首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Ashland pluton is a calc-alkaline plutonic complex thatintruded the western Paleozoic and Triassic belt of the KlamathMountains in late Middle Jurassic time. The pluton comprisesa series of compositionally distinct magma pulses. The oldestrocks are hornblende gabbro and two-pyroxene quartz gabbro withinitial 87Sr/86Sr = 0{dot}7044, 18O = 8{dot}7%, and REE patternswith chondrite normalized La/Lu = 7. These units were followedby a suite of tonalitic rocks (LaN/LuN = 7) and then by a suiteof K2O- and P2O5 rocks of quartz monzodioritic affinity (LaN/LuN= 13–21; LaN/SmN = 2{dot}4–3{dot}) The quartz monzodioriticrocks were then intruded by biotite granodiorite and granitewith lower REE abundances but more fractionated LREE(LaN/LuN= 13–19; LaN/SmN = 4{dot}3–6 and they, in turn,were host to dikes and bosses of hornblende diorite. The latestintrusive activity consisted of aplitic and granitic dikes.Combined phase equilibria and mineral composition data, indicateemplacement conditions of approximately Ptotal = 2{dot}3kb,PH2O between 1{dot}5 and 2{dot}2 kb, and fO2 between the nickel-nickeloxide and hematite-magnetite buffers. Successive pulses of magma display increasing SiO2 togetherwith increasing 18O and decreasing initial 87Sr/86Sr. The isotopicdata are consistent with either (1) combined fractional crystallizationof andesitic magma and concurrent assimilation of crustal materialcharacterized by low Sr1 and high (18O or, more probably, (2)a series of partial melting events in which sources were successivelyless radiogenic but richer in 18O Each intrusive stage displaysevidence for some degree of crystal accumulation and/or fractionalcrystallization but neither process adequately accounts fortheir compositional differences. Consequently, each stage appearsto represent a distinct partial melting or assimilation event. The P2O5-rich nature of the quartz monzodiorite suite suggestsaccumulation of apatite. However, the suite contains abundantmafic microgranitoid enclaves and most apatite in the suiteis acicular. These observations suggest that magma mixing affectedthe compositional variation of the quartz monzodiorite suite.Mass balance calculations are consistent with a simple mixingprocess in which P2O5-rich alkalic basalt magma (representedby the mafic microgranitoid enclaves) was combined with a crystal-poorfelsic magma (represented by the tonalite suite), yielding aquartz monzodioritic magma that then underwent differentiationby crystal fractionation and accumulation.  相似文献   

2.
Two types of mafic enclaves occur in the Dinkey Creek pluton:ubiquitous microgranular enclaves, and rare gabbroic enclaves.Common petrographic features of the microgranular enclaves are:(1) fine grain-size, (2) abundant acicular apatite, and (3)plagioclase zoned from bytownitic cores to andesine-labradoriterims, with sharp boundaries between these main zones. Subordinateoscillatory variations are commonly superimposed on both coresand rims. It has been found by secondary ion mass spectrometrythat the rims are identical in major and trace element compositionto plagioclase in the tonalite, which suggests crystallizationfrom the same or similar magmas. The gabbroic enclaves are composedpredominantly of hornblende (50–85%) and appear to bemagmatic segregations. The microgranular enclaves and host rocks display two convergingtrends on silica variation diagrams for Fe2O3, TiO2, Al2O3,Zn, and Zr. The dominant trend is defined by small microgranularenclaves, by samples from a large (20 m?30 m) microgranularenclave, and by the Dinkey Creek tonalites and granodiorites.The subordinate trend covers tholeiltic dikes and tonalitich and converges with the Dinkey Creek host rocks at 61 wt.%SiO2 Alkali and alkaline earth elements exhibit greater variabilitythan the above constituents and appear to be either enrichedor depleted as required for equilibrium with the host rocks.Low CaO and Sr concentrations in small enclaves (<30 cm)apparently reflect a lower modal abundance of calcic plagioclaseand more sericitization of this feldspar as compared with theplagioclase of the large microgranular enclave. The large enclaveis also richer in MgO than the small enclaves. With the exceptionof the alkali elements, the major element compositions of themicrogranular enclaves approach high-Al basaltic to andesiticcom positions. In one analyzed microgranular enclave, low La/Cerelative to chondrites and more abundant HREE than in othermicrogranular samples suggest that it may also contain minorcumulus hornblende. The petrographic and whole-rock geochemical relations, and theplagioclase compositions in the microgranular enclaves and theirhost rocks, indicate that the microgranular enclaves representmixtures of quenched basalts and Dinkey Creek tonalites. Itappears that dikes of high-alumina basalt were intruded intothe lower, tonalitic portions of the Dinkey Creek pluton, wherethey were partially quenched along an interface with overlyingtonalitic magma. Large portions of residual liquid in the partiallyquenched basalts permitted mixing with the overlying magma toform a hybrid zone. This zone was then disaggregated, yieldingthe enclaves, and they were dispersed throughout the upper partof the Dinkey Creek magma chamber. Subsequent crystallizationof tonalitic melt within the enclaves produced the zoned plagioclaseand re-equilibrated hornblende and biotite in the enclaves tothe Dinkey Creek magmatic conditions. Scouring disrupted hornblende-richmagmatic segregations and produced the gabbroic enclaves.  相似文献   

