首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
1960-2009年横断山区潜在蒸发量时空变化   总被引:6,自引:2,他引:6  
以横断山区20 个气象站1960-2009 年逐日气象数据为基础,应用1998 年FAO 修正的Penman-Monteith 模型分析了横断山区潜在蒸发量的变化,在ArcGIS 环境下通过样条插值法分析了潜在蒸发量变化的时空分异,并对影响潜在蒸发量变化的气象因素进行了讨论,结果表明:年潜在蒸发量自20 世纪60 年代中期以来呈波动减小趋势,20 世纪80 年代中期之后减小趋势更加明显,2000-2009 年呈增加趋势。潜在蒸发量的年际变化倾向率为-0.17 mm a-1,从空间分布来看,北部、中部、南部都呈减少趋势,倾向率由北向南逐渐减小。从季节来看,秋季和冬季潜在蒸发量呈增加趋势,春季和夏季呈减小趋势,春季减小趋势大于夏季,秋季增加趋势大于冬季。气温上升、风速和日照时数的降低是横断山区潜在蒸发量减少的主导因素,风速和日照时数的下降导致春季和夏季潜在蒸发量减小,气温上升导致秋季和冬季潜在蒸发量增加。  相似文献   

2.
1960-2007年中国地表潜在蒸散发敏感性的时空变化(英文)   总被引:2,自引:0,他引:2  
Potential evapotranspiration (E0), as an estimate of the evaporative demand of the atmosphere, has been widely studied in the fields of irrigation management, crop water demand and predictions in ungauged basins (PUBs). Analysis of the sensitivity of E0 to meteorological factors is a basic research on the impact of climate change on water resources, and also is important to the optimal allocation of agricultural water resources. This paper dealt with sensitivity of E0 over China, which was divided into ten drainage systems, including Songhua River basin, Liaohe River basin, Haihe River basin, Yellow River basin, Yangtze River basin, Pearl River basin, Huaihe River drainage system, Southeast river drainage system, Northwest river drainage system and Southwest river drainage system. In addition, the calculation method of global radiation in Penman-Monteith formula was improved by optimization, and the sensitivities of Penman-Monteith potential evapotranspiration to the daily maximum temperature (STmax), daily minimum temperature (STmin), wind speed (SU2), global radiation (SRs) and vapor pressure (SVP) were calculated and analyzed based on the long-term meteorological data from 653 meteorological stations in China during the period 1960-2007. Results show that: (1) the correlation coefficient between E0 and pan evaporation increased from 0.61 to 0.75. E0 had the decline trends in eight of ten drainage systems in China, which indicates that "pan evaporation paradox" commonly exists in China from 1960 to 2007. (2) Spatially, Tmax was the most sensitive factor in Haihe River basin, Yellow River basin, Huaihe River drainage system, Yangtze River basin, Pearl River basin and Southeast river drainage system, and VP was the most sensitive factor in Songhua River Basin, Liaohe River basin, Northwest river drainage system while Rs was the most sensitive factor in Southwest river drainage system. For the nation-wide average, the most sensitive factor was VP, followed by Tmax, Rs, U2 and Tmin. In addition, the changes in sensitivity coefficients had a certain correlation with elevation. (3) Temporally, the maximum values of STmax and SRs occurred in July, while the maximum values of STmin, SVP and SU2 occurred in January. Moreover, trend analysis indicates that STmax had decline trends, while STmin, SU2, SRs and SVP had increasing trends.  相似文献   

