共查询到18条相似文献,搜索用时 78 毫秒
1.
2014年8月3日云南鲁甸(M W6.1,M S6.5)地震是一次规模不大、但灾害严重的走滑型地震事件.受走滑型地震辐射图型的影响,远震地震资料在特定方位上信噪比不高,给此次地震发震断层面的确定造成了一些干扰.本文概述了鲁甸地震发生后2.4小时发布的作为地震应急响应的破裂过程快速反演工作,以及随后对反演结果的修订工作.修订结果中,两个双力偶节面的反演都显示破裂方向朝地表和走向方向扩展.结合现有的烈度分布和余震精确定位结果,根据破裂方向和烈度与余震分布的优势方向的一致性,确定鲁甸地震是发生在走向162°,倾角86°的近乎垂直于地面的以左旋走滑为主的断层面上的一次破裂事件.根据破裂过程反演得到的震源时间函数,大部分地震矩在破裂开始后2~5 s内集中释放. 比较集中的地震矩释放过程可能是此次地震面波震级明显高于矩震级,且造成严重地震灾害的原因之一. 相似文献
2.
2014年2月12日,在新疆于田县发生了里氏7.3级地震.在该地震震中附近,前人研究证明发育了大量规模不同的活动断层(如康西瓦断裂与贡嘎错断裂等).根据地震触发理论,地震发生后因地壳同震变形会导致其周边不同性质断裂破裂应力发生变化,进而影响其地震的潜在危险性.本文利用地震远场波形记录,反演了该地震滑动模型.之后,根据弹性无限半空间位错理论,计算了该地震在近场范围内活动断裂上的同震应力变化.其目的在于讨论于田地震引起的附近断裂上的库仑应力变化以及这些活动断裂可能潜在的地震危险性.在地震发生后,从国际地震学联合会(IRIS)地震数据中心,下载了震中距离介于30°~90°的地震远场波形记录,为保证台站方位角分布均匀,从中挑选了27个不同方位角的高信噪比地震记录参与理论地震图的生成和波形反演过程.我们采用广义射线理论计算生成远场理论地震波形数据.每个子断层参数的反演则利用基于全局化反演的快速模拟退火反演方法.在有限断层反演过程中,我们采用了强调波形拟合的相关误差函数作为待反演的目标函数,拟合的断层参数使目标函数为最小.之后,根据弹性无限半空间位错理论,以库仑破裂准则为基础,结合反演得到的地震震源机制解和地震位错模型,计算该地震引起的近场断层面上库仑应力的变化.由远场波形计算结果可以看到,于田地震的震源深度为10km,地震断层的倾角约71.9°,破裂面上最大的同震位移达到210cm,以左旋走滑为主并具有正倾滑分量,地震能量主要在前15s内释放.由此得到该地震的地震矩为2.91×1019 N·m,地震震级为Mw6.9.于田地震引发的余震,大致分布在三个区域内:普鲁断裂北部、康西瓦断裂东部和贡嘎错断裂中部.弹性应力计算结果表明,于田地震导致阿尔金断裂西段、普鲁断裂中段、康西瓦断裂东段和贡嘎错断裂中段的静态库仑应力明显增加,其中以康西瓦断裂东段和贡嘎错断裂中段应力增量为最大,分别达到了0.05 MPa和0.04 MPa.大量研究证明,当地震所导致的库仑应力变化大于0.01 MPa时将具有明显的地震触发作用.根据本文结果,2014年于田Mw6.9地震使普鲁断裂、贡嘎错断裂和康西瓦断裂上的库仑应力增量均超过了触发阈值,具有被触发出地震的潜在危险.因此,在以后的地震学研究中,应加强对该三条断裂地震危险性的研究和监测.此外,近6年以来,研究区域发生了3次6级以上的地震.这些地震均沿着贡嘎错断裂,由南西向北东迁移,逐步靠近阿尔金断裂,并且逐渐由正倾滑型地震转变为走滑型地震.阿尔金断裂的走滑速率达到了9mm·a-1,所以,尽管本次地震导致的阿尔金断裂库仑应力增量小于0.01 MPa,阿尔金的地震危险性也应该加强监测. 相似文献
3.