3.
The Middle Cretaceous Cornucopia stock in the Blue Mountains of northeastern Oregon is a small composite intrusion consisting of hornblende biotite tonalite, biotite trondhjemite, and three cordierite two mica trondhjemite units. Unusual magnetite + biotite-rich tonalitic rocks are associated with the Crater Lake cordierite trondhjemite, the youngest of the intrusions. Oxide-rich tonalites are characterized by high Fe (~47-68 wt% total Fe as FeO), low SiO2 (<36 wt%), and enrichments in HFSE and REE (La(N)=361-903). Oxide-rich tonalites appear in a variety of forms, including composite dikes and sheets, in which they are associated with leucocratic tonalite. Leucotonalite is lower in SiO2 (60-72 wt%) than Crater Lake trondhjemite, and generally has DREE contents and Eu anomalies intermediate between the oxide-rich tonalite and Crater Lake compositions. Oxide-rich tonalites crosscut, and are crosscut by, shear zones in the host trondhjemite, indicating their emplacement late in the pluton's crystallization history. Granitic dikes crosscut the composite dikes in all localities. Geochemical considerations and sedimentary-like structures, such as load casts and bedding of magnetite-rich assemblages in the composite dikes and sheets, are suggestive of crystal settling from an Fe-rich parental magma. The Fe-rich liquid parental to the oxide-rich tonalite-leucotonalite pairs formed by extensive, in-situ, plagioclase + quartz-dominated crystallization of strongly peraluminous trondhjemite. Early magnetite saturation in the trondhjemite was suppressed, either because the parental trondhjemitic magma had a lower initial total Fe content or because it had a lower ferric-ferrous ratio, possibly reflecting a lower oxygen fugacity. Accumulation of magnetite from Fe-rich residual magma is a viable mechanism for the concentration of iron, and the subsequent formation of Fe-rich rocks, in calcic siliceous intrusions. Apparently, Fe-enrichment can occur locally in calcic magmas, and is not restricted to rocks of mafic tholeiitic or anorthositic affinity.  相似文献   

4.
The composite Oberkirch pluton consists of three compositionally different units of peraluminous biotite granite. The northern unit is relatively mafic (SiO2∼64%) and lacks cordierite. The more felsic central and southern units (SiO2=67.8 to 70.4%) can only be distinguished from each other by the occurrence of cordierite in the former. Mafic microgranular enclaves of variable composition, texture and size occur in each of these units and are concentrated in their central domains. Most abundant are large (dm to m) hornblende-bearing enclaves with dioritic to tonalitic compositions (SiO2=50.8 to 56.3 wt%; Mg#=63 to 41) and fine grained doleritic textures that suggest chilling against the host granite magma. Some of these enclaves are mantled by hybrid zones. Less common are microtonalitic enclaves containing biotite as the only primary mafic phase (SiO2=53.7 to 64.4%) and small hybrid tonalitic to granodioritic enclaves and schlieren. Synplutonic dioritic dikes (up to 6 m thick) with hybrid transition zones to the host granite occur in the southern unit of the pluton. In chemical variation diagrams, samples from unmodified hornblende-bearing mafic enclaves and dikes form continuous trends that are compatible with an origin by fractionation of olivine, clinopyroxene, hornblende and plagioclase. Chemical and initial isotopic signatures (e.g. high Mg#, low Na2O, ɛNd=−1.2 to −5.1, 87Sr/86Sr=0.7055 to 0.7080, δ18O=8.0 to 8.8‰) exclude an origin by partial melting from a mafic meta-igneous source but favour derivation from a heterogeneous enriched lithospheric mantle. Samples from the granitic host rocks do not follow the chemical variation trends defined by the diorites but display large scatter. In addition, their initial isotopic characteristics (ɛNd=−4.5 to −6.8, 87Sr/86Sr=0.7071 to 0.7115, δ18O=9.9 to 11.9‰) show little overlap with those of the diorites. Most probably, the granitic magmas were derived from metapelitic sources characterized by variable amounts of garnet and plagioclase. This is suggested by relatively high molar ratios of Al2O3/(MgO+FeOtot) and K2O/Na2O, in combination with low ratios of CaO/(MgO+FeOtot), variable values of Sr/Nd, Eu/Eu*[=Eucn/(Smcn × Gdcn)0.5] and (Tb/Yb)cn (cn=chondrite-normalized) as well as variable abundances of Sc and Y. Whole-rock initial isotopic signatures of mafic microtonalitic enclaves (ɛNd=−4.6 to −5.2; 87Sr/86Sr=0.7060 to 0.7073; δ18O ∼8.1‰) are similar to those of the low ɛNd diorites. Plagioclase concentrates from a granite sample and a mafic microtonalitic enclave are characterized by initial 87Sr/86Sr ratios that are significantly higher than those of their bulk rock systems suggesting incorporation of high 87Sr/86Sr crustal material into the magmas. Field relationships and petrographic evidence suggest that the Oberkirch pluton originated by at least three pulses of granitic magma containing mafic magma globules. In-situ hybridization between the different magmas was limited. Late injection of dioritic magma into the almost solidified granitic southern unit resulted in the formation of more or less continuous synplutonic dikes surrounded by relatively thin hybrid zones. Received: 30 April 1999 / Accepted: 6 August 1999  相似文献   