3.
The agricultural and land policies in China are always focused on protecting its food supply and security because of the country’s large population and improved diets.The crop production guide ’Take Grain as the Key Link’ prompted peasants to plant grain on most of the agricultural land,leading to the majority of fertilizer being used in grain crops for many years in China.This situation has changed dramatically in recent years.Based on data pertaining to provincial crops sown area and fertilizer use per unit area in 1998 and 2008,the temporal and spatial variations of China’s fertilizer consumption by crops were analyzed at the provincial level,and the results are presented here.(1) Fertilizer consumption in China grew strongly in the last decade,while the growth was mainly attributable to the increase of fertilizer con-sumption by horticultural crops.The fertilizer consumption of grain crops dropped from 71.0% in 1998 to 57.8% in 2008.Thus,it is concluded that the emphasis of fertilizer consumption is shifting toward horticultural crops.(2) There were marked differences in the growth rates of fertilizer consumption from the regional point of view.The national average growth rate of fertilizer consumption was 31.9% during 1998-2008.The western and northeastern parts of the country came close to the national average,while the eastern part was lower,with an average of 13.0%,and central China was much higher(50.8%).The increase of fertilizer consumption in central and west China was higher than the other zones,which already ac-counted for 77.9% of the national total.Thus,it is concluded that the consumption emphasis of chemical fertilizer shifts toward the central and western regions.(3) The decline of fertilizer consumption by grain crops was largely due to the decrease in sown area compared with the increase by vegetable crops attributable to the enlarging sown area;the increase by orchard crops was affected by both expanding the sown area and fertilizer use per unit area.  相似文献   

4.
Tropical cyclone,a high energy destructive meteorological system with heavy rainfall and gale triggered massive landslides and windstorms,poses a significant threat to coastal areas.In this paper we have developed a Tropical Cyclone Potential Impact Index (TCPI) based on the air mass trajectories,disaster information,intensity,duration,and frequency of tropical cyclones.We analyzed the spatial pattern and interannual variation of the TCPI over the period 1949-2009,and taking the Super Typhoon Saomai as an example have examined the relationship between the TCPI and direct economic losses,total rainfall,and maximum wind speed.The results reveal that China’s TCPI appears to be a weak decreasing trend over the period,which is not significant overall,but significant in some periods.Over the past 20 years,the TCPI decreased in the southern China coastal provinces of Hainan,Guangdong and Guangxi,while it increased in the southeastern coastal provinces of Zhejiang,Fujian and Taiwan.The highest values of TCPI are mainly observed in Taiwan,Hainan,the coastal areas of Guangdong and Fujian and Zhejiang’s southern coast.The TCPI has a good correlation (P=0.01) with direct economic loss,rainfall,and maximum wind speed.  相似文献   

5.
This paper reveals the temporal and spatial variations of stable isotope in precipita-tion of the Yarlung Zangbo River Basin based on the variations of δ18O in precipitation at four stations (Lhaze,Nugesha,Yangcun and Nuxia) in 2005. The results show that δ18O of pre-cipitation has distinct seasonal changes in the Yarlung Zangbo River Basin. The higher value of δ18O occurs in spring prior to monsoon precipitation,and the lower value occurs during monsoon precipitation. From the spatial variations,with the altitude-effect and rainout process during moisture transport along the Yarlung Zangbo River Valley,18O of precipitation is gradually depleted. Thus,δ18O of precipitation decreases gradually from the downstream to the upstream,and the lapse rate of δ18O in precipitation is approximately 0.34‰/100m and 0.7‰/100km for the two reasons. During monsoon precipitation,spatial variation of δ18O in precipitation is dominated by the amount effect in the large scale synoptic condition.  相似文献   

6.
蒸发是水文循环的一个重要过程,也是影响区域水资源量的重要因素。通过选取黄土高原50个气象站1959-2015年的逐月气象资料,应用FAO修正的Penman-Monteith模型计算黄土高原潜在蒸发量,采用Mann-Kendall检验与空间插值分析其时空变化特征,探讨各气象要素对潜在蒸发量的影响。结果表明:黄土高原多年平均潜在蒸发量在780~1 470 mm之间,由西北向东南递减。1959-2015年,黄土高原潜在蒸发量变化率为5.64 mm·(10 a)-1;春季变化率最大,其次为夏季和秋季,冬季最小。从空间分布看,西部、中北部地区和东南部地区潜在蒸发量均呈非显著性增加趋势。太阳净辐射量增加是黄土高原潜在蒸发量增加的主导因子,其次为实际水汽压、风速和温度。  相似文献   