基于新疆及西藏区域数字地震台网的宽频带资料,采用CAP方法反演了2014年2月12日于田7.3级地震的前震、主震及早期MS≥3.5余震序列的震源机制解。结果显示,此次7.3级强震为带有正断分量的走滑型地震,结合震源区的构造和余震分布,节面I走向241°/倾角90°/滑动角-22°,判定该节面代表了主震的发震断层面。主震主压力轴方位为194o,与该区历史中强震主压应力P轴方位近NS向较为接近。其5.4级前震和主震震源机制解具有较高的一致性。18次余震中有10次为走滑型地震,其中6次为正断型,2次为逆断型,且70%的地震具有近SN向的P轴方位。此次7.3级地震序列震源深度范围5~28km,而大部分地震为15~20km,略大于本文计算得到的主震震源深度10km。 相似文献
4.
基于新疆及西藏区域数字地震台网的宽频带资料,采用CAP方法反演了2014年2月12日于田7.3级地震的前震、主震及早期MS≥3.5余震序列的震源机制解。结果显示,此次7.3级强震为带有正断分量的走滑型地震,结合震源区的构造和余震分布,节面I走向241°/倾角90°/滑动角-22°,判定该节面代表了主震的发震断层面。主震主压力轴方位为194°,与该区历史中强震主压应力P轴方位近NS向较为接近。其5.4级前震和主震震源机制解具有较高的一致性。18次余震中有10次为走滑型地震,其中6次为正断型,2次为逆断型,且70%的地震的P轴方位近SN向。此次7.3级地震序列震源深度为5~28km,而大部分地震为15~20km,略大于本文得到的主震震源深度10km。 相似文献
5.
本文介绍了2015年4月25日尼泊尔Mw7.9(MS8.1)地震发生后的破裂过程快速反演工作,以及后续开展的地震波与少量GPS资料的初步联合反演工作.两项工作得到的反演结果尽管在最大滑动量估计方面存在一些差别,但都一致地显示此次地震是发生在低倾角俯冲断裂上的一次单侧破裂事件,破裂主要朝东南方向传播;断层滑动主要发生在震中至加德满都一带.在加德满都附近区域,其下方破裂与朝东南传播的地震波的多普勒聚焦效应可能造成较强的震感和较大的破坏.对比历史大地震发现,2015年尼泊尔Mw7.9地震的浅部破裂紧邻1934年Mw8.2地震的地表破裂,余震分布与1833年M7.6地震的宏观震中基本重合,其破裂填补了前两次地震破裂以西100km左右的空区,表明此次地震是1934年Mw8.2地震与1833年M7.6地震向西继续延伸的结果. 相似文献
6.
2014年2月12日新疆于田发生MS7.3地震,本文利用新疆区域数字地震台网记录到的前震和余震序列的波形资料,对S波记录谱进行仪器响应、传播路径和场地响应的校正后,基于Brune模型,利用遗传算法反演了于田地震序列102次ML≥3.0级地震的地震矩、视应力、拐角频率等震源参数。结果表明,该地震序列震级为3.0~5.0级;地震矩为3.46×1011~2.08×1015N·m;视应力为1.48×105~1.16×106Pa,均值1.71×105Pa;拐角频率为1.4~7.1Hz。通过分析视应力及拐角频率随时间的变化特征可知,于田7.3级地震前震序列的视应力明显高于余震序列,而前震序列的拐角频率明显低于余震序列。主震前视应力出现高值,表明在主震区积聚了较多的应力,随后在应力值降低后的缓慢升高过程中发震,由于释放了大量的应力,震后视应力值又逐渐降低,表现为低应力的余震破裂。 相似文献
7.