5.
Detailed petrographic and geochemical data and Sr and Nd isotopecompositions of enclaves and host-granite are reported for oneof the largest strongly peraluminous cordierite-bearing intrusionsof the Hercynian Sardinia-Corsica Batholith: the San BasilioGranite. Compared with other peraluminous series, the San BasilioGranite has a ‘non-minimum melt’ composition andshows variations primarily owing to fractionation of early-crystallizedplagioclase, quartz and biotite. Crystallization age is constrainedat 305 Ma, by Rb-Sr whole-rock age [30523 Ma with (87Sr/86Sr)i= 0.711050.00041], and occurred during late Hercynian tectonicevents. Nd(305Ma) values range from –7.8 to –7.5.The San Basilio Granite contains both magmatic and metamorphicenclaves. Magmatic enclaves, similar to mafic microgranularenclaves common in calc-alkaline granitoids, are tonalitic incomposition and show a variation in silica content from 60.3to 67.7 wt % correlating with a variation in (87Sr/86 Sr) (305Ma)and Nd (305 Ma) from 0.7092 to 0.7109 and from –6.6 to–7.4, respectively. Together with petrographic and othergeochemical data, the Sr and Nd isotopic data record differentstages in a complex homogenization process of an unrelated maficmagma with a crustal melt. A process of simple mixing may accountfor the variations of nonalkali elements and, to some extent,of Sr and Nd isotopes, whereas the distribution of alkali elementsrequires diffusioncontrolled mass transfer. Petrographic andmineralogical data on metamorphic enclaves and geochemical modellingfor trace elements in granite indicate melt generation by high-degreepartial melting involving biotite breakdown of a dominantlyquartzo-feldspathic protolith at about T>750–800Cand P>6 kbar leaving a granulite facies garnet-bearing residue,followed by emplacement at 3 kbar. Nd(305Ma) values of thegranite fall within the range defined by the pre-existing metamorphicrocks but (87Sr/86Sr) (305Ma) ratios are lower, indicating involvementof at least two distinct components: a dominant crustal componentand a minor well-mixed mafic end-member. These data point toa decoupling between the Sr-Nd isotope systematics and majorand trace element compositions, suggesting that the effect ofthe mafic component was minor on granite major and trace elementconcentrations, but significant on Sr and Nd isotopes. The studyof the magmatic enclaves and the isotopic evidence demonstratethat unrelated mafic magmas, probably derived from the mantle,had a close spatial and temporal association with the productionof ‘on-minimum melt’ strongly peraluminous granites,and support the proposal that heat from the mafic magma contributedto crustal melting. KEY WORDS: cordierite-bearing granite; enclaves; felsic-mafic interaction; Sardinia-Corsica Batholith; Sr and Nd isotopes *Corresponding author.  相似文献   

6.
A late Mesozoic belt of volcanic–intrusive complexes occursin SE China. Volcanic activity at Xiangshan in the NW of thebelt took place mainly in the Late Jurassic (158–135 Ma).The volcanic rocks from the Xiangshan volcanic complex includerhyolitic crystal tuffs, welded tuffs, rhyolite lavas, porphyriticlavas, and associated subvolcanic rocks. Mineral assemblagesin these magmatic rocks include K-feldspar, plagioclase, quartz,Fe-rich biotite and minor amphibole, orthopyroxene and almandine.Mineral geothermometry indicates a high crystallization temperature(>850°C) for the Xiangshan magmas. The volcanic rocksare generally peraluminous; SiO2 contents are between 65·4%and 76·8% and the samples have high alkalis, rare earthelements (REE), high field strength elements and Ga contentsand high Ga/Al ratios, but are depleted in Ba, Sr and transitionmetals. Trace element geochemistry and Sr–Nd–O isotopesystematics imply that the Xiangshan magmas were probably derivedfrom partial melting of Middle Proterozoic metamorphic lower-crustalrocks that had been dehydrated during an earlier thermal event.These features suggest an A-type affinity. Quenched mafic enclaves,hosted by the subvolcanic rocks, consist mainly of alkali feldspar,plagioclase, clinopyroxene, phlogopite and amphibole. Geothermometrycalculations indicate that the primary magmas that chilled toform the quenched enclaves had anomalously high temperatures(>1200°C). The quenched enclaves have boninitic affinities;for example, intermediate SiO2 contents, high MgO and low TiO2contents, high Mg-numbers and high concentrations of Sc, Ni,Co and V. However, they also have shoshonitic characteristics,e.g. enrichment in alkalis, high K2O contents with high K2O/Na2Oratios, high light REE and large ion lithophile element contents,low initial Nd values (–4·2) and high initial 87Sr/86Srratios (0·7081). We suggest a phlogopite-bearing spinelharzburgitic lithospheric mantle source for these high-Mg potassicmagmas. Underplating of such anomalously high-temperature magmascould have induced granulite-facies lower-crustal rocks to partiallymelt and generate the Xiangshan A-type volcanic suite. A back-arcextensional setting, related to subduction of the Palaeo-Pacificplate, is favoured to explain the petrogenesis of the Xiangshanvolcanic complex and quenched enclaves. KEY WORDS: volcanic complex; quenched enclaves; petrology; geochemistry; back-arc extension setting; Xiangshan; SE China  相似文献   

7.
WIEBE  R. A. 《Journal of Petrology》1979,20(2):239-269
Fine-grained anorthositic dikes are associated with a massiveleuconorite pluton (Cl = 15) which is exposed over an area ofabout 200 km2. Internally, the pluton shows little compositionalvariation; average plagioclase composition ranges from An52to An48. The dikes are nearly uniform in composition and similarto the estimated bulk composition of the pluton (55 per centSiO2). They therefore appear to represent the parental magmaof the leuconorite pluton. A small body of granite (10 km2) was emplaced within and priorto the complete solidification of the leuconorite. The graniticintrusion caused local deformation of the leuconorite and filter-pressingof its late stage interstitial liquids. These liquids occurin the younger hydrous granite as very finegrained, chilledpillows of nearly anhydrous Fe-rich diorite and granite. Mostof the pillows are diorites with approximately 55 per cent SiO2.On oxide plots these lie approximately on a plagioclase controlline passing through the composition of the leuconorite dikes.The entire group of chilled pillows ranges in composition from45 to 71 per cent SiO2 with a gap between 57 and 63 per centSiO2. On oxide plots they produce a smooth trend which is obliqueto and truncates the plagioclase control line. Variation inthe pillows can best be explained by late-stage liquid immiscibility. Fractionation in the interstitial magma was controlled earlyby crystallization of plagioclase and later by plagioclase pluspyroxene. Very late stage differentiation was controlled mainlyby liquid immiscibility and produced FeO- and SiO2-rich liquids.  相似文献   

