首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydraulic properties of the crystalline basement   总被引:1,自引:1,他引:1  
Hydraulic tests in boreholes, up to 4.5 km deep, drilled into continental crystalline basement revealed hydraulic conductivity (K) values that range over nine log-units from 10−13−10−4 m s−1. However, K values for fractured basement to about 1 km depth are typically restricted to the range from 10−8 to 10−6 m s−1. New data from an extended injection test at the KTB research site (part of the Continental Deep Drilling Program in Germany) at 4 km depth provide K=5 10−8 m s−1. The summarized K-data show a very strong dependence on lithology and on the local deformation history of a particular area. In highly fractured regions, granite tends to be more pervious than gneiss. The fracture porosity is generally saturated with Na–Cl or Ca–Na–Cl type waters with salinities ranging from <1 to >100 g L−1. The basement permeability is well within the conditions for advective fluid and heat transport. Consequently, fluid pressure is hydrostatic and a Darcy flow mechanism is possible to a great depth. Topography-related hydraulic gradients in moderately conductive basement may result in characteristic advective flow rates of up to 100 L a−1 m−2 and lead to significant advective heat and solute transfer in the upper brittle crust. An erratum to this article can be found at  相似文献   

2.
Horizontal, vertical and temporal distribution of a cyclonic (counterclockwise) eddy, where biological productivity is high, downstream of the Tsushima Islands in the eastern channel of the Tsushima Straits in November 2007 was revealed using conductivity–temperature–depth and acoustic Doppler current profiler data. The eddy had a horizontal scale of approximately 40–60 km, and the accompanying baroclinic current was more than 15 cm s−1 at the edge of the eddy. The island-induced cyclonic eddy moved east-northeastward at about 10 km day−1 (∼10 cm s−1) along the Tsushima Warm Current and was intensified by the barotropic instability in the current shear. The cyclonic eddy with high surface chlorophyll a concentrations intensified in the vicinity of the Tsushima Islands and was advected by the Tsushima Warm Current towards the southwestern Japan Sea.  相似文献   

3.
The characteristics of sand and dust movement over different sandy grasslands in China’s Otindag Sandy Land were explored based on field observations and laboratory analyses. Threshold wind speeds (the speed required to initiate sand movement) at a height of 2 m above the ground were estimated in the field for different surface types. Threshold wind speed above shifting dunes in the study area is about 4.6 m s−1 at this height. This value was smaller than values observed above other surfaces, resulting in a greater risk of blowing sand above these dunes. Differences in sand transport rates (STR) as a function of the severity of desertification resulted primarily from differences in surface vegetation cover and secondarily from the soil’s grain-size distribution. STR increased exponentially with increasing near-bed wind velocity. Under the same wind conditions, STR increased with increasing severity of desertification: from 0.08 g cm−2 min−1 above semi-fixed dunes to 8 g cm−2 min−1 above semi-shifting dunes and 25 g cm−2 min−1 above shifting dunes. Vegetation’s affect on STR was clearly large. Different components of sand and dust were trapped over different lands: mostly sand grains but little dust were trapped above shifting dunes, but much dust was collected over semi-shifting and semi-fixed dunes. Human disturbance is likely to produce dust even from fixed dunes as a result of trampling by animals and vehicle travel. In addition, spring rainfall decreased the risk of sand and dust movement by accelerating germination of plants and the formation of a soil crust.  相似文献   

4.
The conditions under which gold and arsenic are enriched separately during mineralization in gold deposits in southwestern Guizhou Province were described and the thermodynamic calculations gave: 200–150°C at 400 × 10−6 -300 × 106 Pa (corresponding to a depth between 1.6 km and 1.2 km); lgf o2,−40 to -35 Pa; lgf s2, -20 to−16 Pa; pH 5.0 -4.2 and Eh -0.53 V. This project was jointly supported by the National Natural Science Foundation of China and the Open Lab. of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences.  相似文献   

