首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《New Astronomy》2004,9(2):83-101
The polarization of the Cosmic Microwave Background (CMB) is a powerful observational tool at hand for modern cosmology. It allows to break the degeneracy of fundamental cosmological parameters one cannot obtain using only anisotropy data and provides new insight into conditions existing in the very early Universe. Many experiments are now in progress whose aim is detecting anisotropy and polarization of the CMB. Measurements of the CMB polarization are however hampered by the presence of polarized foregrounds, above all the synchrotron emission of our Galaxy, whose importance increases as frequency decreases and dominates the polarized diffuse radiation at frequencies below ≃50 GHz. In the past the separation of CMB and synchrotron was made combining observations of the same area of sky at different frequencies. In this paper, we show that the statistical properties of the polarized components of the synchrotron and dust foregrounds are different from the statistical properties of the polarized component of the CMB, therefore one can build a statistical estimator which allows to extract the polarized component of the CMB from single frequency data also when the polarized CMB signal is just a fraction of the total polarized signal. Our estimator improves the signal/noise ratio for the polarized component of the CMB and reduces from ≃50 to ≃20 GHz, the frequency above which the polarized component of the CMB can be extracted from single frequency maps of the diffuse radiation.  相似文献   

2.
We present multifrequency observations of a sample of 15 radio-emitting broad absorption-line quasars (BAL QSOs), covering a spectral range between 74 MHz and 43 GHz. They mostly display convex radio spectra which typically peak at about 1–5 GHz (in the observer's rest frame), flatten at MHz frequencies, probably due to synchrotron self-absorption, and become steeper at high frequencies, i.e. ν≳ 20 GHz. Very Large Array (VLA) 22-GHz maps (HPBW ∼80 mas) show unresolved or very compact sources, with linear projected sizes of ≤1 kpc. About two-thirds of the sample looks unpolarized or weakly polarized at 8.4 GHz, frequency in which reasonable upper limits could be obtained for polarized intensity. Statistical comparisons have been made between the spectral index distributions of samples of BAL and non-BAL QSOs, both in the observed and in the rest frame, finding steeper spectra among non-BAL QSOs. However, constraining this comparison to compact sources results in no significant differences between both distributions. This comparison is consistent with BAL QSOs not being oriented along a particular line of sight. In addition, our analysis of the spectral shape, variability and polarization properties shows that radio BAL QSOs share several properties common to young radio sources like compact steep spectrum or gigahertz peaked spectrum sources.  相似文献   

3.
We present a detailed analysis of multi-frequency observations of linear polarization in the intraday variable quasar 0917+624 (z = 1.44). The observations were made in May 1989 at five frequencies (1.4, 2.7, 5.0, 8.3 and 15GHz) with the VLA and the Effelsberg 100 m-telescope and in December 1988 at two frequencies (2.7 and 5.0 GHz) with the latter. It is shown that the relationship between the variations of the polarized and total flux density is highly wavelength dependent, and the multi-frequency polarization behavior may be essential for investigating the mechanisms causing these variations. It is shown that the variations observed at 20 cm can be interpreted in terms of refractive interstellar scintillation. However, after subtracting the variation due to scintillation, three 'features' emerged in the light-curve of the polarized flux density, indicating an additional variable component. Interestingly, these features are shown to be correlated with the variations at 2-6 cm, thus indicating that thes  相似文献   

4.
We present simultaneous dual-frequency radio observations of Cygnus X-3 during a phase of low-level activity. We constrain the minimum variability time-scale to be 20 min at 43 GHz and 30 min at 15 GHz, implying source sizes of 2–4 au. We detect polarized emission at a level of a few per cent at 43 GHz which varies with the total intensity. The delay of ∼10 min between the peaks of the flares at the two frequencies is seen to decrease with time, and we find that synchrotron self-absorption and free–free absorption by entrained thermal material play a larger role in determining the opacity than absorption in the stellar wind of the companion. A shock-in-jet model gives a good fit to the light curves at all frequencies, demonstrating that this mechanism, which has previously been used to explain the brighter, longer lived giant outbursts in this source, is also applicable to these low-level flaring events. Assembling the data from outbursts spanning over two orders of magnitude in flux density shows evidence for a strong correlation between the peak brightness of an event, and the time-scale and frequency at which this is attained. Brighter flares evolve on longer time-scales and peak at lower frequencies. Analysis of the fitted model parameters suggests that brighter outbursts are due to shocks forming further downstream in the jet, with an increased electron normalization and magnetic field strength both playing a role in setting the strength of the outburst.  相似文献   