8.
Rocks of the Proterozoic gabbro—diorite—tonalite—trondhjemitesuite of southwest Finland were analyzed for major elements,REE, Rb, Sr, Ba, U, Th, and isotopic composition of Sr and O.Petrographic continuity from hornblendite through hornblendegabbro, hornblende—biotite diorite, hornblende—biotitetonalite and trondhjemite is reflected in regular variationof major and trace elements in samples ranging from 42 to 74per cent of SiO2. The suite is calc alkaline—trondhjemiticand is distinguished from ‘normal’ calc-alkalinesuites by the increase in Na2O and decrease in K2O and REE concentrationsfrom intermediate to silicic rocks. Prior to solidification, the magmas may have undergone additionof water from metamorphic country rock producing a variationof whole-rock O18 values of from 6.0 to 11.3 per mil. This processmay have been accompanied by introduction of Rb and Sr and removalof Ba from intermediate to trondhjemitic magmas. A linear whole-rockisochron age of 1.9 x 109 years may only be approximate owingto the possibility of Rb and Sr exchange. REE concentrationsshow regular variation through the suite and were not noticeablyaffected by exchange processes. Samples ranging from 50 to 60per cent SiO2 show chondrite-normalized light REE contents rangingfrom 40 to 160 whereas heavy REE contents are constant at 10,and there are no Eu anomalies. Samples ranging from 60 to 74per cent SiO2 have REE patterns which decrease in both lightand heavy REE with increasing SiO2 to values of 10 and 1 timeschondritic values respectively, and show increasingly positiveEu anomalies. Three possible models for magma genesis are consistent withthe petrographic, major and trace element variations, isotopicdata, and experimental petrologic studies: (1) fractional crystallizationof a gabbroic liquid involving hornblende, plagioclase, andbiotite as the major precipitating phases; (2) partial meltingof amphibolite leaving a hornblende-rich residue; (3) partialmelting of amphibolite or eclogite leaving an eclogitic residue.Model (1) is preferred because of the presence of hornblende-cumulaterocks, and because there is a continuum of compositions fromgabbro to trondhjemite.  相似文献   

9.
Recent basaltic andesite lavas from Merapi volcano contain abundant,complexly zoned, plagioclase phenocrysts, analysed here fortheir petrographic textures, major element composition and Srisotope composition. Anorthite (An) content in individual crystalscan vary by as much as 55 mol% (An40–95) across internalresorption surfaces with a negative correlation between highAn mol% (>70), MgO wt% and FeO wt%. In situ Sr isotope analysesof zoned plagioclase phenocrysts show that the 87Sr/86Sr ratiosof individual zones range from 0·70568 to 0·70627.The upper end of this range is notably more radiogenic thanthe host basaltic andesite whole-rocks (< 0·70574).Crystal zones with the highest An content have the highest 87Sr/86Srvalues, requiring a source or melt with elevated radiogenicSr, rich in Ca and with lower Mg and Fe. Recent Merapi eruptiverocks contain abundant xenoliths, including metamorphosed volcanoclasticsediment and carbonate country rock (calc-silicate skarns) analysedhere for petrographic textures, mineralogy, major element compositionand Sr isotope composition. The xenoliths contain extremelycalcic plagioclase (up to An100) and have whole-rock 87Sr/86Srratios of 0·70584 to 0·70786. The presence ofthese xenoliths and their mineralogy and geochemistry, coupledwith the 87Sr/86Sr ratios observed in different zones of individualphenocrysts, indicate that magma–crust interaction atMerapi is potentially more significant than previously thought,as numerous crystal cores in the phenocrysts appear to be inheritedfrom a metamorphosed sedimentary crustal source. This has potentiallysignificant consequences for geochemical mass-balance calculations,volatile saturation and flux and eruptive behaviour at Merapiand similar island arc volcanic systems elsewhere. KEY WORDS: assimilation; isotopes; Merapi; xenolith; calc-silicate  相似文献   