运用地震破裂过程快速反演方法,在2010年2月27日智利地震发生后,采用全球地震台网(GSN)的宽频带地震资料,反演了这次地震的破裂过程,在震后约3.5小时得到了这次地震破裂过程的反演结果.结果表明,这次智利地震的破裂过程具有如下基本特征:①矩震级为MW8.6;②地震破裂持续时间约为150s;③包括4个滑动量集中分布区域,最大滑动量约为8m,最大滑动速率约为0.8m/s;④这次地震总体上是一次不对称的双侧破裂事件,破裂从破裂起始点(震源)开始,同时向南北两个方向扩展,但以向北扩展的破裂为主. 相似文献
8.
运用地震破裂过程快速反演方法,在2010年1月12日海地地震发生后,采用全球地震台网(GSN)的宽频带地震资料,反演了这次地震的破裂过程,得到了这次地震破裂过程的反演结果.结果表明,这次海地地震的破裂过程具有如下基本特征:①矩震级约为MW7.1;②地震主要破裂持续时间约为22s;③包括3个滑动量集中分布区域,最大滑动量约为4.9m,最大滑动速率约为3.3m/s;④这次地震基本上是一次双侧破裂事件,破裂从震中同时向东西两个方向延伸. 相似文献
9.
2014年2月12日新疆于田发生MS7.3地震,本文利用新疆区域数字地震台网记录到的前震和余震地震序列的波形资料,对S波记录谱进行仪器响应、传播路径和场地响应的校正后,基于Brune模型,利用遗传算法反演了于田地震序列102次ML≥3.0级地震的地震矩、视应力、拐角频率等震源参数。结果表明,该地震序列震级为3.0~5.0级;地震矩为3.46×1011~2.08×1015N?m;视应力为1.48×105~1.16×106Pa,均值1.71×105 Pa;拐角频率为1.4~7.1Hz。通过分析视应力及拐角频率随时间的变化特征可知,于田7.3级地震前震序列的视应力明显高于余震序列,而前震序列的拐角频率明显低于余震序列。主震前视应力出现高值,表明在主震区积聚了较多的应力,随后在应力值降低后的缓慢升高过程中发震,由于释放了大量的应力,震后视应力值又逐渐降低,表现为低应力的余震破裂。 相似文献
10.
2014年3月10日13时18分(北京时间)美国加利福尼亚州西北岸发生Mw6.9级地震,震中位于戈尔达板块内部.本文利用国际地震学研究联合会(IRIS)地震数据中心提供的远场体波数据,通过波形反演的方法来研究此次地震的震源破裂过程,并分析未造成重大人员伤亡及诱发海啸的原因,为该地区地球动力学的研究提供依据.选取19个方位角覆盖均匀的远场P波垂向波形记录和13个近场P波初动符号进行约束,基于剪切位错点源模型确定此次地震的震源机制解.结合地质构造背景资料,确定断层破裂面的走向.在考虑海水层多次反射效应的影响下,采用18个远场P波垂向波形数据和21个远场SH波切向波形数据,利用有限断层模型,将断层面剖分为17×9块子断层单元来模拟破裂面上滑动的时空分布,通过波形反演的方法获得此次地震的震源破裂过程.利用海水层地壳模型,剪切位错点源模型的反演结果为:走向323°,倾角86.1°,滑动角-180°,震源深度为10.6km.有限断层模型的反演结果表明,此次地震的破裂过程相对简单,主要滑动量集中于震源上方35km×9km的区域内,破裂时间持续19s左右,平均破裂传播速度约为2.7km·s-1,较大滑动量均沿着走向分布,最大滑动量为249cm.此次地震为发生在戈尔达板块内部的一次Mw6.9级的陡倾角走滑型地震.此次地震为单纯的走滑型地震,断层面接近竖直方向,且发生在洋壳底部,因此破坏力不大,不会对沿岸城市造成重大损失.陡倾角断层在走滑错动的过程中不会使海底地形发生大幅度变化,不会引起大面积水体的突然升降,因此不会诱发大规模海啸. 相似文献
12.