5.
The spectrum of the S-component of solar radio emission has been investigated at 4 GHz, 17 GHz, 35 GHz, 70 GHz, and 94 GHz. The spectrum for a spot group which appeared late in March 1966 (McMath plage No. 8223), seems to be flat at the frequencies above about 35 GHz. This implies that the emission is due to pure free-free emission at the frequencies above 35 GHz.  相似文献   

6.
The Australia Telescope 20-GHz (AT20G) Survey is a blind survey of the whole southern sky at 20 GHz (with follow-up observations at 4.8 and 8.6 GHz) carried out with the Australia Telescope Compact Array from 2004 to 2007.
The Bright Source Sample (BSS) is a complete flux-limited subsample of the AT20G Survey catalogue comprising 320 extragalactic     ) radio sources south of  δ=−15°  with      Jy. Of these, 218 have near simultaneous observations at 8 and 5 GHz.
In this paper we present an analysis of radio spectral properties in total intensity and polarization, size, optical identifications and redshift distribution of the BSS sources. The analysis of the spectral behaviour shows spectral curvature in most sources with spectral steepening that increases at higher frequencies (the median spectral index α, assuming   S ∝να  , decreases from  α8.64.8= 0.11  between 4.8 and 8.6 GHz to  α208.6=−0.16  between 8.6 and 20 GHz), even if the sample is dominated by flat spectra sources (85 per cent of the sample has  α208.6 > −0.5)  . The almost simultaneous spectra in total intensity and polarization allowed us a comparison of the polarized and total intensity spectra: polarized fraction slightly increases with frequency, but the shapes of the spectra have little correlation. Optical identifications provided an estimation of redshift for 186 sources with a median value of 1.20 and 0.13, respectively, for QSO and galaxies.  相似文献   

7.
Polarized microwave emission from dust is an important foreground that may contaminate polarized CMB studies unless carefully accounted for. We discuss potential difficulties associated with this foreground, namely, the existence of different grain populations with very different emission/polarization properties and variations of the polarization yield with grain temperature. In particular, we discuss observational evidence in favor of rotational emission from tiny PAH particles with dipole moments, i.e. “spinning dust”, and also consider magneto-dipole emission from strongly magnetized grains. We argue that in terms of polarization, the magneto-dipole emission may dominate even if its contribution to total emissivity is subdominant. Addressing polarized emission at frequencies larger than 100 GHz, we discuss the complications arising from the existence of dust components with different temperatures and possibly different alignment properties.  相似文献   

8.
《New Astronomy Reviews》2002,46(2-7):299-302
Here we present preliminary work on two samples of radio sources having convex radio spectra peaking at frequencies higher than a few GHz (High Frequency Peakers or HFPs). The samples have been selected by a comparison between the Green Bank survey at 4.9 GHz and the NRAO VLA Sky Survey (NVSS) at 1.4 GHz. We briefly discuss our very short simultaneous multifrequency VLA observations, aimed to remove flat-spectrum variable sources from the lists, and therefore produce two samples of genuine HFP sources.  相似文献   

9.
We present a new system of two circular polarization solar radio telescopes, POEMAS, for observations of the Sun at 45 and 90 GHz. The novel characteristic of these instruments is the capability to measure circular right- and left-hand polarizations at these high frequencies. The two frequencies were chosen so as to bridge the gap at radio frequencies between 20 and 200 GHz of solar flare spectra. The telescopes, installed at CASLEO Observatory (Argentina), observe the full disk of the Sun with a half power beam width of 1.4°, a time resolution of 10 ms at both frequencies, a sensitivity of 2?–?4 K that corresponds to 4 and 20 solar flux unit (=104 Jy), considering aperture efficiencies of 50±5 % and 75±8 % at 45 and 90 GHz, respectively. The telescope system saw first light in November 2011 and is satisfactorily operating daily since then. A few flares were observed and are presented here. The millimeter spectra of some flares are seen to rise toward higher frequencies, indicating the presence of a new spectral component distinct from the microwave one.  相似文献   

10.
The occurrence of very faintly polarized, or unpolarized impulsive bursts observed at 7 GHz is discussed. It appears that some of them show a peculiar spectral peak somewhere between 5 GHz and 7 GHz. Possible interpretations are suggested, emphasizing the need to associate to the burst the state of polarization of the S-component in which it occurred.  相似文献   

