首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Our main goal is to show that the spatial and temporal dynamics of the temperature content for plasma structures in the solar corona can be described quantitatively in principle, which is necessary for understanding the formation mechanisms of soft X-ray emission. An approach based on a consistent modeling of complex data from the CORONAS-F, GOES, and RHESSI satellites is suggested. A basically new element of this approach is the use of time series of monochromatic full-Sun images in the X-ray MgXII 8.42 Å line and EUV lines obtained in the SPIRIT experiment onboard CORONAS-F. Two inversion procedures have been used to determine the volume and column differential emission measures defined by the Stieltjes integral: an optimization one based on a multitemperature parametric model and an iterative one based on the Bayesian theorem, respectively. The calculations with coronal abundances agree with the RHESSI data within the experimental error limits, while those with photospheric abundances give no satisfactory agreement. The relatively cold (with temperature 2–4 MK) and transient (4–10 MK) plasmas are shown to play a significant role in producing soft X-ray emission during flare events and in their energy budget. The spatial electron density and temperature distributions and their time evolution have been obtained for long-duration events that were first observed in the monochromatic MgXII channel and were previously called “spiders.” The method used has allowed us to verify the absolute intercalibration of the fluxes recorded in all experiments and to reference the SPIRIT MgXII images to the solar disk. We also consider possible flare plasma heating mechanisms for impulsive and long-duration (spider) flare events.  相似文献   

2.
The fluxes and penetration boundaries of solar energetic particles on the CORONAS-F satellite during October 2003 superstorms are compared with the riometric absorption measurements on a worldwide network of riometers. The dynamics of the polar cap boundaries is investigated at various phases of magnetic storms. The dependence of absorption on time of the day and on solar proton spectrum is calculated at various phases of a solar energetic particle event.  相似文献   

3.
The solar flare of November 4, 2001, at 16.03–16.57 UT (GOES soft X-ray class X1.0, optical importance 3B, and coordinates N06W180) is used as an example to investigate the relationship between sporadic VHF radio bursts and charged particle fluxes (of both solar and magnetospheric origins) at an altitude of 500 km. The radio background intensity was recorded at frequencies of 280, 300, 151, and 500 MHz by nondirectional ground-based mid-latitude radio antennas spaced ~700 km apart. The results of our radio measurements are compared with the dynamics of 0.2–12 MeV electron and 1–5 MeV proton fluxes based on data from the MKL instrument onboard the CORONAS-F satellite (the orbit altitude and inclination are 500 km and 82.5°, respectively).  相似文献   

4.
We discuss the results of our simultaneous observations of interplanetary and geomagnetic field fluctuations as well as solar wind parameters and meter radio emission in near-Earth space at mid-latitudes (near Kharkov) based on ground measurements before and during a unique magnetic storm on October 22, 1999. The electron flux dynamics in interplanetary space, geostationary orbit, and the magnetosphere is analyzed to find the interconnection with UHF radio background bursts at a frequency of 151 MHz. We conclude that the acceleration processes in the inner magnetospheric layers affect the generation processes of high-frequency radio bursts and that this phenomenon should be studied further using the SINP (MSU) instruments onboard the CORONAS-F satellite.  相似文献   

5.
The helioseismological experiment onboard the CORONAS-PHOTON satellite is intended for the study of characteristics and the internal structure of the Sun using the solar eigenmodes spectrum obtained by the measurement of fluctuations of the solar radiation intensity. This experiment is the continuation of investigations of solar global oscillations started onboard artificial satellites CORONAS-I and CORONAS-F. Measurements of fluctuations of the solar radiation intensity in seven optical ranges—from the near ultraviolet to infrared spectral regions—are carried out by the solar photometer SOKOL (SOlnechnye KOLebaniya (Solar Oscillations)) developed at IZMIRAN. Over an instrument operation period of more than 9 months, a large volume of the scientific information (more than 500 MB) has been obtained. The primary processing of obtained data was performed, and spectra of fluctuations of the solar radiation intensity were constructed. On the basis of part of the processed information obtained by the photometer SOKOL, and data of the experiment DIFOS (Differential Oscillations of the Sun) onboard the artificial satellite CORONAS-F, the dependence of the relative amplitude of oscillations on the wavelength of the observation was determined.  相似文献   