2014年2月12日新疆于田发生M S7.3地震,该震前1天曾发生M S5.4前震,震后余震活动频繁.截止到2月20日12时,该地震序列记录到4000多次余震,最大余震为2月12日M S5.7地震,序列类型为前震—主震—余震型.该地震前震的b值明显低于该区域正常活动的b值和余震的b值.这次地震位于西昆仑断裂带与阿尔金断裂带的交汇区域的阿什库勒断裂北段,震源机制解为走滑型.余震区NE向长70 km、宽20 km,分为主余震分布区和次余震分布区,其中M L4.0以上强余震基本位于NE向主余震分布区,N--S向的次余震分布区则以M L3.0左右地震分布为主,显示该部分可能受到主震的触发作用.于田地区曾发生的2008年3月21日M S7.3地震的震源机制解为正断型,距这次地震约100 km;2012年8月12日发生的M S6.2地震的震源机制解为正断型,距这次地震约10 km.该地区的发震构造背景是:在NE向阿尔金断裂带尾端向SW方向延伸过程中,左旋走滑作用逐渐转换为拉张作用,形成多条左旋走滑兼具拉张作用的断裂. 2014年于田M S7.3地震的发震模式表现为:左旋走滑的阿什库勒断裂北段与南段因速率差异而产生的小型构造盆地,在区域拉张作用力下顺时针旋转;2008年M S7.3张性地震后区域的伸展作用增强,导致盆地南侧的苦牙克断裂发生2012年M S6.2张性地震,该地震引起2014年M S5.4前震,两者激发其后在盆地北侧阿什库勒断裂发生了2014年M S7.3主震. 相似文献
13.
In this study we performed a classical spectrum analysis of seismic waveforms recorded at far field stations of the great MW7.9 Wenchuan earthquake to observe the shifts of the corner frequency with azimuth due to the Doppler effect. Our results show that this damaging great earthquake had a dominating rupture propagation direction of 64.0°. The equivalent radius of the fault rupture surface was estimated to be 33 km, yielding the rupture area of about 3 500 km2. Thus the length of the rupture fault surface is about 230 km if the depth (or width) extent is 15 km. The computer program developed in this study can quickly provide the information about the source of a future large (damaging) earthquake, which could be very useful for predicting aftershocks and planning the rescue operations. 相似文献
14.
2014年2月12日新疆于田 MW7.0地震源区位于巴颜喀拉块体与西昆仑块体的连接部位,东西向拉张构造发育,距离2008年3月21日于田 MW7.1地震震中位置约100 km.根据有限断层地震破裂过程模型,计算了2008年新疆于田地震产生的静态库仑应力变化.此次地震的断层面呈北偏东方向,在断层两端出现3个应力加载区,2014年于田主震位于破裂前端的库仑应力加载区.这一结果表明,2008年于田地震可能对2014年地震事件起到了触发作用.2008和2014年新疆于田地震产生的静态库仑应力变化与余震事件的空间分布具有明显的相关性,大多数余震位于应力加载区,发生在卸载区的余震较少.静态库仑应力变化与余震序列吻合较好.2014年3月21日新疆于田地震之后40天,在北西方向发生 MW5.2强余震,其震中位置的应力增量达到0.63×10 5Pa.通过比较,发现静态库仑应力变化和地震活动率之间具有较好的相关性.地震活动率较高的区域与静态库仑应力加载区相对应,如康西瓦断裂东段、贡嘎错断裂中段和东北段等区域. 相似文献
15.