5.
We present JHKLM photometry obtained in 1984–2009 for the RCB stars UV Cas and SU Tau. No major fadings characteristic of RCB stars were detected during the observations of UV Cas, while two events of this kind occurred for SU Tau. The observed flux and color-index variations can be explained with a changing dust concentration in the line of sight, and possibly variations of the stellar temperature. We use the measured fluxes, supplemented with observations in the intermediate IR, to compute spherically symmetric dust-shell models for the stars. The mass-loss rate is estimated to be 1.7 × 10−6 M yr−1 for UV Cas and 4.1 × 10−6 M yr−1 for SU Tau.  相似文献   

6.
A sulfur hexafluoride (SF6) tracer release experiment was conducted in the Stockton Deep Water Ship Channel (DWSC) to quantify mixing and transport rates. SF6 was injected in the San Joaquin River upstream of the DWSC and mapped for 8 days. From the temporal change in SF6 distributions, the longitudinal dispersion coefficient (K x ) was determined to be 32.7 ± 3.6 m2 s−1 and the net velocity was 1.75 ± 0.03 km day−1. Based on the decrease in SF6 inventory during the experiment, the pulsed residence time for waters in the DWSC was estimated at ∼17 days. Within the DWSC from Stockton downstream to Turner Cut, dissolved oxygen concentrations maintained a steady state value of 4 mg l−1. These values are below water quality objectives for the time of year. The low flow rates observed in the DWSC and the inability of oxygen-rich waters from downstream to mix into the DWSC upstream of Turner Cut contribute to the low dissolved oxygen concentration.  相似文献   

7.
Using MONTBLEX-90 mean velocity data, roughness lengths and drag coefficients are estimated at Jodhpur and Kharagpur. At Jodhpur, since the surface is not uniform the roughness length is estimated separately in three different subsectors within the range of prevailing wind directions and averages to 1.23 cm in the sector between 200° and 230° which is relatively flat with no obstacles on the ground. At Kharagpur, where the terrain is more nearly homogeneous, the average value (for all prevailing wind directions) is 1.94 cm. The drag coefficient CD at Jodhpur shows variation both with the roughness subsector and with wind speed, the average over all directions increasing rapidly as themean wind speed Ū10 at 10m height drops according to the power lawC D = 0.05 Ū 10 t-1.09 in trie range 0.5 < Ū10 < 7 m s−1. At Kharagpur, the drag coefficient is smaller than at Jodhpur by nearly 50% for the same range of wind speeds (> 3 ms−1).  相似文献   

8.
Underway current velocity profiles were combined with temperature and salinity profiles at fixed stations to describe tidal and subtidal flow patterns in the middle of the northernmost Chilean fjord, Estuario Reloncaví. This is the first study involving current velocity measurements in this fjord. Reloncaví fjord is 55 km long, 2 km wide, and on average is 170 m deep. Measurements concentrated around a marked bend of the coastline, where an 8-km along-fjord transect was sampled during a semidiurnal tidal cycle in March 2002 and a 2-km cross-fjord transect was occupied, also during a semidiurnal cycle, in May 2004. The fjord hydrography showed a relatively thin (<5 m deep), continuously stratified, buoyant layer with stratification values >4 kg m−3 per meter of depth. Below this thin layer, the water was relatively homogeneous. Semidiurnal tidal currents had low amplitudes (<10 cm s−1) that allowed the persistence of a surface front throughout the tidal cycle. The front oscillated with a period of ca. 2.5 h and showed excursions of 2 km. The front oscillations could have been produced by a lateral seiche that corresponds to the natural period of oscillation across the fjord. This front could have also caused large (2 h) phase lags in the semidiurnal tidal currents, from one end of the transect to the other, within the buoyant layer. Tidal phases were relatively uniform underneath this buoyant layer. Subtidal flows showed a 3-layer pattern consisting of a surface layer (8 m thick, of 5 cm s−1 surface outflow), an intermediate layer (70 m thick, of 3 cm s−1 net inflow), and a bottom layer (below 80 m depth, of 3 cm s−1 net outflow). The surface outflow and, to a certain extent, the inflow layer were related to the buoyant water interacting with the ambient oceanic water. The inflowing layer and the bottom outflow were attributed to nonlinear effects associated with a tidal wave that reflects at the fjord's head. The weak subtidal currents followed the morphology of the bend and caused downwelling on the inside and upwelling on the outside part of the bend.  相似文献   