10.
Within the Zitácuaro–Valle de Bravo (ZVB) regionof the central Mexican Volcanic Belt (MVB), three lava serieshave erupted during the Quaternary: (1) high-K2O basaltic andesitesand andesites; (2) medium-K2O basaltic andesites, andesitesand dacites; (3) high-TiO2 basalts and basaltic andesites. Thedominant feature of the first two groups is the lack of plagioclaseaccompanying the various ferromagnesian phenocrysts (olivine,orthopyroxene, augite, and hornblende) in all but the dacites.This absence of plagioclase in the phenocryst assemblages ofthe high-K2O and medium-K2O intermediate lavas is significantbecause it indicates high water contents during the stage ofphenocryst equilibration. In contrast, the high-TiO2 group ischaracterized by phenocrysts of plagioclase and olivine. Thespatial distribution of these three lava series is systematic.The southern section of the ZVB transect, 280–330 km fromthe Middle America Trench (MAT), is characterized by high-K2Omelts that are relatively enriched in fluid-mobile elementsand have the highest 87Sr/86Sr ratios. Medium-K2O basaltic andesiteand andesite lavas are present throughout the transect, butthose closest to the MAT are MgO-rich (3·5–9·4wt %) and have phenocryst assemblages indicative of high magmaticwater contents (3·5–6·5 wt % water) andrelatively low temperatures (950–1000°C). In markedcontrast, the northern section of the ZVB transect (380–480km from the MAT) has high-TiO2, high field strength element(HFSE)-enriched magmas that have comparatively dry (< 1·5wt % magmatic water) and hot (1100–1200°C) phenocrystequilibration conditions. The central section of the ZVB transect(330–380 km from the MAT) is a transition zone and producesmoderately light rare earth element (LREE) and large ion lithophileelement (LILE)-enriched, medium-K2O lavas with phenocryst assemblagesindicative of intermediate (1·5–3·5 wt %)water contents and temperatures. The high-K2O series compositionsare the most enriched in LILE and LREE, with a narrow rangeof radiogenic 87Sr/86Sr from 0·704245 to 0·704507,143Nd/144Nd values ranging from 0·512857 to 0·512927(Nd = 4·27–5·63), and 208Pb/204Pb valuesfrom 38·248 to 38·442, 207Pb/204Pb values from15·563 to 15·585, and 206Pb/204Pb values from18·598 to 18·688. The medium-K2O series compositionsare only moderately enriched in the LILE and LREE, with a broaderrange of 87Sr/86Sr, but similar 143Nd/144Nd and 208Pb/204Pbvalues to those of the high-K2O series. In contrast, the high-TiO2series compositions have little enrichment in LILE or LREE andinstead are enriched in the HFSE and heavy rare earth elements(HREE). The high-TiO2 lavas are isotopically distinct in theirlower and narrower range of 143Nd/144Nd. The isotopic variationsare believed to reflect the upper mantle magma source regionsas the low content of phenocrysts in most lavas precludes significantupper crustal assimilation or magma mixing, other than thatrepresented by the presence of quartz xenocrysts (< 2 vol.%) with rhyolitic glass inclusions, which are found in manyof these lavas. The systematic spatial variation in compositionof the three lava series is a reflection of the underlying subduction-modifiedmantle and its evolution. KEY WORDS: central Mexico; geochemistry; isotopes; Quaternary volcanism; hydrous lavas  相似文献   

11.
Most of the flows in the Palaeocene lava pile remnant of Skyeare members of the Skye Main Lava Series (SMLS), comprisingtransitional basalts and two associated suites of evolved lavas.The first suite evolves through Fe-rich hawaiites and mugearitesto benmoreites, and the second suite evolves through Fe-poorintermediates to trachytes. Ca-rich, alkali-poor olivine tholeiites(the Preshal Mhor magma type) occur as sparse flows in the stratigraphicallyhighest parts of the lava pile remnant and are abundant in thedyke swarm transecting it. Initial 87Sr/86Sr ratios rangingfrom 0.70308 to 0.70571 in 45 SMLS samples show no significantcorrelation with degree of zeolitization (H2O+), silica saturation,or 87Rb/86Sr. A moderately good negative correlation with totalSr confirms published Pb-isotope evidence of interaction withancient, sialic crust. Details of the (87Sr/86Sr)l versus Srpattern are consistent with previous hypotheses that the SMLSbasalt-benmoreite suite evolved at a depth near the Moho, whilstthe low-Fe trend to trachyte resulted from near-surface basaltfractionation. (87Sr/86Sr)l values ranging from 0.70307 to 0.70621 for PreshalMhor basalts show a strong positive correlation with total Sr,consistent with a model of extensive fractionation within theupper crust of a mantle-derived low 87Sr/86Sr-low Sr magma,which became progressively contaminated with comparatively radiogeniccrustal Sr. The lowest measured (87Sr/86Sr)l values of 0.70307and 0.70308, for a Preshal Mhor basalt and for an SMLS basaltrespectively, are consistent with the hypothesis that thesetwo magma types were produced by successive phases of partialmelting from a single volume of upper mantle. (87Sr/86Sr)l values for additional miscellaneous basaltic lavas,dykes and major intrusives from Skye and from nearby Isle ofMull exhibit considerable variability within the range 0.7038to 0.7072, whilst three basaltic dykes from Northern Englandare in the range 0.7089 to 0.7123. The latter values overlapwith published (87Sr/86Sr)l values for some of the granitesin the Tertiary Province of northwest Scotland and indirectlyremove objections based on Sr-isotopic arguments to the genesisof the granites by fractionation of basalt contaminated withcrustal Sr, but neither prove this nor disprove large-scalecrustal partial fusion.  相似文献   

12.
A combination of major and trace element, whole-rock Sr, Ndand Hf isotope, and zircon U–Pb isotopic data are reportedfor a suite of dolerite dikes from the Liaodong Peninsula inthe northeastern North China Craton. The study aimed to investigatethe source, petrogenesis and tectonic setting of the dikes.Sensitive high-resolution ion microprobe U–Pb zircon analysesyield a Late Triassic emplacement age of 213 Ma for these dikes,post-dating the collision between the North China and Yangtzecratons and consequent ultrahigh-pressure metamorphism. Threegeochemical groups of dikes have been identified in the LiaodongPeninsula based on their geochemical and Sr–Nd–Hfisotope characteristics. Group 1 dikes are tholeiitic, withhigh TiO2 and total Fe2O3 and low MgO contents, absent to weaknegative Nb and Ta anomalies, variable (87Sr/86Sr)i (0·7060–0·7153),Nd(t) (– 0·8 to –6·5) and Hf(t) (–2·7to –7·8) values, and negative Hf(t) (–1·1to –7·8). They are inferred to be derived frompartial melting of a relatively fertile asthenospheric mantlein the spinel stability field, with some upper crustal assimilationand fractional crystallization. Group 2 dikes have geochemicalfeatures of high-Mg andesites with (87Sr/86Sr)i values of 0·7063–0·7072,and negative Nd(t) (–3·0 to –9·5)and Hf(t) (–3·2 to –10·1) values,and may have originated as melts of foundered lower crust, withsubsequent interaction with mantle peridotite. Group 3 dikesare shoshonitic in composition with relatively low (87Sr/86Sr)ivalues (0·7061–0·7063), and negative Nd(t)(–13·2 to –13·4) and Hf(t) (–11·0to –11·5) values, and were derived by partial meltingof an ancient, re-enriched, refractory lithospheric mantle inthe garnet stability field. The geochemical and geochronologicaldata presented here indicate that Late Triassic magmatism occurredin an extensional setting, most probably related to post-orogeniclithospheric delamination. KEY WORDS: mafic dike; asthenospheric mantle; lithospheric mantle; delamination; North China Craton  相似文献   