2015年9月17日6时54分32秒(北京时间)智利中部伊拉佩尔附近(震中31.57°S,71.67°W)发生了一次M_w8.3大地震,在此次地震震中以南约500 km处的马乌莱地区曾于2010年2月27日14时34分11秒发生过一次M_w8.8强震(震中36.12°S,72.90°W),两次地震余震分布区之间有约75 km的地震空区.本文利用远场体波与面波波形,基于有限断层模型,反演了这两次地震的震源破裂过程.结果显示这两次地震均为逆冲型大地震,2015年伊拉佩尔M_w8.3地震的平均滑动角度为107°,平均滑动量为2.43 m,平均破裂速度为1.82 km·s~(-1),标量地震矩为3.28×10~(21)Nm,95%的标量地震矩在104 s内得到了释放.最大滑动量约8 m,位于沿走向75 km,深度8 km处.2010年马乌莱M_w8.8地震的平均滑动角度为109°,平均滑动量为4.95 m,平均破裂速度1.90 km·s~(-1),标量地震矩为1.86×10~(22)Nm,95%的标量地震矩在121 s内得到了释放.最大滑动量约12.5 m,位于沿走向100 km,深度21 km处.2015年伊拉佩尔M_w8.3地震浅部更大的滑动量应该是其引起了较大海啸的一个原因.基于破裂滑动分布,我们计算了这两次地震引起的周边俯冲带上静态库仑应力变化,结果显示两次地震均显著增加了周边俯冲带上的库仑应力,2010年马乌莱地震使得2015.年伊拉佩尔地震震源区附近的库仑应力增加了(0.01~0.15)×10~5Pa,从应力积累的角度看,2010年马乌莱地震有利于2015年伊拉佩尔地震的发生,对后者的发生起到了促进作用. 相似文献
16.
利用于田震中300 km范围内的1个GPS连续站和12个GPS流动站数据,解算得到了2014年新疆于田MS7.3地震地表同震位移,并反演了发震断层滑动分布,探讨此次地震对周边断裂的影响.地表同震位移结果显示,GPS观测到的同震位移范围在平行发震断裂带的北东-南西向约210 km,垂直发震断裂带的北西-南东方向约为120 km,同震位移量大于10 mm的测站位于震中距约120 km以内;同震位移特征整体表现为北东-南西方向的左旋走滑和北西-南东方向的拉张特征,其中在北东-南西方向,I069测站位移最大,约为32.1 mm,在北西-南东方向,XJYT测站位移最大,约为28.1 mm;位错反演结果表明,最大滑动位于北纬36.05°,东经82.60°,位于深部约16.6 km,最大错动量为2.75 m,反演震级为MW7.0,同震错动呈椭圆形分布,以左旋走滑为主并具有正倾滑分量,两者最大比值约为2.5:1,同震错动延伸至地表,并向北东方向延伸,总破裂长度约50 km,地表最大错动约1.0 m;同震水平位移场模拟结果显示贡嘎错断裂、康西瓦断裂和普鲁断裂等不同位置主应变特征具有差异性,这种差异特征是否影响断裂带以及周围区域的应力构造特征,值得关注. 相似文献
17.
静中动判据、异年倍九律、三性法、高山峰指标是郭增建研究组提出的中期与短期的预测指标。用这几个指标回顾性地讨论了2014年2月12日新疆于田南MS7.3级地震的中期和短临预测。 相似文献
18.
The 2016 MW7.8 Kaikoura (New Zealand) earthquake was the most complex event ever instrumentally recorded and geologically investigated, as it ruptured on more than 12 fault segments of various geometries. To study the mainshock rupture characteristics, geodetic methods like InSAR and GPS play an essential role in providing satisfactory spatial resolution. However, early strong aftershocks may cause extra ground deformation which bias the mainshock rupture inversion result. In this paper, we will focus on studying the MW 6.3 aftershock, which is the only M6+ thrust slip aftershock that occurred only 30 minutes after the Kaikoura mainshock. We will relocate the hypocenter of this event using the hypo2000 method, make the finite fault model (FFM) inversion for the detailed rupture processes and calculate the synthetic surface displacement to compare with the observed GPS data and figure out its influence on the mainshock study. Although we are not able to resolve the real ruptured fault of this event because of limited observation data, we infer that it is a west-ward dipping event of oblique slip mechanism, consistent with the subfault geometries of the Kaikoura mainshock. According to the inverted FFM, this event can generate 10–20 cm ground surface displacement and affect the ground displacement observation at nearby GPS stations. 相似文献
|