9.
 Dehydroxylation of muscovite in the form of small lamellae at 923 <T <1173 K was studied by Electron Spin Resonance (ESR) on Fe3+. The kinetics of the process has been established to be described by the model of continuous nucleation on the large surface planes of the small plates. Determined by experimental data the rate constant of the process k is shown to be that of dehydroxylation itself. The activation energy obtained by data at T<1100 K is 97.5 KJ·mol−1. The nonlinear dependence of ln(k) on 1/T is explained by the theory of transitions induced by the fluctuative preparation of a potential barrier as a result of thermal oscillations of ions in the lattice. At high temperatures the potential curve of the hydroxyl's proton is transformed so that it can overcome the barrier from one potential well to the other (from one hydroxyl site to the adjacent one). Such transformations of the curve can be caused by the oscillations of large structural clusters (∼1·10−22 kg) with the frequency ∼4.5·1012 s−1. Received: 3 August 1995 / Accepted: 13 April 1997  相似文献   

10.
The rotational effect of the cosmic vacuum is investigated. The induced rotation of elliptical galaxies due to the anti-gravity of the vacuum is found to be 10−21 s−1 for real elliptical galaxies. The effect of the vacuum rotation of the entire Universe is discussed, and can be described by the invariant ω ν = ω 0 ∼ $ \sqrt {G\rho v} $ \sqrt {G\rho v} . The corresponding numerical angular velocity of the Universe is 10−19 s−1, in good agreement with modern data on the temperature fluctuations of the cosmic background radiation.  相似文献   

11.
Self-diffusion of Si under anhydrous conditions at 1 atm has been measured in natural zircon. The source of diffusant for experiments was a mixture of ZrO2 and 30Si-enriched SiO2 in 1:1 molar proportions; experiments were run in crimped Pt capsules in 1-atm furnaces. 30Si profiles were measured with both Rutherford backscattering spectrometry (RBS) and nuclear reaction analysis with the resonant nuclear reaction 30Si(p,γ)31P. For Si diffusion normal to c over the temperature range 1,350–1,550°C, we obtain an Arrhenius relation D = 5.8 exp(−702 ± 54 kJ mol−1/RT) m2 s−1 for the NRA measurements, which agrees within uncertainty with an Arrhenius relation determined from the RBS measurements [62 exp(−738 ± 61 kJ mol−1/RT) m2 s−1]. Diffusion of Si parallel to c appears slightly faster, but agrees within experimental uncertainty at most temperatures with diffusivities for Si normal to c. Diffusion of Si in zircon is similar to that of Ti, but about an order of magnitude faster than diffusion of Hf and two orders of magnitude faster than diffusion of U and Th. Si diffusion is, however, many orders of magnitude slower than oxygen diffusion under both dry and hydrothermal conditions, with the difference increasing with decreasing temperature because of the larger activation energy for Si diffusion. If we consider Hf as a proxy for Zr, given its similar charge and size, we can rank the diffusivities of the major constituents in zircon as follows: D Zr < D Si << D O, dry < D O, ‘wet’.  相似文献   