7.
In this study, we analyzed the spatiotemporal variation of cold surges in Inner Mongolia between 1960 and 2012 and their possible driving factors using daily minimum temperature data from 121 meteorological stations in Inner Mongolia and the surrounding areas. These data were analyzed utilizing a piecewise regression model, a Sen+MannKendall model, and a correlation analysis. Results demonstrated that(1) the frequency of single-station cold surges decreased in Inner Mongolia during the study period, with a linear tendency of –0.5 times/10a(–2.4 to 1.2 times/10a). Prior to 1991, a significant decreasing trend of –1.1 times/10a(–3.3 to 2.5 times/10a) was detected, while an increasing trend of 0.45 times/10a(–4.4 to 4.2 times/10a) was found after 1991. On a seasonal scale, the trend in spring cold surges was consistent with annual values, and the most obvious change in cold surges occurred during spring. Monthly cold surge frequency displayed a bimodal structure, and November witnessed the highest incidence of cold surge.(2) Spatially, the high incidence of cold surge is mainly observed in the northern and central parts of Inner Mongolia, with a higher occurrence observed in the northern than in the central part. Inter-decadal characteristic also revealed that high frequency and low frequency regions presented decreasing and increasing trends, respectively, between 1960 and 1990. High frequency regions expanded after the 1990 s, and regions exhibiting high cold surge frequency were mainly distributed in Tulihe, Xiao’ergou, and Xi Ujimqin Banner.(3) On an annual scale, the cold surge was dominated by AO, NAO, CA, APVII, and CQ. However, seasonal differences in the driving forces of cold surges were detected. Winter cold surges were significantly correlated with AO, NAO, SHI, CA, TPI, APVII, CW, and IZ, indicating they were caused by multiple factors. Autumn cold surges were mainly affected by CA and IM, while spring cold surges were significantly correlated with CA and APVII.  相似文献   

8.
Despite the observed increase in global temperature, observed pan evaporation in many regions has been decreasing over the past 50 years, which is known as the "pan evaporation paradox". The "pan evaporation paradox" also exists in the Tibetan Plateau, where pan evaporation has decreased by 3.06 mm a-2 (millimeter per annum). It is necessary to explain the mechanisms behind the observed decline in pan evaporation because the Tibetan Plateau strongly influences climatic and environmental changes in China, Asia and even in the Northern Hemisphere. In this paper, a derivation based approach has been used to quantitatively assess the contribution rate of climate factors to the observed pan evaporation trend across the Tibetan Plateau. The results showed that, provided the other factors remain constant, the increasing temperature should have led to a 2.73 mm a-2 increase in pan evaporation annually, while change in wind speed, vapor pressure and solar radiation should have led to a decrease in pan evaporation by 2.81 mm a-2, 1.96 mm a-2 and 1.11 mm a-2 respectively from 1970 to 2005. The combined effects of the four climate variables have resulted in a 3.15 mm a-2 decrease in pan evaporation, which is close to the observed pan evaporation trend with a relative error of 2.94%. A decrease in wind speed was the dominant factor for the decreasing pan evaporation, followed by an increasing vapor pressure and decreasing solar radiation, all of which offset the effect of increasing temperature across the Tibetan Plateau.  相似文献   