11.
We describe observations of three flares made at 5 and 15 GHz with the VLA, two subflares near the limb on 1981 November 21 and 22, and an M7.7 flare on 1981 May 8. Even though the time histories of the November flares indicated simple impulsive bursts, the VLA observed no 5 GHz radiation at all from one flare, and from the other, the 15 GHz radiation emanated from a source which was smaller, lower and displaced from the 5 GHz source. Without the spatial information, we would have derived incorrect results from the assumption that photons of different energy (both at X-ray and radio wavelengths) arose from one homogeneous volume. The 1981 May 8 flare was intense and complex, having two. or more sources at both 5 and 15 GHz. Prior to the peak of the flare, the sources grew in size to > 20″ to 40″, after which they were not visible to the VLA; only (weak) subsources could be seen. These were located between or at the edge of the Hα ribbons and the two hard X-ray sources imaged by the Hinotori. Highly polarized, bursty radiation observed at Toyokawa at 1 and 2 GHz, indicated that an electron-cyclotron maser operated during the flare. We derive 360 to 660 gauss as the maximum field strength in flaring loops.  相似文献   

12.
High time-resolution data observed in two periods, respectively, by three frequencies (1.42, 2.84, and 3.67 GHz) or four frequencies (1.42, 2.00, 2.84, and 4.00 GHz) of fast sampling radiotelescopes were processed. Obtained were some significant results showing that during the obviously rising or maximum phases of solar cycle 22, the occurrence frequency of millisecond radio spikes at three or four frequencies decreased with the frequency increase and the highest occurrence frequency was at 1.42 GHz. If we assume the secondx-mode is pre-dominant in the growth rate of ECM instability, we calculate the magnetic intensity of source regions with spike bursts at the four frequencies and interpret the occurrence frequency of millisecond radio spikes on long centimetre and short decimetre wavelengths. Finally, this paper suggests that, owing to the Razing effect, whenf126 MHz the occurrence frequency of millisecond radio spikes starts to decrease.  相似文献   

13.
Various solar bursts have been analysed with high sensitivity (0.03 sfu, rms) and high-time resolution (1 ms) at two frequencies in the millimeter wave range (22 GHz and 44 GHz), and with moderate time resolution (100 ms) by a patrol telescope at a frequency in the microwave range (7 GHz). It was found that, in most cases, burst maximum emission is not coincident in time at those frequencies. Preceding maximum emission can be either at the higher or at the lower frequency. Time delays ranged from about 3 s to near coincidence, defined within 10 ms. Some complex bursts presented all kinds of delays among different time structures, and sometimes nearly uncorrelated time structures.Large time delays favour the association of the dynamic effects to shock wave speeds. Directional particle acceleration in complex magnetic configuration could be considered to explain the variety of the dynamic effects. Fastest burst rise times observed, less than 50 ms at 44 GHz and at 22 GHz, might be associated to limiting formation times of emission sources combined with various absorption mechanisms at the source and surrounding plasma.In memoriam, 1942–1981.INPE operates Itapetinga Radio Observatory and CRAAM.  相似文献   

14.
Imke de Pater  David E Dunn 《Icarus》2003,163(2):449-455
We observed Jupiter’s synchrotron radiation at frequencies of 15 and 22 GHz using the VLA (Very Large Array) in its most compact configuration (D-array) in March 1991. The spatial brightness distribution of the emission at these high frequencies appears to be very similar to that seen at lower frequencies (5 GHz down to 330 MHz). We measured a total nonthermal flux density at 15 and 22 GHz of 1.5 ± 0.15 Jy and 1.5 ± 0.4 Jy, respectively (both normalized to a geocentric distance of 4.04 AU). These numbers agree well with model spectra of Jupiter’s synchrotron radiation that were obtained by fitting the planet’s nonthermal radio emission between 74 MHz and 8 GHz and suggest a maximum cutoff in electron energies at ∼100 MeV. The degree of linear polarization observed with the VLA is 21.5 ± 1.9% at 15 GHz.  相似文献   

15.
We present the first determination of the Galactic polarized emission at 353 GHz by Archeops. The data were taken during the Arctic night of February 7, 2002 after the balloon-borne instrument was launched by CNES from the Swedish Esrange base near Kiruna. In addition to the 143 and 217 GHz frequency bands dedicated to CMB studies, Archeops had one 545 GHz and six 353 GHz bolometers mounted in three polarization sensitive pairs that were used for Galactic foreground studies. We present maps of the I,Q,U Stokes parameters over 17% of the sky and with a 13 arcmin resolution at 353 GHz (850 μm). They show a significant Galactic large scale polarized emission coherent on the longitude ranges [100°,120°] and [180°,200°] with a degree of polarization at the level of 4–5%, in agreement with expectations from starlight polarization measurements. Some regions in the Galactic plane (Gem OB1, Cassiopeia) show an even stronger degree of polarization in the range 10–20%. Those findings provide strong evidence for a powerful grain alignment mechanism throughout the interstellar medium and a coherent magnetic field coplanar to the Galactic plane. This magnetic field pervades even some dense clouds. Extrapolated to high Galactic latitude, these results indicate that interstellar dust polarized emission is the major foreground for PLANCK-HFI CMB polarization measurement.  相似文献   