12.
Creep strength of oriented orthopyroxene single crystals was investigated via shear deformation experiments under lithospheric conditions [P (pressure) = 1.3 GPa and T (temperature) = 973–1,373 K]. For the A-orientation (shear direction [001] on (100) plane), the samples have transformed completely to clinoenstatite and much of the deformation occurred after transformation. In contrast, for the B-orientation (shear direction [001] on (010) plane), samples remained orthoenstatite and deformation occurred through dislocation motion in orthoenstatite. The strength of orthopyroxene with these orientations is smaller than for olivine aggregates under all experimental conditions. Flow of the B-orientation samples is described by a power-law, and the pre-exponential constant, the apparent activation energy, and the stress exponent are determined to be A = 10−9.5 s−1·MPa−4.2, Q = 114 kJ/mol and n = 4.2. However, for the A-orientation, the results cannot be fit by a single flow law and we obtained the following: A = 108.9 s−1·MPa−3.0, Q = 459 kJ/mol and n = 3.0 at high temperatures (≥1,173 K), and A = 10−27.4 s−1·MPa−14.3, Q = 296 kJ/mol and n = 14.3 at low temperatures (<1,173 K). The stress exponent for the low-temperature regime is high, suggesting that deformation involves some processes where the activation energy decreases with stress such as the Peierls mechanism. Our study shows that orthopyroxene with these orientations is significantly weaker than olivine under the lithospheric conditions suggesting that orthopyroxene may reduce the strength of the lithosphere, although the extent to which orthopyroxene weakens the lithosphere depends on its orientation and connectivity.  相似文献   

13.
The scenario of the triggered origin of the solar system suggests that the formation of our planetary system was initiated by the impact of an interstellar shock wave on a molecular cloud core. The strength of this scenario lies in its ability to explain the presence of short-lived radionuclides in the early solar system. According to the proposal, the radioactivities were produced in a stellar source, transported into the molecular cloud core by a shock wave and mixed into the collapsing system during the interaction between the shock wave and the core. We examine the viability of the scenario by presenting results from recent numerical simulations. The calculations show that molecular cloud cores can be triggered into collapse by the impact of a shock wave propagating at the velocity of 10–45 km s−1. Some of the shock wave material incident on the core, typically 10–20%, can be injected into the collapsing system. The time scale of the process is ∼104–105 years, sufficiently short for the survival of the short-lived radioactivities. The simulations therefore confirm the viability of the scenario of the triggered origin of the solar system.  相似文献   

14.
The basal area and productivity of managrove wetlands are described in relation to selected soil properties to understand the general pattern of optimum forest stature at the mouth of estuaries in the Everglades, such as the Shark River Slough, Florida (U.S.). The basal area of mangroves decreases from 40.4 m2 ha−1 and 39.7 m2 ha−1 at two stations 1.8 km and 4.1 km from the estuary mouth to 20.7 m2 ha−1 and 19.6 m2 ha−1 at two sites 9.9 km and 18.2 km from the mouth, respectively. The gradient in basal area at these four sites is mostly the result of approximately 34 yr of growth since Hurricane Donna. Wood productivity is higher in the lower estuary (10.7 Mg ha−1 yr−1 and 12.0 Mg ha−1 yr−1) than in the upper estuary (3.2 Mg ha−1 yr−1 and 4.2 Mg ha−1 yr−1). Porewater salinity among these four mangrove sites during seasonal sampling in 1994 and 1995 ranged from 1.6 g kg−1 to 33.5 g kg−1, while sulfide was generally<0.15 mM at all sites. These soil values indicate that abiotic stress cannot explain the decrease in forest structure along this estuarine gradient. Concentrations of nitrogen (N) and phosphorus (P) are more closely related to patterns of forest development, with higher soil fertility at the mouth of the estuary as indicated by higher concentrations of extractable ammonium, total soil P, and available P, along with higher ammonium production rates. The more fertile sites of the lower estuary are dominated by Laguncularia racemosa, whereas the less fertile sites in the intermediate and upper estuary are dominated by Rhizophora mangle. Relative N mineralization per unit of total N is higher in the lower estuary and is related positively to concentrations of available P, indicating the importance of turnover rates and nutrient interactions to soil fertility. Concentrations of Ca-bound P per volume soil in the lower estuary is 40-fold higher than in the upper estuary, and along with an increase in residual P in the upper estuary, indicate a shift from mineral to organic P along the estuarine gradient. Mineral inputs to the mouth of Shark River estuary from the Gulf of Mexico (rather than upland inputs) apparently control the patterns of mangrove structure and productivity.  相似文献   

