共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
大西洋经向翻转环流(Atlantic Meridional Overturning Circulation,AMOC)是气候系统重要的组成部分,其强度变化可直接影响南北半球的热量分配,厘清其变化机理对全球变暖背景下的未来预估至关重要。海洋沉积物记录发现,在晚更新世,AMOC的变化与地球岁差周期有紧密联系,但其物理机理尚不清楚。本文利用海洋−大气耦合气候模型—COSMOS(ECHAM5/JSBACH/MPIOM)模型,通过敏感试验,分析在冰盛期冷期和间冰期暖期气候背景下,AMOC对地球岁差变化的响应机理。结果表明:岁差降低引起的北半球夏季太阳辐射增强,会导致间冰期暖期背景下的AMOC显著减弱,但对冰盛期AMOC的影响并不明显。通过进一步分析发现,在间冰期暖期,夏季太阳辐射增强,造成高低纬大西洋海表的升温,同时促进北大西洋高纬度地区的局地降水,两者导致北大西洋表层海水密度降低,共同削弱大西洋深层水生成。而在冰盛期冷期,大西洋高低纬度地区的响应对AMOC的影响反向—副热带升温触发的海盆尺度低压异常,通过其南侧的西风异常削弱大西洋向太平洋的水汽输送,导致净降水增多,海表盐度下降;同时,高纬度升温造成的海冰减少,促进了海洋热丧失,海表失热变重,有利于大西洋深层水的生成,最终两者的共同作用导致AMOC对岁差变化的响应偏弱。本文系统揭示了不同气候背景下,岁差尺度AMOC变化的控制机理,对理解晚更新世AMOC重建记录中持续存在的岁差周期具有重要启示意义。 相似文献
3.
Daniel Kamykowski 《Deep Sea Research Part I: Oceanographic Research Papers》2010,57(10):1266-1277
Both the Atlantic Meridional Overturning Circulation (AMOC) and the North Atlantic Ocean (NA) biosphere have recognized associations with the North Atlantic Oscillation (NAO). These multidecadal physical–biological affinities inspired a closer look at AMOC influences on bottom-up control of NA and South Atlantic Ocean (SA) pelagic ecosystem variability. Various ocean models associate changes in the AMOC with sea surface temperature (SST) differences in the western subpolar NA and SA represented as the Atlantic Dipole SST Anomaly (ADSA) index. The Extended Reconstructed SST version 2 (ERSSTv2) dataset for 2° quadrangles from 1890 to 2007 was used here to represent Atlantic Ocean SST patterns and to gauge 20th century AMOC variability using an Atlantic Dipole SST (ADS) index, an un-normalized version of ADSA index. Temperature–phosphate (T–PO4) linear regressions were used to convert temperature to phosphate concentration ([PO4]). The interannual stability of T–PO4 linear regressions first was examined using 26 Bermuda area T–PO4 datasets between 1958 and 2001. Within the constraints provided by the Bermuda analysis, climatological T–PO4 linear regressions based on GEOSECS-derived slopes and NODC-derived X-intercepts supported the conversion of monthly Atlantic Ocean ERSSTv2 temperatures for each 2° quadrangle to monthly surface [PO4]. A representative annual surface phosphate utilization (SPU) was calculated for each 2° quadrangle by subtracting monthly minimum surface [PO4] from monthly maximum surface [PO4] to determine the annual surface [PO4] ranges from 1890 to 2007. Annual average SST tended to increase and overall annual average SPU tended to decrease through the 20th century in both the NA and SA, but the NA exhibited more temporal variability. An Atlantic Dipole Phosphate Utilization (ADPU) index related to the ADS index was calculated for each year from 1890 to 2007. The ADS and ADPU indices were inversely correlated with about 57% of the variability in the ADPU index explained by the ADS index. The ADPU index exhibited three distinct cycles through the 20th century. Cross-correlation analysis showed that the NAO led the ADS and ADPU indices by about 14 years. Differences in annual average SPU for each Atlantic Ocean 2° quadrangle between the three high and four low years of the ADPU cycles yielded six maps that, when averaged, clearly exhibited reversed east–west patterns distributed in alternating latitudinal bands in both the NA and SA. The east–west patterns spatially corresponded to the NA and SA surface circulation and temporally resembled NA patterns previously associated with the NAO. AMOC variability, mediated by Kelvin and Rossby waves associated with changes in both deep and surface arm circulation, likely contributed to meridional continuity of phosphate-classified, NA, and SA pelagic ecosystem variability, including fisheries, through the 20th century. Based on the results, future global warming influences on the AMOC, well short of shutdown, likely will have complex pelagic ecosystem impacts throughout the Atlantic Ocean. 相似文献
4.