9.
The quantity and spatial pattern of farmland has changed in China, which has led to a major change in the production potential under the influence of the national project of ecological environmental protection and rapid economic growth during 1990–2010. In this study, the production potential in China was calculated based on meteorological, terrain elevation, soil and land-use data from 1990, 2000 and 2010 using the Global Agro-ecological Zones model. Then, changes in the production potential in response to farmland changes from 1990 to 2010 were subsequently analyzed. The main conclusions were the following. First, the total production potential was 1.055 billion tons in China in 2010. Moreover, the average production potential was 7614 kg/ha and showed tremendous heterogeneity in spatial pattern. Total production in eastern China was high, whereas that in northwestern China was low. The regions with high per unit production potential were mainly distributed over southern China and the middle and lower reaches of the Yangtze River. Second, the obvious spatiotemporal heterogeneity in farmland changes from 1990 to 2010 had a significant influence on the production potential in China. The total production potential decreased in southern China and increased in northern China. Furthermore, the center of growth of the production potential moved gradually from northeastern China to northwestern China. The net decrease in the production potential was 2.97 million tons, which occupied 0.29% of the national total actual production in 2010. Third, obvious differences in the production potential in response to farmland changes from 1990 to 2000 and from 2000 to 2010 were detected. The net increase in the production potential during the first decade was 10.11 million tons and mainly distributed in the Northeast China Plain and the arid and semi-arid regions of northern China. The net decrease in the production potential during the next decade was 13.08 million tons and primarily distributed in the middle and lower reaches of the Yangtze River region and the Huang-Huai-Hai Plain. In general, the reason for the increase in the production potential during the past two decades might be due to the reclamation of grasslands, woodlands and unused land, and the reason for the decrease in the production potential might be urbanization that occupied the farmland and Green for Grain Project, which returned farmland to forests and grasslands.  相似文献   

10.
1960-2009年西南地区极端干旱气候变化(英文)   总被引:8,自引:1,他引:8  
Based on the daily data of temperature and precipitation of 108 meteorological stations in Southwest China from 1960 to 2009, we calculate the monthly and yearly surface humid indexes, as well as the extreme drought frequency. According to the data, the temporal and spatial characteristics of the extreme drought frequency in inter-annual, inter-decadal, summer monsoon period and winter monsoon period are analyzed. The results are indicated as follows. (1) In general, the southwestern Sichuan Basin, southern Hengduan Mountains, southern coast of Guangxi and northern Guizhou are the areas where the extreme drought frequency has significantly increased in the past 50 years. As for the decadal change, from the 1960s to the 1980s the extreme drought frequency has presented a decreasing trend, while the 1990s is the wettest decade and the whole area is turning wet. In the 2000s, the extreme drought frequency rises quickly, but the regional differences reduce. (2) During summer monsoon period, the extreme drought frequency is growing, which generally occurs in the high mountains around the Sichuan Basin, most parts of Guangxi and "the broom-shaped mountains" in Yunnan. It is distinct that the altitude has impacts on the ex-treme drought frequency; during winter monsoon period, the area is relatively wet and the extreme drought frequency is decreasing. (3) During summer monsoon period, the abrupt change is observed in 2003, whereas the abrupt change during winter monsoon period is in 1989. The annual extreme drought frequency variation is a superposition of abrupt changes during summer monsoon and winter monsoon periods. The departure sequence vibration of annual extreme drought frequency is quasi-5 years and quasi-12 years.  相似文献   

11.
Based on the meteorological data of 20 stations in the Hengduan Mountains region during 1961-2009, the annual and seasonal variation of potential evapotranspiration was analyzed in combination with the Penman-Monteith model. With the method of Spline interpolation under ArcGIS, the spatial distribution of potential evapotranspiration was presented to research the regional difference, and the correlation analysis was used to discuss the dominant factor affecting the potential evapotranspiration. The results indicated that the annual potential evapotranspiration showed a decreasing tendency since the 1960s, especially from the 1980s to 1990s, while it showed an increasing tendency since 2000. Regional potential evapotranspiration showed a rate of -0.17 mm a-1. Potential evapotranspiration in north, middle and south of the Hengduan Mountains exhibited decreasing trends over the studied period, and its regional trend was on the decline from southwest to northeast.  相似文献   