6.
Litvak  M. L.  Mitrofanov  I. G.  Kozyrev  A. S.  Sanin  A. B.  Tret'yakov  V. I.  Boynton  W. V.  Shinohara  C.  Hamara  D.  Saunders  S.  Drake  D. M.  Zuber  M. T.  Smith  D. E. 《Solar System Research》2003,37(5):378-386
We analyze the flux of epithermal neutrons from the Martian surface recorded by the Russian High-Energy Neutron Detector (HEND) from February 19 through December 19, 2002. The HEND was installed onboard the NASA 2001 Mars Odyssey spacecraft and is designed to measure neutron fluxes with energies above 1 eV. Over the period of observations, statistically significant variations in the flux of epithermal (10–100 keV) neutrons were found in the northern and southern polar caps. The largest neutron-flux variations were found at subpolar latitudes, where the relative difference between the summer and winter values can reach severalfold. This correlation becomes weaker with increasing distance from the poles. Thus, the relative change in the neutron flux near the 60° parallel is slightly more than 10%. We assume that the detected variations result from the global circulation of atmospheric carbon dioxide in subpolar Martian regions. To additionally test this assumption, we compared the HEND neutron measurements onboard 2001 Mars Odyssey and the seasonal variations in the CO2-layer thickness as observed by the Mars Orbital Laser Altimeter (MOLA) onboard Mars Global Surveyor (MGS).  相似文献   

7.
Bruce M. Jakosky 《Icarus》1983,55(1):19-39
The behavior of water vapor in the Mars atmosphere requires that there be a seasonally accessible nonatmospheric reservoir of water. Coupled models have been constructed which include exchange of water with the regolith and with the polar caps, and transport through the atmosphere due to its circulation. Comparison of the model results with the vapor observations and with other data regarding the physical nature of the surface allows constraints to be placed on the relative importance of each process. The models are capable of satisfactorily explaining the gross features of the observed behavior using plausible values for the regolith and atmosphere mixing terms. In the region between the polar caps, the regolith contributes as much water to the seasonal cycle of vapor as does transport in from the more-poleward regions, to within a factor of 2. Globally, 10–40% of the seasonal cycle of vapor results from exchange of water with the regolith, about 40% results from the behavior of the residual caps, and the remainder is due to exchange of water with the seasonal caps. It is difficult to determine the relative importance of the processes more precisely than this because both regolith and polar cap exchange of water act to first order in the same direction, producing the largest vapor abundance during the local summer. The system is ultimately regulated on the seasonal time scale by the polar caps, as the time to reach equilibrium between the atmosphere and regolith or between the polar atmosphere and the global atmosphere is much longer than the time for the polar caps to equilibrate with the local atmosphere. This same behavior will hold for longer time scales, with the polar caps being in equilibrium with the insolation as it changes on the obliquity time scale, and the atmosphere and regolith following along.  相似文献   

8.
Robert M. Haberle 《Icarus》1979,39(2):184-191
The large horizontal heating gradients that exist near the edge of the Martian polar caps during spring are shown to be capable of exciting large oscillations in the diurnal tide. To a lesser extent, the daily mass cycling between cap and atmosphere can also contribute. The calculations which demonstrate this are based on classical tidal theory as applied to the cylindrical coordinate system. This is done to facilitate the representation of the heating function. Results are presented for the horizontal surface winds only. They indicate a circulation at the cap edge somewhat analogous to the smaller scale terrestrial sea breeze. The amplitude of the zonal component is largest and is increased from 1 to 10 m sec?1 by the modeled influence of the polar cap. When coupled with the basic flow these cap-edge tides can produce strong surface winds during spring. Such a mechanism may contribute to the ability of the south polar cap winds to generate the local dust storms observed near the cap edge at this season.  相似文献   

9.
Onboard the International Space Station (ISS), two instruments are observing the solar spectral irradiance (SSI) at wavelengths from 16 to 2900 nm. Although the ISS platform orientation generally precludes pointing at the Sun more than 10?–?14 days per month, in November/December 2012 a continuous period of measurements was obtained by implementing an ISS ‘bridging’ maneuver. This enabled observations to be made of the solar spectral irradiance (SSI) during a complete solar rotation. We present these measurements, which quantify the impact of active regions on SSI, and compare them with data simultaneously gathered from other platforms, and with models of spectral irradiance variability. Our analysis demonstrates that the instruments onboard the ISS have the capability to measure SSI variations consistent with other instruments in space. A comparison among all available SSI measurements during November–December 2012 in absolute units with reconstructions using solar proxies and observed solar activity features is presented and discussed in terms of accuracy.  相似文献   

10.
11.
To map the lunar surface in terms of mineralogy, we suggest to use the data on variations of the real part of the refractive index obtained from the measurements of Brewster’s angle in the far ultraviolet spectral range. Such data can be acquired with an ultraviolet polarimeter onboard a spacecraft launched into a circumlunar polar orbit.  相似文献   

12.
The first results of comprehensive CORONAS-F observations of solar activity are presented. The CORONAS-F instrumentation and principal scientific objectives are briefly described and examples of the first results of data reduction are given.  相似文献   