15.
The size-fractionated phytoplankton biomass and primary production were investigated in four contrasting areas of Hong Kong waters in 2006. Phytoplankton biomass and production varied seasonally in response to the influence of the Pearl River discharge. In the dry season, the phytoplankton biomass and production were low (<42 mg chl m−2 and <1.8 g C m−2 day−1) in all four areas, due to low temperatures and dilution and reduced light availability due to strong vertical mixing. In contrast, in the wet season, in the river-impacted western areas, the phytoplankton biomass and production increased greater than five-fold compared to the dry season, especially in summer. In summer, algal biomass was 15-fold higher than in winter, and the mean integrated primary productivity (IPP) was 9 g C m−2 day−1 in southern waters due to strong stratification, high temperatures, light availability, and nutrient input from the Pearl River estuary. However, in the highly flushed western waters, chl a and IPP were lower (<30 mg m−2 and 4 g C m−2 day−1, respectively) due to dilution. The maximal algal biomass and primary production occurred in southern waters with strong stratification and less flushing. Spring blooms (>10 μg chl a L−1) rarely occurred despite the high chl-specific photosynthetic rate (mostly >10 μg C μg chl a −1 day−1) as the accumulation of algal biomass was restricted by active physical processes (e.g., strong vertical mixing and freshwater dilution). Phytoplankton biomass and production were mostly dominated by the >5-μm size fraction all year except in eastern waters during spring and mostly composed of fast-growing chain-forming diatoms. In the stratified southern waters in summer, the largest algal blooms occurred in part due to high nutrient inputs from the Pearl River estuary.  相似文献   

16.
A possibility of an efficient condensation of heavy elements, such as iron, on the surface of dust grains in interstellar molecular clouds is studied. A high rate of dust destruction in the interstellar medium from one side, and a high degree of heavy elements depletion from the other indicate that the freezing-out of metals should be efficient in interstellar (predominantly molecular) clouds. This is possible only due to betatron acceleration of dust grains behind shocks that originate under intersection of supersonic turbulent flow. Estimates of the heavy elements depletion due to condensation on the surface of dust grains are given.  相似文献   

17.
Fe(II)-Fe(III) redox behavior has been studied in the presence of catechol under different pH, ionic media, and organic compound concentrations. Catechol undergoes oxidation in oxic conditions producing semiquinone and quinone and reduces Fe(III) in natural solutions including seawater (SW). It is a pH-dependent process. Under darkness, the amount of Fe(II) generated is smaller and is related to less oxidation of catechol. The Fe(II) regeneration is higher at lower pH values both in SW with log k = 1.86 (M−1 s−1) at pH 7.3 and 0.26 (M−1 s−1) at pH 8.0, and in NaCl solutions with log k of 1.54 (M−1 s−1) at pH 7.3 and 0.57 (M−1 s−1) at pH 8.0. At higher pH values, rate constants are higher in NaCl solutions than in SW. This is due to the complexation of Mg(II) present in the media with the semiquinone that inhibits the formation of a second Fe(II) through the reaction of this intermediate with other center Fe(Cat)+.  相似文献   

18.
Fish school swimming speeds is essential for ecological and management studies. The multibeam sonar in horizontal beaming provided dynamic echo traces of mobile fish schools. We used two school swimming speed indicators: the average of a series of instantaneous speed values, and the exploratory speed. These swimming speeds were estimated for each fish school observed on the basis of their Euclidian position within the sonar beams. The average ISS values per school ranged from 0.15 m s−1 to 4.46 m s−1, while the ESS values per school were lower, ranging from 0.04 m s−1 to 3.77 m s−1. Multibeam sonar technology makes it possible to measure fish school swimming speeds in their natural habitat at small spatio-temporal scales. This methodology can therefore be used to analyse in situ their movements, and has a wide range of applications in behavioural studies and management purposes.  相似文献   