12.
13.
横断山区土壤相对湿度时空分异   总被引:1,自引:0,他引:1  
以1992~2010年横断山区16个观测站土壤相对湿度资料为基础,通过Kriging插值法分析土壤相对湿度季节分异和空间分异特征。结果表明:横断山区年土壤相对湿度自1992年以来整体呈波动增加趋势,年际变化倾向率为0.51%/a;横断山区土壤相对湿度表现为西南和东北部较高,东南和西北部较低,中部土壤相对湿度增加趋势强于边缘,深层土壤的相对湿度整体大于浅层土壤。春、夏季土壤相对湿度增加趋势比秋、冬季明显。  相似文献   

14.
19562000年中国潜在蒸散量变化趋势   总被引:55,自引:3,他引:55  
利用19562000年全国580个气象站的逐月气候资料,采用FAO推荐的彭曼-孟蒂斯公式计算潜在蒸散量,对中国及十大流域这45年的潜在蒸散量时空分布特征和变化趋势进行了分析,并采用偏相关分析方法,对造成潜在蒸散量变化的主要气候影响因子进行了探讨。结果表明:45年中除松花江流域外,全国绝大多数流域的年和四季的潜在蒸散量均呈现减少趋势,南方各流域(西南诸河流域除外)年和夏季潜在蒸散量减少趋势尤其明显。19802000年和19561979年两时段多年平均年潜在蒸散量差值表明,我国大部地区19802000年时段较前一时段减少,山东半岛、黄河和长江源区、西南诸河的中西部以及宁夏等地则增多。分析还表明,全国及大多数流域的年和四季潜在蒸散量与日照时数、风速、相对湿度等要素关系密切,但这45年日照时数和/或风速的明显减少可能是导致大多数地区潜在蒸散量减少的主要原因。  相似文献   

15.
Based on the climatic data of 580 stations in China during 1956 and 2000, potential evapotranspiration are calculated using the Penman-Monteith Method recommended by FAO. The spatial and temporal distributions of the potential evapotranspiration over China and the temporal trends of the regional means for 10 major river basins and whole China are analyzed. Through a partial correlation analysis, the major climate factors which affect the temporal change of the potential evapotranspiration are analyzed. Major results are drawn as follows: 1) The seasonal and annual potential evapotranspiration for China as a whole and for most basins show decline tendencies during the past 45 years; for the Songhua River Basin there appears a slightly increasing trend. 2) Consequently, the annual potential evapotranspirations averaged over 1980-2000 are lower than those for the first water resources assessment (1956-1979) in most parts of China. Exceptions are found in some areas of Shandong Peninsula, western and middle basins of the rivers in Southwest China, Ningxia Hui Autonomous Region as well as the source regions of the Yangtze and Yellow rivers, which may have brought about disadvantages to the exploration and utilization of water resources. 3) Generally, sunshine duration, wind speed and relative humidity have greater impact on the potential evapotranspiration than temperature. Decline tendencies of sunshine duration and/or wind speed in the same period appear to be the major causes for the negative trend of the potential evapotranspiration in most areas.  相似文献   

16.
横断山区垂直带谱的分布模式与坡向效应   总被引:5,自引:1,他引:4  
根据收集到的横断山区山地垂直带谱数据,对山地垂直带的坡向效应和空间分布规律进行了分析和研究.结果表明:1)主要的垂直带和垂直带界线如林线、暗针叶林带、雪线等的纬度和经度地带性分布规律明显并且分布模式都相似,纬向上呈开口向下的二次曲线分布模式,经向上呈开口向上的二次曲线分布模式,两者共同形成"双曲抛物面"分布模式,充分反映了横断山区的环境与生态的复杂性和独特性,也进一步丰富和发展了山地垂直带谱的二次曲线假说; 2)横断山区山地垂直带谱表现出明显的基于水分驱动的坡向效应,主要表现为同一山体的东、西坡往往具有不同的基带和带谱结构,相同类型的带谱出现的海拔和分布范围不同,迎风坡表现出较为湿润的类型和带谱结构,而背风坡则表现出更为干旱的类型和组成结构;横断山区的坡向效应主要是由于山体对当地盛行季风的影响,造成迎风坡和背风坡水热条件相差很大,从而发育不同的山地垂直带谱类型.从横断山区山地垂直带谱的空间分布规律来看, 28°~29°N、98°~101°E范围内,即大致在澜沧江以东-雅砻江以西,山地垂直带谱普遍表现出干热的特点,为横断山区干热气候的核心地带.但如何定量分析山地的坡向效应尚有待于进一步的研究和讨论.此外、数据质量和数据误差也对分析的结果,尤其是空间分布模式的数学模拟结果产生一定的影响,在以后的研究中尚需进一步完善.  相似文献   