Freshwater transport estimates and the global overturning circulation: Shallow, deep and throughflow components 总被引:2,自引:0,他引:2
Lynne D. Talley 《Progress in Oceanography》2008,78(4):257-303
Meridional ocean freshwater transports and convergences are calculated from absolute geostrophic velocities and Ekman transports. The freshwater transports are analyzed in terms of mass-balanced contributions from the shallow, ventilated circulation of the subtropical gyres, intermediate and deep water overturns, and Indonesian Throughflow and Bering Strait components. The following are the major conclusions:
- 1.
- Excess freshwater in high latitudes must be transported to the evaporative lower latitudes, as is well known. The calculations here show that the northern hemisphere transports most of its high latitude freshwater equatorward through North Atlantic Deep Water (NADW) formation (as in [Rahmstorf, S., 1996. On the freshwater forcing and transport of the Atlantic thermohaline circulation. Climate Dynamics 12, 799-811]), in which saline subtropical surface waters absorb the freshened Arctic and subpolar North Atlantic surface waters (0.45 ± 0.15 Sv for a 15 Sv overturn), plus a small contribution from the high latitude North Pacific through Bering Strait (0.06 ± 0.02 Sv). In the North Pacific, formation of 2.4 Sv of North Pacific Intermediate Water (NPIW) transports 0.07 ± 0.02 Sv of freshwater equatorward.In complete contrast, almost all of the 0.61 ± 0.13 Sv of freshwater gained in the Southern Ocean is transported equatorward in the upper ocean, in roughly equal magnitudes of about 0.2 Sv each in the three subtropical gyres, with a smaller contribution of <0.1 Sv from the Indonesian Throughflow loop through the Southern Ocean. The large Southern Ocean deep water formation (27 Sv) exports almost no freshwater (0.01 ± 0.03 Sv) or actually imports freshwater if deep overturns in each ocean are considered separately (−0.06 ± 0.04 Sv).This northern-southern hemisphere asymmetry is likely a consequence of the “Drake Passage” effect, which limits the southward transport of warm, saline surface waters into the Antarctic [Toggweiler, J.R., Samuels, B., 1995a. Effect of Drake Passage on the global thermohaline circulation. Deep-Sea Research I 42(4), 477-500]. The salinity contrast between the deep Atlantic, Pacific and Indian source waters and the denser new Antarctic waters is limited by their small temperature contrast, resulting in small freshwater transports. No such constraint applies to NADW formation, which draws on warm, saline subtropical surface waters .
- 2.
- The Atlantic/Arctic and Indian Oceans are net evaporative basins, hence import freshwater via ocean circulation. For the Atlantic/Arctic north of 32°S, freshwater import (0.28 ± 0.04 Sv) comes from the Pacific through Bering Strait (0.06 ± 0.02 Sv), from the Southern Ocean via the shallow gyre circulation (0.20 ± 0.02 Sv), and from three nearly canceling conversions to the NADW layer (0.02 ± 0.02 Sv): from saline Benguela Current surface water (−0.05 ± 0.01 Sv), fresh AAIW (0.06 ± 0.01 Sv) and fresh AABW/LCDW (0.01 ± 0.01 Sv). Thus, the NADW freshwater balance is nearly closed within the Atlantic/Arctic Ocean and the freshwater transport associated with export of NADW to the Southern Ocean is only a small component of the Atlantic freshwater budget.For the Indian Ocean north of 32°S, import of the required 0.37 ± 0.10 Sv of freshwater comes from the Pacific through the Indonesian Throughflow (0.23 ± 0.05 Sv) and the Southern Ocean via the shallow gyre circulation (0.18 ± 0.02 Sv), with a small export southward due to freshening of bottom waters as they upwell into deep and intermediate waters (−0.04 ± 0.03 Sv).The Pacific north of 28°S is essentially neutral with respect to freshwater, −0.04 ± 0.09 Sv. This is the nearly balancing sum of export to the Atlantic through Bering Strait (−0.07 ± 0.02 Sv), export to the Indian through the Indonesian Throughflow (−0.17 ± 0.05 Sv), a negligible export due to freshening of upwelled bottom waters (−0.03 ± 0.03 Sv), and import of 0.23 ± 0.04 Sv from the Southern Ocean via the shallow gyre circulation.