16.
The results of observations of the quasar J0530+1331 (B0528+134) with the radio telescopes RATAN-600 at frequencies of 4.6, 8.2, 11.2, 21.7 GHz and RT-32 at the Zelenchukskaya and Badary observatories of the Quasar network of the Institute of Applied Astronomy, the Russian Academy of Sciences, at frequencies of 4.84 and 8.57 GHz in 2014–2015 are presented. A strong variability on a timescale of 20 days at 4.6–11.2 GHz has been detected over three months of daily RATAN-600 observations; the variability indices are V = dS/〈S〉; = 0.65?0.39. The spectrum of the variable component is falling toward high frequencies with an index α = ?0.76. The structure and autocorrelation functions at 4.6 GHz show an additional process on a timescale of 7 days. No delay of the main process has been detected between 11.2 and 8.2 GHz; the delay between 8.2 and 4.6 GHz does not exceed two days. The most likely cause of the observed variability is the scattering by inhomogeneities of the interstellar medium. The variability has been obtained at theminimum activity phase of the source. The intraday variability (IDV) has been searched for at both RT-32 telescopes since April 2014. Out of 38 successful observing sessions for the source, only three have shown a variability on a timescale of four hours or more at a significance level no higher than 0.1%. This confirms our conclusion drawn from the previous IDV measurements for other sources that the IDV is observed mainly at the maximum phases of long-term variability of the sources.  相似文献   

17.
统计分析了国家天文台2.6-3.8 GHz高时间分辨率射电动态频谱仪在23周峰年期间(1998.4—2003.1)观测到的266个III型爆发.对这些事件的频率漂移、持续时间、偏振、带宽、开始和结束频率做了详细分析.开始和结束频率的统计分析表明,开始频率在一个非常大的范围,从小于2.6 GHz到大于3.8 GHz,而结束频率的截止区相对集中,从2.82-3.76 G.Hz.这些现象说明,电子加速的高度相当分散,在观测频率范围内具有正、负漂移率的III型爆发数基本相等,这可能意味着被加速的向上和向下传播的电子束在2.6—3.8 GHz范围有相同的比例.统计结果表明,微波III型爆发的辐射机制主要是等离子体辐射和电子回旋脉泽辐射过程.  相似文献   

18.
We present Very Long Baseline Array (VLBA) observations of the nucleus of NGC 1275, the central, dominant galaxy in the Perseus cluster of galaxies. These are the first observations to resolve the linearly polarized emission from 3C 84, and from them we determine a Faraday rotation measure (RM) ranging from 6500 to 7500 rad m−2 across the tip of the bright southern jet component. At 22 GHz some polarization is also detected from the central pc of 3C 84, indicating the presence of even more extreme RMs that depolarize the core at lower frequencies. The nature of the Faraday screen is most consistent with being produced by magnetic fields associated with the optical filaments of ionized gas in the Perseus cluster.  相似文献   

19.
We present previously unpublished circular polarization (cp) measurements at 4.8 and 8.0 GHz made with the University of Michigan 26-meter prime focus telescope during 1978–1984 and results of a new observational program during the past two years. Based on the preliminary analysis of our recent data, eight sources were detected at 4.8 GHz with average degrees of cp ranging from ≤ 0.1% to ≥ 1%.The results are compared with observations at other frequencies and with linear polarization and total flux density variability in the sources. The behavior of the cp variability observed to date is consistent with stochastic variations produced by mode conversion in transient, opaque emitting regions in the sources. The observed sign changes observed between different epochs and different frequencies are not consistent with the hypothesis that sources maintain a fixed handedness of cp.  相似文献   

20.
We present the long-term light curve of the radio source J1603+1105 and results of the study of its variability on timescales from several days to several weeks. From 2007, a flare with the maximum in 2010 was observed for the object that earlier showed no significant variations of flux density. Three flares with a successively decreasing amplitude were detected at an active phase in the long-term light curve. The characteristic time of the first one was 2.5 yrs. In five sets of daily observations of 95 to 120 days, the flux density variability on scales from 9 to 32 days in 2011, 2012, 2015, and 2016 was detected; in 2015 it was detected at three frequencies simultaneously. In 2011, the variability was found at a single frequency of 4.8 GHz; in 2012—at two frequencies, 4.8 and 7.7 GHz; in 2015—at 4.6, 8.2, and 11.2 GHz.We present instant spectra of the source at different flare phases showing that the dynamics of the flare development is consistent with the model, in which the variability is the result of the shock wave evolution in the radio source jet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号