13.
A theory for the brightness fluctuations of the Sun as a star under the effect of its global oscillations has been developed. Formulas for the darkening and visibility of p-modes are derived and their calculations are performed in the local approximation for adiabatic oscillations. Observational data from the DIFOS multichannel photometer onboard the CORONAS-F satellite are used to solve the inverse problem of determining the amplitude of the five-minute temperature fluctuations in the solar photosphere as a function of the height. Analysis of the solution and comparison with the results of other authors suggest that the predicted temperature waves resulting from a linear transformation of p-modes in the photosphere exist in the photosphere. The wavelength and phase velocity of the temperature waves are considerably smaller than those of acoustic waves. It turns out that the solar brightness fluctuations should be produced mainly by the temperature waves in the photosphere, not by the p-modes themselves. The darkening function for the brightness fluctuations is oscillatory in behavior, while the visibility function can differ markedly from that for the Doppler shifts of spectral lines produced by p-modes. These properties are important for interpreting the observations of stellar oscillations based on stellar brightness fluctuations.  相似文献   

14.
The boundaries of the polar caps of Mars have been measured on more than 3000 photographs since 1905 from the plate collection at the Lowell Observatory. For the Earth, the polar caps have been accurately mapped only since the mid 1960's when satellites were first available to synoptically view the polar regions. The polar caps of both planets wax and wane in response to changes in the seasons, and interannual differences in polar cap behavior on Mars as well as Earth are intimately linked to global energy balance. Data on the year to year variations in the extent of the north polar caps of Mars and Earth have been assembled and compared, although only 6 years of concurrent data were available for comparison.  相似文献   

15.
The two-band soft X-ray observations of solar flares made by the Naval Research Laboratory’s (NRL) SOLar RADiation (SOLRAD) satellites and by the Geostationary Orbiting Environmental Satellites (GOES) operated by the National Oceanic and Atmospheric Administration’s (NOAA) Space Weather Prediction Center have produced a nearly continuous record of solar flare observations over a period of more than forty years (1969 – 2011). However, early GOES observations (i.e., GOES-2) and later (GOES-8 and subsequent missions) are not directly comparable due to changes in the conversion of measured currents to integrated fluxes in the two spectral bands that were adopted: 0.05 – 0.3 (or 0.4) nm, which we refer to as XS and 0.1 – 0.8 nm (XL). Furthermore, additional flux adjustments, using overlapping data sets, were imposed to provide consistency of flare-flux levels from mission to mission. This article evaluates the results of these changes and compares experimental GOES-8/GOES-2 results with changes predicted from modeled flare spectra. The factors by which recent GOES observations can be matched to GOES-2 are then optimized by adapting a technique first used to extrapolate GOES X-ray fluxes above saturation using ionospheric VLF radio phase enhancements. A nearly 20% increase in published GOES-8 XL data would be required to match to GOES-2 XL fluxes, which were based on observed flare spectra. On the other hand, a factor of 1.07 would match GOES-8 and later flat-spectrum 0.1 – 0.8 nm fluxes to GOES-2 XL if the latter data were converted to a flat-spectrum basis. Finally, GOES-8 observations are compared to solar soft X-ray estimates made concurrently with other techniques. Published GOES-8 0.1 – 0.8 nm fluxes are found to be 0.59 of the mean of these other determinations. Rescaling GOES to a realistic flare spectrum and removing a 30% downward adjustment applied to the GOES-8 measurements during initial data processing would place GOES-8 and later GOES XL fluxes at 0.94 of this XL mean. GOES-2 on the same scale would lie at about 0.70 of this mean. Significant uncertainties in the absolute levels of broad band soft X-ray fluxes still remain, however.  相似文献   

16.
A technique for analyzing periodic processes based on the introduction of an analytical signal is described. This technique allows the instantaneous frequency, amplitude, and phase of oscillations to be obtained. The data on solar brightness fluctuations collected with the DIFOS multichannel photometer onboard the CORONAS-F satellite are processed. The p-mode spectral lines are broadened mainly by amplitude fluctuations, while the frequency stability appears to be high (~10?4). A method for separating signals with close frequencies is developed. The p-mode with l = 0 and n = 21 is used as an example to show that the separation of signals with close frequencies is possible when the conventional spectral methods are inefficient. Analysis of the phase shifts between the oscillations observed in various optical channels of the DIFOS photometer has revealed that the five-minute oscillations travel from the upper and deep photospheric layers toward the middle photospheric layers. This effect directly proves that the evanescent p-modes in the photosphere are nonadiabatic.  相似文献   

17.
The seasonal evolution of the H2O snow in the Martian polar caps and the dynamics of water vapor in the Martian atmosphere are studied. It is concluded that the variations of the H2O mass in the polar caps of Mars are determined by the soil thermal regime in the polar regions of the planet. The atmosphere affects water condensation and evaporation in the polar caps mainly by transferring water between the polar caps. The stability of the system implies the presence of a source of water vapor that compensates for the removal of water from the atmosphere due to permanent vapor condensation in the polar residual caps. The evaporation of the water ice that is present in the surface soil layers in the polar regions of the planet is considered as such a source. The annual growth of the water-ice mass in the residual polar caps is estimated. The latitudinal pattern of the seasonal distribution of water vapor in the atmosphere is obtained for the stable regime.Translated from Astronomicheskii Vestnik, Vol. 38, No. 6, 2004, pp. 497–503.Original Russian Text Copyright © 2004 by Aleshin.  相似文献   