19.
The fine structure of the region of formation of a protostar in the dense molecular cloud OMC-1 of the Orion Nebula was studied during a period of enhanced activity in 1998–1999, with an angular resolution of 50 μas and a velocity resolution of Δv = 0.053 km/s. Inclusions of ice granules in the bipolar outflow were detected and identified. The velocity of the outflow reaches ∼50 km/s, while that of the granules is <5 km/s. The outflow sublimates and accelerates H2O molecules, thereby exciting the maser emission. As a result, their relative velocity and, accordingly, pumping level decrease. The maser emission of the outflow is observed at distances out to ρ < 3 mas, or <1.5 AU. However, in the distant part (ρ > 5 mas), bullets corresponding to maser emission excited by the outflow in the surrounding medium are observed. The emission is amplified by the external medium at a velocity of v LSR = 7.65 km/s in the bandwidth Δ v ≈ 0.5 km/s. The sources of pumping are clusters of infrared sources. The bipolar outflow is inclined at a small angle to the plane of the sky. The acceleration of the maser inclusions also increases the longitudinal component of the velocity, reducing amplification of the emission. The brightness temperature of the components decreases: T b ρ −0.8±0.1. The activity terminates with the exponential decline of the maser emission, F ∼ exp(−0.5t 2); in the saturated mode this is determined by a decrease in the optical depth, τt 2. The material of the surrounding space, including the ice granules, is drawn into the disk, moves along spirals toward the nozzle, and is ejected as a highly collimated bipolar flow. The density of material in the outflow exceeds the surrounding density by three to four orders of magnitude. The accretion of the surrounding material and ejection of the bipolar outflow are a unified process accompanying the initial phase of formation of protostars. The counter motion of material at the center stimulates the formation of a central massive object, whose gravitational field accelerates the process and stabilizes the system. The ratio of the durations of periods of high and low activity is determined by the rates of ejection and disk replenishment, and is ∼1:10. The rotating bipolar flow is self-focused.  相似文献   

20.
Observations of 26 regions of low-mass star formation and 17 regions of massive star formation in the 5−1-40 E, 70-61 A +, 80-71 A +, and 2K-1K methanol lines at 44.1, 84.5, 95.2 GHz, and 96.7 GHz yielded detections of methanol emission in 11 low-mass and 12 high-mass regions. The strongest lines in the low-mass regions were found towards bipolar outflows driven by Class 0 protostars with luminosities higher than or of the order of 10 L . These lines usually consist of cores 1–2 km s−1 in width, which are emitted by quiescent gas, and broader wings, emitted by gas accelerated by high-velocity jets. The temperature of the accelerated gas derived from rotational diagrams and statistical equilibrium calculations is roughly 20–50 K. This means that a significant fraction of the accelerated gas cools to such temperatures. The widths of the lines detected in the massive star-forming regions are 2–3 km s−1 or higher. Weak, broad wings were found towards only two sources: L1287 and AFGL5142. For most sources, the statistical-equilibrium calculations yielded gas temperatures of about 20–30 K and densities of about 104–106 cm−3, which are typical for warm clouds. However, different transitions emit in regions with different physical conditions located within the main beam of the telescope. Most of the 96.7 GHz emission arises in warm gas with kinetic temperatures of about 30 K, while most of the 95.2 GHz emission may arise in hot regions around Young Stellar Objects and/or be related to the wings of bipolar outflows. Published in Russian in Astronomicheskiĭ Zhurnal, 2007, Vol. 84, No. 1, pp. 48–59. The article was translated by the author.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号