13.
The Negash pluton consists of monzogranites, granodiorites,hybrid quartz monzodiorites, quartz monzodiorites and pyroxenemonzodiorites, emplaced at 608 ± 7 Ma (zircon U–Pb)in low-grade volcaniclastic sediments. Field relationships betweenmafic and felsic rocks result from mingling and hybridizationat the lower interface of a mafic sheet injected into partiallycrystallized, phenocryst-laden, granodiorite magma (back-veining),and hybridization during simultaneous ascent of mafic and felsicmagmas in the feeder zone located to the NW of the pluton. Therock suite displays low 87Sr/86Sr(608) (0·70260–0·70350)and positive  相似文献   

14.
Mafic hypabyssal rocks in the western Triassic and Paleozoicbelt provide important clues to the nature of accretion andarc evolution along this sector of the North American margin.In the east-central part of the belt, near Sawyers Bar, somediabases have been metamorphosed before and accompanying emplacementof the mid-Jurassic English Peak and Russian Peak granitoidswithin the North Fork/Salmon River + Stuart Fork amalgamatedterrane. Certain other dikes/sills, chiefly mafic microdiorites,cut the calc-alkaline plutons but are themselves deutericallyaltered; at least two of these mafic microdiorites near theEnglish Peak body possess hornfelsic textures. Thus, althoughmost mafic microdioritic hypabyssals seem to have been injectedafter granitoid emplacement, a few must have preceded plutonicintrusion. Macroscopic appearances, phase assemblages, mineralcompositions, and textures of the mafic microdioritic and metadiabasicdikes/sills are sufficiently alike to preclude the ready fieldand petrographic distinction of the different magma series.Bulk-rock chemistries fall into two groups, however, with slightlymore porphyritic, altered, synplutonic mafic microdiorite samplesbeing distinctly richer in Si, K, P, Rb, Sr, Zr, and light rareearth elements (LREE) relative to the Mg + Cr + Ni-rich, preplutonicmetadiabases. Analyzed mafic microdiorites have bulk-rock chemicaland isotopic compositions similar to the more ferromagnesianportions of the mid-Jurassic English Peak and Russian Peak plutoniccomplexes, whereas the metadiabases are comparable with theearly Mesozoic Salmon River metabasalts. Although the two groupsof dikes/sills probably overlap in age of emplacement, the maficmicrodiorite group is predominantly younger and uniform in oxygenisotopic composition (bulk-rock 18O 11•37, 11•4 and11•46) compared with the older, more intensely metamorphosed,and variably metasomatized Salmon River metadiabases (bulk-rock518 9•4, 11•0, and 15•3). Both types of maficdike/sill locally intrude the more easterly Stuart Fork terrane.Therefore, suturing and regional metamorphism of the outboardNorth Fork/Salmon River oceanic-island arc and inboard StuartFork subduction complex must have occurred during terminal stagesof injection of the pregranitoid diabases into the North Fork(oceanic-island basalts)/Salmon River (island-arc tholeiites)arc + Stuart Fork terrane, but before invasion of the amalgamatedterrane assembly by the calc-alkaline plutons and most compositionallyrelated synplutonic mafic microdiorite dikes/sills. Becauseof their lateral continuation both north and south of the SawyersBar area, the North Fork/Salmon River igneous suite documentsthe construction of an oceanic arc of considerable lateral extentin the central Klamaths before terrane accretion. Suturing wasimmediately followed by the mid-Jurassic intrusion of calc-alkalineplutons + syngranitoid mafic microdioritic hypabyssals.  相似文献   

15.
Compositionally zoned plutons are an important feature of theSierra Nevada batholith, California. Two such plutons have beenexamined to determine the mechanism by which crystals separatefrom a magma. The Tinemaha pluton shows continuous compositionalvariation from 58 to 67% SiO2, whereas the McMurry Meadows plutonis bimodal, with an outer margin of mafic granodiorite (59–60%SiO2) and an inner core of granite (66–69% SiO2). Extremedifferentiates also occur as small isolated masses within thesuite and may contain up to 76% SiO2. Both plutons are uniformin strontium isotopic composition but are different from eachother, with initial 87Sr/86Sr values of 0?70719 and 0?70651respectively. The Tinemaha pluton is both horizontally and vertically( 1000 m) zoned, with fractionation occurring both inward fromthe contacts and upward. The vertical trends in relative mineralproportions are not consistent with crystal settling. Both thevertical and horizontal variations in the chemical compositionof 50 elements, in mineralogy, and in accessory mineral lightrare-earth element zoning, are all directly relatable to side-wallcrystallization which created a less-dense melt that buoyantlymoved upward along the wall towards the top of the magma chamber.The different rates for diffusive heat exchange and compositionaldiffusion within the magma initiated the double-diffusive gradientin the magma chamber. Compositional variations in the side-wallcrystal accumulation zone occur as boundary layer melts evolve,reflecting changes in the bulk convecting magma. The compositionalgap in the McMurry Meadows pluton is the result of a similarbut more efficient side-wall fractionation process, relatedto a higher proportion of melt to crystals in the initial magmaand a slower rate of side-wall solidification as a result ofthe thermal blanket created by the enclosing Tinemaha pluton.  相似文献   