17.
近25年横断山区国土空间格局与时空变化研究   总被引:5,自引:0,他引:5  
时振钦  邓伟  张少尧 《地理研究》2018,37(3):607-621
横断山地提供多种生态系统服务,具有极高的生态价值,然而近年来面临人类活动强度增强所带来的国土空间可持续开发与管控挑战。利用横断山区1990年、2000年、2010年和2015年土地利用数据,分析不同海拔各种国土空间类型的数量、结构变化以及空间格局变化特征,揭示国土空间格局变化规律及影响因素。结果表明,横断山区国土空间海拔较高,垂直差异性明显,并且以生态空间为主体,生产、生活空间主要分布于东南部云南高原地区。25年间,三生空间变化加快且区域差异更突出,农业生产空间持续减少,工矿生产空间后十五年迅速增加,生活空间持续增加,生态空间波动增加。横断山区自然要素显著影响国土空间格局。西部大开发战略和退耕还林工程的实施明显带动横断山区国土空间格局变化。  相似文献   

18.
杨靖  戴君虎  姚华荣  陶泽兴  朱梦瑶 《地理学报》2022,77(11):2787-2802
横断山区位于青藏高原东缘和多条重要江河的上游,是全球生物多样性最丰富的地区和生态保护的优先区域之一,区域植被对维系区域生态安全和可持续发展起着十分重要的作用。20世纪90年代以来,中国在横断山区实施了多项重大生态恢复和建设工程,但囿于资料和调查不足,对于横断山区全域性、长时段的植被变化及其与海拔关系研究相对较少。鉴此,本文结合使用1992—2020年间多种基于卫星遥感资料生产的土地覆被数据和2000—2020年间MODIS的归一化植被指数(NDVI)数据,采用转移矩阵、Theil-Sen Median趋势分析与偏相关分析等方法研究不同植被类型转换、植被覆被面积与平均海拔变化关系以及植被活动的时空变化趋势,并分析时空变化的主要影响因素。结果表明:① 横断山区分布最广泛的植被类型是常绿针叶林与灌丛—草地镶嵌类型。植被发生变化的区域集中分布在河谷和南部低海拔区域,草地多向森林特别是常绿针叶林转换,植被覆被逐渐向好。这表明封山育林、植树造林、退耕还林等生态保护政策起到重要积极作用。时间序列数据显示,植被覆被面积变化剧烈的时期往往处在政策实施的起始阶段。② 植被活动整体呈现增强趋势。在植被类型未变化的区域中,75%以上区域植被活动增强,其中超20%的区域显著增强(P < 0.05),且森林植被活动增强趋势大于草地。③ 对植被活动影响较大的环境因子主要是气候变化和地形条件。尽管大部分区域植被活动受气候变暖影响而增强,但在干热河谷的植被活动明显受到降水减少的限制。有近1/4面积的植被活动在减弱,主要分布在山地东坡或南坡,或与降水较多、山高坡陡而造成滑坡、泥石流等自然灾害有关。这些发现可为横断山区生态保护政策效益评估、自然灾害综合风险评估和未来气候变化影响下的植被变化预测提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号