abiotic iron reduction, which occurs without carbon mineralization. This paper reports on the capacity for salt marsh sediments, which typically are rich in iron, to support abiotic reduction of mineral Fe (III) driven by oxidation of sulphide. Sediment was reacted with amorphous FeS under strictly anaerobic conditions at a range of temperatures in biotic and abiotic microcosm experiments. Fe (III) reduction driven by sulphide oxidation occurs abiotically at all temperatures, leading to Fe (II) and elemental sulphur production in all abiotic experiments. In biotic experiments elemental sulphur is also the oxidized sulphur product but higher bicarbonate production leads to FeCO3 precipitation. Abiotic reduction of Fe (III) occurs at rates that are significant compared with microbial Fe (III) reduction in salt marsh sediments. The solid phases produced by coupled abiotic and biotic reactions, namely elemental sulphur and FeCO3, are comparable to those seen in nature at Warham, Norfolk, UK. Furthermore, the rates of these processes measured in the microcosm experiments are sufficient to generate siderite concretions on the rapid time scales observed in the field. This work highlights the importance of abiotic Fe (III) reduction alongside heterotrophic reduction, which has implications for iron cycling and carbon mineralization in modern and ancient sediments.  相似文献   

20.
The question of a primary versus diagenetic origin for the limestone-shale rhythms of the Blue Lias has been addressed through a study of pyrite abundance and isotopic composition. Pyrite is relatively abundant and isotopically light in the central portions of the bioturbated limestones as compared to adjacent, less calcareous, sediment. The abundance of pyrite shows that the limestones were a focus for prolonged sulphate reduction and pyrite formation. The isotopic data indicate that bioturbation oxidized some pyrite to produce isotopically light sulphate, part of which was subsequently reduced back to pyrite before preservation by burial. Acidity generated by pyrite oxidation was buffered in the limestones by carbonate dissolution, hence supersaturation of sulphides could be maintained. By contrast, in adjacent less calcareous sediments, carbonate dissolution was unable to buffer acidity and bioturbational oxidation of pyrite formed iron-rich pore solutions. Continued sulphate reduction in the limestones acted as a sink for iron from the adjacent sediments and, with burial below the zone of bioturbation, the alkalinity so generated caused cementation of the limestones. Diagenetic cementation would be enhanced during an hiatus in sedimentation, an event which might be related to a Milankovitch forcing mechanism, but which would not be recorded in bioturbated, less calcareous sediment, thus leaving an imperfect record. Only cyclicity in pre-diagenetic sedimentation patterns may be safely related to a Milankovitch forcing mechanism as proposed by Weedon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号