- 3.
- Bering Strait’ssmall freshwater transport of <0.1 Sv helps maintains the Atlantic-Pacific salinity difference. However, proportionally large variations in the small Bering Strait transport would only marginally impact NADW salinity, whose freshening relative to saline surface water is mainly due to air-sea/runoff fluxes in the subpolar North Atlantic and Arctic. In contrast, in the Pacific, because the total overturning rate is much smaller than in the Atlantic, Bering Strait freshwater export has proportionally much greater impact on North Pacific salinity balances, including NPIW salinity.
5.
观测显示过去几十年间北极入海径流呈现增加趋势,CMIP5耦合模式预测表明21世纪北极入海径流仍会增加,在RCP8.5路径下,21世纪末北极入海径流量将会是1950年的1.4倍。本文利用冰-海耦合数值模式研究了北极径流增加对大西洋经向翻转环流的影响。基于两个数值实验的结果表明,如果北极入海径流按每年0.22%的速度(与RCP8.5路径下的速度相当)增加,大西洋经向翻转环流的强度在100、150和200年后将会分别减弱0.6(3%)、1.2(7%)和1.8(11%) Sv。北极入海径流增加导致大西洋经向翻转环流减弱的主要原因是,北极入海径流增加的淡水被输运到北大西洋后,会抑制北大西洋深层水的生成,这也会导致北大西洋深层水海水年龄的增加。 相似文献
6.
《Marine Chemistry》1987,21(3):203-211
Seawater samples and airborne particulate material were collected in the subtropical North Atlantic during R.V. “Meteor” Cruise M60 (N34°47.2′W26°57.7′/N10°1.3′W32°58.3′). Hydrocarbon concentrations were estimated in the samples. For seawater the concentrations ranged from 0.2 μg to 3.5 μg dm−3. In the open ocean air the concentrations of the particulate hydrocarbon measured at 14m above sea level ranged from 2.8 ng to 133.1 ng m−3. A significant increase was observed during a Saharan dust outbreak. Comparison with aluminium concentrations in seawater and in the air suggests input of atmospheric hydrocarbons by dry deposition to be an important transportation pathway. 相似文献
7.
北太平洋经向翻转环流是北太平洋所有经向翻转环流圈的总称,目前它拥有五个环流圈,即副热带环流圈(the subtropical cell,STC)、热带环流圈(the tropical cell,TC)、副极地环流圈(the subpolar cell,SPC)、深层热带环流圈(the deep tropical cell,DTC)和温跃层环流圈(the thermohaline cell,THC)。这些环流圈是北太平洋经向物质和能量交换的重要通道,它们的变化对海洋上层热盐结构和气候变化皆有重要影响。迄今,人们已对STC、TC和DTC的结构形态、变化特征与机理开展了广泛而深入的研究,并对STC的极向热输送特征也做了一些初步分析。但应指出的是,关于SPC和THC的研究仍较少,迄今尚不清楚这两个环流圈的三维结构和变异机理;而且,对北太平洋经向翻转环流的热盐输送研究尚处于起步阶段,目前对各环流圈的热盐输送特征、变化规律和变异机理仍知之甚少,这些科学问题亟待深入研究。 相似文献
8.
The meridional heat transport obtained from numerical experiments using the general circulation model for the North Atlantic encompassing the equatorial area is analysed. The surface turbulent layer is included in the model, and its realization is based on conservative difference schemes. It is shown that the upper 50 m layer plays a dominant role in the formation of meridional heat transport in the low latitudes.Translated by Mikhail M. Trufanov. 相似文献
9.