16.
The processes operating in the development of chemical zonationin silicic magma chambers have been addressed with a Sr–Nd–Pb–Hf–Thisotope study of the chemically zoned trachyte pumice depositof the Fogo A eruption, Fogo volcano, Azores. Sr isotopic variationis observed in whole rocks, glass separates and sanidine phenocrysts(whole-rock 87Sr/86Sr: 0·7049–0·7061; glass87Sr/86Sr: 0·7048–0·7052; sanidine 87Sr/86Sr:0·7048–0·7062). Thorium isotopic variationis observed in glass separates, with (230Th/232Th)o rangingfrom 0·8737 to 0·8841, and exhibiting a negativecorrelation with Sr isotopes. The Nd, Pb and Hf isotopic compositionsof the whole-rock trachytic pumices are invariant and indistinguishablefrom basalts flanking the volcano. The Sr isotope variationsin the whole rocks are proposed to be the result of three distinctprocesses: contamination of the Fogo A magma by assimilationof radiogenic seawater-altered syenite wall rock, to explainthe Sr and Th isotopic compositions of the glass separates;incorporation of xenocrysts into the trachytic magma, requiredto explain the range in feldspar Sr isotopic compositions; andpost-eruptive surface alteration. This study emphasizes theimportance of determining the isotopic composition of glassand mineral separates rather than whole rocks when pre-eruptivemagmatic processes are being investigated. KEY WORDS: Azores; open-system processes; Sr isotopes; trachytic pumices; zoned magma chambers  相似文献   

17.
The Edgecumbe volcanics, which range from basalt through rhyodacite,have Sr contents between 125 and 370 p.p.m., Rb contents of1 to 70 p.p.m., Ba ranging from 50–550 p.p.m. and initial87Sr/86Sr ratios between 0.70291 and 0.70404. No simple correlationexists between these components and silica. The highest 87Sr/86Srvalues occur in a group of intermediate lavas (55–60 wt.per cent SiO2) while the rhyodacites have initial ratios between0.7035 and 0.7038. With increasing silica, Sr increases to amaximum in the andesites and then steadily decreases; Ba andRb increase over the same compositional range. The highest 87Sr/86Srlavas have major and trace element concentrations which departfrom trends defined by most of the lavas. The variation in strontiumisotopic compositions suggests interaction between parentalbasaltic magma and crustal material. Attempts to model the assimilationprocess using fixed end-member assimilation and assimilation-fractionalcrystallization models have failed to produce the observed chemicaltrends. Because the parental basaltic liquid underwent littlefractionation, the variability in hybrid lavas is attributedto variation in contaminant composition. Initial melts werelow in CaO, A12O3, MgO and Sr and enriched in SiO2. K2O, Na2O,Rb and Ba. As melting progressed, melts became enriched in themore refractory components. Because hybrid strontium isotopiccomposition is a function of Sr concentration as well as isotopiccompositions, the Sr content of the assimilant strongly influencesresultant isotopic systematics. The development of the assimilantssuggests plagioclase was a residual phase during early melting.This model of crustal assimilation represents one end-memberin the spectrum of processes responsible for the generationof continental volcanic suites.  相似文献   

18.
Lower Crustal Xenoliths, Chinese Peak Lava Flow, Central Sierra Nevada   总被引:1,自引:0,他引:1  
An assemblage of pyroxenite, peridotite, and mafic granulitexenoliths contained in the toe of a 10 Ma trachybasalt flowremnant overlying Late Cretaceous granitoids indicates the presenceof a mafic-ultramafic complex beneath the Sierra Nevada batholith.Olivine-free pyroxenites that include orthopyroxenites, websterites,and clinopyroxenites are dominant. Primary igneous texturesare displayed by some pyroxenites, but commonly are masked byrecrystallization. Fe-rich harzburgites and lherzolites arerare. A few of the ultramafic xenoliths contain ovoid opaquepatches that are apparently pseudomorphs after garnet and havepyralspite garnet compositions. A pressure corresponding toa lower crustal depth of approximately 40 km has been determinedfrom two of these xenoliths using a garnet-orthopyroxene geobarometer.Abundant mafic granulites can be subdivided into those containing12 per cent or less A12O3 and chemically gradational with pyroxenitesand others containing more than 15 per cent A12O3 and showingconsiderable scatter on oxide variation diagrams. The high-aluminagranulite xenoliths have relatively low 87Rb/86Sr but high 87Sr/86Sr,whereas low-alumina and ultramafic xenoliths have a wide rangeof 87Rb/86Sr, but lower 87Sr/86Sr; the isotopic data indicatean age for the complex roughly the same as that of overlyinggranitoid plutons. However, the granitoids have initial 87Sr/86Srratios intermediate between the high-alumina and ultramaficxenoliths, suggesting that they may have resulted from mixingof basaltic magma, represented by the ultramafics, and crustalmaterials, with subsequent crystal fractionation. The trachybasaltmay represent a partial melt of the ultramafic rocks.Rocks analogousto the Chinese Peak xenoliths are exposed in the Giles complexof central Australia, a series of several deformed layered maficand ultramafic intrusions, emplaced in a granulite facies terrain.Contemporaneous development of mafic-ultramafic complexes andthe Sierra Nevada batholith may explain the present day thick({small tilde} 50 km) crust in this region  相似文献   