18.
Haberle RM  Tyler D  McKay CP  Davis WL 《Icarus》1994,109(1):102-120
We have constructed a model that predicts the evolution of CO2 on Mars from the end of the heavy bombardment period to the present. The model draws on published estimates of the main processes believed to affect the fate of CO2 during this period: chemical weathering, regolith uptake, polar cap formation, and atmospheric escape. Except for escape, the rate at which these processes act is controlled by surface temperatures which we calculate using a modified version of the Gierasch and Toon energy balance model (1973, J. Atmos. Sci. 30, 1502-1508). The modifications account for the change in solar luminosity with time, the greenhouse effect, and a polar and solar equatorial energy budget. Using published estimates for the main parameters, we find no evolutionary scenario in which CO2 is capable of producing a warm (global mean temperatures>250 K) and wet (surface pressures>30 mbar) early climate, and then evolves to present conditions with approximately 7 mbar in the atmosphere, <300 mbar in the regolith, and <5 mbar in the caps. Such scenarios would only exist if the early sun were brighter than standard solar models suggest, if greenhouse gases other than CO2 were present in the early atmosphere, or if the polar albedo were significantly lower than 0.75. However, these scenarios generally require the storage of large amounts of CO2 (>1 bar) in the carbonate reservoir. If the warm and wet early Mars constraint is relaxed, then we find best overall agreement with present day reservoirs for initial CO2 inventories of 0.5-1.0 bar. We also find that the polar caps can a profound effect on how the system evolves. If the initial amount of CO2 is less than some critical value, then there is not enough heating of the poles to prevent permanent caps from forming. Once formed, these caps control how the system evolves, because they set the surface pressure and, hence, the thermal environment. If the initial amount of CO2 is greater than this critical value, then caps do not form initially, but can form later on, when weathering and escape lower the surface pressure to a point at which polar heating is no longer sufficient to prevent cap formation and the collapse of the climate system. Our modeling suggests this critical initial amount of CO2 is between 1 and 2 bar, but its true value will depend on all factors affecting the polar heat budget.  相似文献   

19.
Y. C. Whang 《Solar physics》1983,88(1-2):343-358
A one-fluid model is employed to study the global expansion of the solar wind from a two-hole corona, under the assumptions that the holes are confined to polar caps within 30° of heliographic colatitude, the flow is steady and axisymmetric, and the geometry of streamlines is prescribed. The boundary conditions are adjusted in such a way that the calculated solar wind properties at 1 AU are in a reasonable agreement with observational results. A series of numerical solutions are obtained, the series produces a maximum terminal speed of 829 km s?1 at the pole. The calculated solar wind speeds are strongly latitude dependent and are positively correlated with local divergence factor of a stream tube. The solutions imply that most plasma properties are highly inhomogeneous at the polar caps. The flow velocity, the temperature, the proton number flux and the conduction heat flux all increase towards the hole center.  相似文献   

20.
The mostly carbon dioxide (CO2) atmosphere of Mars condenses and sublimes in the polar regions, giving rise to the familiar waxing and waning of its polar caps. The signature of this seasonal CO2 cycle has been detected in surface pressure measurements from the Viking and Pathfinder landers. The amount of CO2 that condenses during fall and winter is controlled by the net polar energy loss, which is dominated by emitted infrared radiation from the cap itself. However, models of the CO2 cycle match the surface pressure data only if the emitted radiation is artificially suppressed suggesting that they are missing a heat source. Here we show that the missing heat source is the conducted energy coming from soil that contains water ice very close to the surface. The presence of ice significantly increases the thermal conductivity of the ground such that more of the solar energy absorbed at the surface during summer is conducted downward into the ground where it is stored and released back to the surface during fall and winter thereby retarding the CO2 condensation rate. The reduction in the condensation rate is very sensitive to the depth of the soil/ice interface, which our models suggest is about 8 cm in the Northern Hemisphere and 11 cm in the Southern Hemisphere. This is consistent with the detection of significant amounts of polar ground ice by the Mars Odyssey Gamma Ray Spectrometer and provides an independent means for assessing how close to the surface the ice must be. Our results also provide an accurate determination of the global annual mean size of the atmosphere and cap CO2 reservoirs, which are, respectively, 6.1 and 0.9 hPa. They also indicate that general circulation models will need to account for the effect of ground ice in their simulations of the seasonal CO2 cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号