The three-dimensional structure and the seasonal variation of the North Pacific meridional overturning circulation (NPMOC) are analyzed based on the Simple Ocean Data Assimilation data and Argo profiling float data.The NPMOC displays a multi-cell structure with four cells in the North Pacific altogether.The TC and the STC are a strong clockwise meridional cell in the low latitude ocean and a weaker clockwise meridional cell between 7°N and 18°N,respectively, while the DTC and the subpolar cell are a weaker ... 相似文献
10.
随着北半球冰盖的发育,全球气候环境发生了显著变化。太平洋经向翻转流(PMOC)对全球海洋热量分配和大气CO2在深海的封存起举足轻重的作用,但是关于PMOC与北半球冰盖的形成之间的关系还欠缺研究。本文收集了太平洋海山富钴结壳的Nd同位素记录,通过对比不同区域Nd同位素记录的演化特征,分析风尘输入、水团演化等因素对Nd同位素记录的影响,探讨了太平洋经向翻转流演化及其与全球气候变化之间的关系,认为北太平洋深层水下沉的停滞和亚洲风尘输入增加可能是导致深层水Nd同位素从距今3~4 Ma开始降低的原因。同时,因北太平洋深层水下沉停滞,PMOC改组,使得更多的CO2在深水封存,从而对全球气候变冷和北半球冰盖形成产生了积极的贡献。 相似文献
11.
Hydrographic data show that the meridional deep current at 47°N is weak and southward in northeastern North Pacific; the strong
northward current expected for an upwelling in a flat-bottom ocean is absent. This may imply that the eastward-rising bottom
slope in the Northeast Pacific Basin contributes to the overturning circulation. After analysis of observational data, we
examine the bottom-slope effect using models in which deep water enters the lower deep layer, upwells to the upper deep layer,
and exits laterally. The analytical model is based on geostrophic hydrostatic balance, Sverdrup relation, and vertical advection–diffusion
balance of density, and incorporates a small bottom slope and an eastward-increasing upwelling. Due to the sloping bottom,
current in the lower deep layer intensifies bottomward, and the intensification is weaker for larger vertical eddy diffusivity
(K
V), weaker stratification, and smaller eastward increase in upwelling. Varying the value of K
V changes the vertical structure and direction of the current; the current is more barotropic and flows further eastward as
K
V increases. The eastward current is reproduced with the numerical model that incorporates the realistic bottom-slope gradient
and includes boundary currents. The interior current flows eastward primarily, runs up the bottom slope, and produces an upwelling.
The eastward current has a realistic volume transport that is similar to the net inflow, unlike the large northward current
for a flat bottom. The upwelling water in the upper deep layer flows southward and then westward in the southern region, although
it may partly upwell further into the intermediate layer. 相似文献
12.
Zonal overturning circulation(ZOC) and its associated zonal heat flux(ZHF) are important components of the oceanic circulation and climate system, although these conceptions have not received adequate attentions.Heaving induced by inter-annual and decadal wind stress perturbations can give rise to anomalous ZOC and ZHF.Based on a simple reduced gravity model, the anomalous ZOC and ZHF induced by idealized heaving modes in the world oceans are studied. For example, in a Pacific-like model basin intensified equatorial easterly on decadal time scales can lead to a negative ZOC with a non-negligible magnitude(–0.3×106 m3/s) and a considerable westward ZHF with an amplitude of –11.2 TW. Thus, anomalous ZOC and ZHF may consist of a major part of climate signals on decadal time scales and thus play an important role in the oceanic circulation and climate change. 相似文献
13.
14.
The structure of the annual-mean shallow meridional overturning circulation(SMOC) in the South China Sea(SCS) and the related water movement are investigated,using simple ocean data assimilation(SODA) outputs.The distinct clockwise SMOC is present above 400 m in the SCS on the climatologically annual-mean scale,which consists of downwelling in the northern SCS,a southward subsurface branch supplying upwelling at around 10°N and a northward surface flow,with a strength of about 1×10~6 m~3/s.The formation mechanisms of its branches are studied separately.The zonal component of the annual-mean wind stress is predominantly westward and causes northward Ekman transport above 50 m.The annual-mean Ekman transport across 18°N is about 1.2×10~6 m~3/s.An annual-mean subduction rate is calculated by estimating the net volume flux entering the thermocline from the mixed layer in a Lagrangian framework.An annual subduction rate of about 0.66×10~6m~3/s is obtained between 17° and 20°N,of which 87% is due to vertical pumping and 13% is due to lateral induction.The subduction rate implies that the subdution contributes significantly to the downwelling branch.The pathways of traced parcels released at the base of the February mixed layer show that after subduction water moves southward to as far as 11°N within the western boundary current before returning northward.The velocity field at the base of mixed layer and a meridional velocity section in winter also confirm that the southward flow in the subsurface layer is mainly by strong western boundary currents.Significant upwelling mainly occurs off the Vietnam coast in the southern SCS.An upper bound for the annual-mean net upwelling rate between 10° and 15°N is 0.7×10~6m~3/s,of which a large portion is contributed by summer upwelling,with both the alongshore component of the southwest wind and its offshore increase causing great upwelling. 相似文献
15.