19.
Twelve new Sr-isotope analyses and seventeen new rare earthelement distribution patterns are reported for basalts fromIceland and the Reykjanes Ridge, together with Rb, Sr, Na2O,K2O, TiO2, and P2O5 contents. The samples were chosen to representthe widest range of basalt types known from the Iceland-ReykjanesRidge system. 87Sr/86Sr ratios range from 0.70291 ?4 to 0.70325?5 for tholeiitesand up to 0.70341 ?7 for alkali basalt. Rare earth elementsalso show a wide range of both total abundance and degree oflight-REE fractionation (chondrite-normalised Ce/Yb ratios of0.30 to 3.36 for tholeiites and up to 7.07 for alkali basalt).As found in previous studies of either Sr-isotope compositionor REE distribution, the ocean floor basalts from the southernportion of the Reykjanes Ridge have lower 87Sr/86Sr and CeN/YbNratios than most of the Icelandic basalts. However, some highlyMg-rich tholeiites from Theistareykir in northern Iceland andKj?lur in central Iceland also have among the lowest valuesfor these parameters and are indistinguishable in this respectfrom the ridge basalts. There is a very strong positive, linear,correlation between 87Sr/86Sr and CeN/YbN for all the tholeiitesincluding some up to 16 m.y. old, but this relationship doesnot hold for the alkali basalts which have proportionately farhigher CeN/YbN ratios. There is also a positive, linear, correlationbetween 87Sr/86Sr and Sr content, but not between 87Sr/86Srand 1/Sr. These relationships are found to be incompatible with disequilibriummelting of a single mantle source region, whether by variabledegrees of partial melting with different mineral stabilityconditions, or by removal of successive incremental melts. Itis certain that the data reflect relatively gross chemical heterogeneityin the upper mantle beneath Iceland, but the correlation withSr content apparently rules out simple binary mixing models(mantle-plume hypothesis). It is proposed that the heterogeneities result from establishmentof a lithophile element gradient during a single chemical fractionationevent in the upper mantle at least 100–200 m.y. ago. Itis not possible at present to relate this geochemical gradientto known mantle structure.  相似文献   

20.
Quaternary lavas and pyroclastic rocks of Mount Mazama, CraterLake caldera, and the surrounding area have variable Sr, Nd,and Pb isotopic compositions. High-alumina olivine tholeiites(HAOT) have 87Sr/86Sr ratios of 0.70346–0.70364; basalticandesite, 0–70349–0.70372; shoshonitic basalticandesite, 0.70374–0.70388; and andesite, 0.70324–0.70383.Dacites of Mount Mazama have 87Sr/86Sr ratios of 0.70348–0.70373.Most rhyodacites converge on 0.7037. However, rhyodacite ofthe caldera-forming, climactic eruption has 87Sr/86Sr=0.70354because of an admixed low-87Sr/86Sr component. Andesitic tomafic-cumulate scoriae of the climactic eruption, and enclavesin preclimactic rhyodacites, cluster in two groups but shownearly the entire 87Sr/86Sr range of the data set, confirmingpreviously suggested introduction of diverse parental magmasinto the growing climactic chamber. Pb and Nd isotope ratiosdisplay less variation (206Pb/204Pb= 18.838–18.967, 207Pb/204Pb=15.556–15.616,208Pb/204Pb=38.405–38.619; Nd= +3.9 to +6.1) and generallycovary with 87Sr/86 Sr ratios. Radiogenic isotope data fromCrater Lake plot with published data for other Cascade volcanoeson isotope ratio correlation diagrams. The isotopic data for the Crater Lake area require sources ofprimitive magmas to consist of depleted mantle and a subductioncomponent, introduced in variable quantity to the depleted mantlewedge. Variable degrees of melting of this heterogeneous mantle,possibly at different depths, produced the diversity of isotopiccompositions and large-ion lithophile element (LILE) abundancesin primitive magmas. Trace element ratios do not indicate presenceof an ocean island basalt (OIB) source component that has beenreported in lavas of some other Cascade volcanoes. Crustal contamination may have affected isotope ratios and LILEconcentrations in evolved HAOT, where initial LILE concentrationswere low. Contamination is more difficult to detect in the calcalkalinelavas because of their higher LILE concentrations and the smallisotopic contrast with likely contaminants, such as mid- tolower-crustal rocks thought to be equivalents of igneous rocksof the Klamath Mountains and associated lower crust. Crustalassimilation appears to be required for calcalkaline rocks onlyby 18O values, which vary from lows of +5.6 to + 6.0% in HAOTand primitive basaltic andesites to a high of +7.0% in dacite,a range that is too high to be explained by plagioclase-dominatedclosed-system fractional crystallization. Elevated 18O valuesof differentiated lavas may be attributed to interaction withrelatively 18O-rich, 87Sr-poor crustal rocks. Variably fused granitoid blocks ejected in the climactic eruption,and rarely in late Pleistocene eruptive units, have 18Opl of–3.4 to +6.5% and 18Oqz of –2.2 to +8.0% but haveSr, Nd, and Pb isotope ratios similar to volcanic rocks (e.g.87Sr/86Sr0.7037). Rb and Sr data for glass separates from granodioritessuggest that the source pluton is Miocene. Glass from granodioritehas 87Sr/86Sr ratios as high as 0.70617. Oxygen isotope fractionationbetween quartz, plagioclase, and glass indicates requilibrationof O isotopes at magmatic temperatures, after 18O/16O had beenlowered by exchange with meteoric hydrothermal fluids. Unmeltedgranodiorite xenoliths from pre-climactic eruptive units have18O values that are consistent with onset of hydrothermal exchangeearly during growth of the climactic magma chamber. Assimilationof such upper-crustal granodiorite apparently lowered 18O valuesof rhyodacites without significantly affecting their magmaticcompositions in other ways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号