Oxygen and carbon stable isotope data of Pyrgo murrhina and flux rates of calcium carbonate in the bio- and magnetostratigraphically dated sediment sequence at DSDP Site 141 were used for a reconstruction of the deep-water circulation in the Northeast Atlantic during Late Miocene and Pliocene times. A distinct change towards reduced advection of deep water recorded near 5.4 Ma is contemporaneous with the cessation of the outflow of the saline Mediterranean water into the Atlantic. During the Pliocene, between 4.5 and 2.75 Ma and between 2.1 and 1.8 Ma, North Atlantic Deep Water (NADW) circulation was sluggish and Site 141 possibly influenced by Antarctic Bottom Water (AABW). Near 2.75 Ma, the advection of well-oxidized NADW was strongly intensified. This change is related to an onset of major Arctic ice growth and/or a major cooling of NADW. 相似文献
16.
《Deep Sea Research Part I: Oceanographic Research Papers》2006,53(8):1320-1334
Whereas diatoms (class Bacillariophyceae) often dominate phytoplankton taxa in the Amazon estuary and shelf, their contribution to phytoplankton dynamics and impacts on regional biogeochemistry are poorly understood further offshore in the western tropical Atlantic Ocean (WTAO). Thus, relative contribution of diatoms to phytoplankton biomass and primary production rates and associated environmental conditions were quantified during three month-long cruises in January–February 2001, July–August 2001, and April–May 2003. The upper water column was sampled at 6 light depths (100%, 50%, 25%, 10%, 1% and 0.1% of surface irradiance) at 64 stations between 3° and 14°N latitude and 41° and 58°W longitude. Each station was categorized as ‘oceanic’ or ‘plumewater’, based on principal component analysis of eight physical, chemical and biological variables. All stations were within the North Brazil Current, and plumewater stations were characterized by shallower mixed layers with lower surface salinities and higher dissolved silicon (dSi) concentrations than oceanic stations. The major finding was a much greater role of diatoms in phytoplankton biomass and productivity at plumewater stations relative to oceanic stations. Mean depth-integrated bSi concentrations at the plumewater and oceanic stations were 14.2 and 3.7 mmol m−2, respectively. Mean depth-integrated SiP rates at the plumewater and oceanic stations were 0.17 and 0.02 mmol m−2 h−1, respectively. Based on ratios of SiP and PP rates, and typical Si:C ratios, diatoms contributed on average 29% of primary productivity at plumewater stations and only 3% of primary productivity at oceanic stations. In contrast, phytoplankton biomass (as chlorophyll a concentrations) and primary production (PP) rates (as 14C uptake rates) integrated over the euphotic zone were not significantly different at plumewater and oceanic stations. Chlorophyll a concentrations ranged from 8.5 to 42.4 mg m−2 and 4.0 to 38.0 mg m−2 and PP rates ranged from 2.2 to 11.2 mmol m−2 h−2 and 1.8 to 10.8 mmol m−2 h−2 at plumewater and oceanic stations, respectively. A conservative estimate of annual integrated SiP in offshore waters of Amazon plume between April and August is 0.59 Tmol Si, based on mean SiP rates in plumewaters and satellite-derived estimates of the area of the Amazon plume. In conclusion, river plumewaters dramatically alter the silicon dynamics of the WTAO, forming extensive diatom-dominated phytoplankton blooms that may contribute significantly to the global Si budget as well as contributing to energy and matter flow off of the continental shelf. 相似文献
17.
Mizuki Tsuchiya 《Progress in Oceanography》1986,16(4)
There are three major permanent thermostads with roughly the same potential densities in the upper layer of the Atlantic Ocean. One is the thermostad of the 13°C Water in the equatorial Atlantic. The original type of the 13°C Water is formed in the thermocline in the eastern sector of the South Atlantic subtropical gyre by vertical mixing of dense, low-salinity water from the winter outcrop farther south and overlying less dense, high-salinity water. There might also be a lateral contribution of relatively high-salinity water from the Indian Ocean. The original 13°C Water thus formed is transported northwestward along the northern edge of the subtropical gyre and fed into the North Brazilian Current, which flows equatorward along the coast of Brazil. In the region of the equator, the Equatorial Undercurrent and the subsurface North and South Equatorial countercurrents branch off from the North Brazilian Current and carry the 13°C Water eastward to the thermostad region. Vertical mixing does not explain the development of the thermostad, but is found to be essential in determining the ultimate characteristics of the 13°C Water. The other two thermostads are those of the 18°C Water in the Sargasso Sea and the Subantarctic Mode Water in the western South Atlantic. Unlike the 13°C Water, both of these mode waters are formed as thermostads in the surface layer by winter convection, but vertical mixing in the subtropical gyres may play a role in determining their characteristics. All the three thermostads appear to be required to balance the system of flows in opposing directions. 相似文献
18.
The annual average mass and heat balances in the equatorial Atlantic as well as their seasonal variability are analysed using adaptation (initialization procedure) data. It is shown that correlations of temperature and the seasonal fluctuations of the meridional velocity component do not significantly affect the annual average meridional heat transport.Translated by Mikhail M. Trufanov. 相似文献
19.
《Deep Sea Research Part I: Oceanographic Research Papers》2001,48(10):2161-2183
In October 1991, mesozooplankton biomass and ichthyoplankton were studied in the waters surrounding the island of Gran Canaria (Canary Islands). The average dry weight obtained for mesozooplankton biomass (4.5 mg m−3) is typical of the area. Average fish egg abundance (94 eggs per 10 m2) was similar to that found previously for the Canary Current. However, the average fish larva abundance (904 individuals per 10 m2) was higher than previously recorded for the Canary Current and similar regions. The horizontal distributions of the planktonic components studied appear strongly related to the mesoscale oceanographic structures in the area. These included an area of weak flow around the stagnation point upstream of the island, where higher concentrations of neritic ichthyoplankton occurred, a warm lee region downstream, where mesozooplankton biomass and neritic ichthyoplankton were increased, particularly on the convergent anticyclonic boundary, and the offshore boundary of an upwelling filament from the NW African coast, which acted as a barrier for neritic ichthyoplankton. These concentrations suggest that the stagnation point and the lee are areas of retention for neritic fish eggs and larvae. Simple Lagrangian simulations of particle trajectories in the observed field of flow demonstrate the potential for retention of organisms, both passive and with limited swimming ability, in these areas. On the flanks of the island and in the filament, the simulation suggests even swimming organisms will be largely swept away. The various oceanographic structures, by increasing the planktonic production, are partially responsible for the relatively high values of abundance obtained for fish larvae. 相似文献
20.
2012年洪季对珠江黄茅海河口湾侧向动力结构与泥沙输移过程进行了系统观测,采用动量平衡和泥沙通量机制分解等方法,分析了河口流、温盐和泥沙侧向分布特征以及泥沙输移过程,探讨了侧向动量平衡与泥沙输移机制。洪季黄茅海河口存在明显的侧向流,西滩和北槽均形成表层向东、底层向西的两层侧向流,拦门沙滩顶呈现表、底层向西、中层向东的三层侧向流,而拦门沙前缘侧向流整体向西。河口湾纵向净泥沙通量表现为北槽向海、西滩向陆,拦门沙滩顶及其前缘均向海;侧向净泥沙通量表现为滩顶及其前缘均向西,西滩向东、北槽向西。这种侧向泥沙辐聚过程是高浓度悬沙聚集于滩槽界面的重要原因,向陆净通量是西滩回淤的重要原因。滩槽间侧向余环流动量平衡主要是侧向斜压梯度力、科氏力和侧向平流作用。欧拉平流输运在侧向泥沙输运中起主要作用,潮泵效应也起重要作用。 相似文献