首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
Based on the basic principles of atmospheric boundary layer and plant canopy micrometeorology, a forest underlying surface land surface physical process model and a two-dimensional atmospheric boundary layer numerical model are developed and numerical simulation experiments of biosphere and physiological processes of vegetation and soil volumetric water content have been done on land surface processes with local climate effect. The numerical simulation results are in good agreement with realistic observations, which can be used to obtain reasonable simulations for diurnal variations of canopy temperature, air temperature in canopy, ground surface temperature, and temporal and spatial distributions of potential temperature and vertical wind velocity as well as relative humidity and turbulence exchange coefficient over non-homogeneous underlying surfaces. It indicates that the model developed can be used to study the interaction between land surface process and atmospheric boundary layer over various underlying surfaces and can be extended to local climate studies. This work will settle a solid foundation for coupling climate models with the biosphere.  相似文献   

2.
In this paper,an interactive model between land surface physical process and atmosphereboundary layer is established,and is used to simulate the features of soil environmental physics,surface heat fluxes,evaporation from soil and evapotranspiration from vegetation and structures ofatmosphere boundary layer over grassland underlying.The sensitivity experiments are engaged inprimary physics parameters.The results show that this model can obtain reasonable simulation fordiurnal variations of heat balance,soil volumetric water content,resistance of vegetationevaporation,flux of surface moisture,and profiles of turbulent exchange coefficient,turbulentmomentum,potential temperature,and specific humidity.The model developed can be used tostudy the interaction between land surface processes and atmospheric boundary layer in cityregions,and can also be used in the simulation of regional climate incorporating a mesoscalemodel.  相似文献   

3.
Classical turbulent K closure theory of the atmospheric boundary layer assumes that the vertical turbulent transport flux of any macroscopic quantity is equivalent to that quantity‘s vertical gradient transport flux. But a cross coupling between the thermodynamic processes and the dynamic processes in the atmospheric system is demonstrated based on the Curier-Prigogine principle of cross coupling of linear thermodynamics. The vertical turbulent transportation of energy and substance in the atmospheric boundary layer is related not only to their macroscopic gradient but also to the convergence and the di-vergence movement. The transportation of the convergence or divergence movement is important for the atmospheric boundary layer of the heterogeneous underlying surface and the convection boundary layer.Based on this, the turbulent transportation in the atmospheric boundary layer, the energy budget of the heterogeneous underlying surface and the convection boundary layer, and the boundary layer parameteri-zation of land surface processes over the heterogeneous underlying surface are studied. This research offers clues not only for establishing the atmospheric boundary layer theory about the heterogeneous underlying surface, but also for overcoming the difficulties encountered recently in the application of the atmospheric boundary layer theory.  相似文献   

4.
A numerical model is used to study the properties of pollutant dispersion over a large uniformly-sloped surface in the stable atmospheric boundary layer. By simulating the structure of boundary layer flow to improve the advective wind field and vertical eddy difFusivities included in the advection-diffusion equation, this numerical model permits an estimation of the distribution of pollutant concentration for more realistic atmospheric diffusion conditions.  相似文献   

5.
The local climate and atmospheric circulation pattern exert a clear influence on the atmospheric boundary layer (ABL) formation and development in Northwest China. In this paper, we use field observational data to analyze the distribution and characteristics of the ABL in the extremely arid desert in Dunhuang, Northwest China. These data show that the daytime convective boundary layer and night time stable boundary layer in this area extend to higher altitudes than in other areas. In the night time, the stable boundary layer exceeds 900 m in altitude and can sometimes peak at 1750 m, above which the residual layer may reach up to about 4000 m. The daytime convective boundary layer develops rapidly after entering the residual layer, and exceeds 4000 m in thickness. The results show that the deep convective boundary layer in the daytime is a pre-requisite for maintaining the deep residual mixed layer in the night time. Meanwhile, the deep residual mixed layer in the night time provides favorable thermal conditions for the development of the convective boundary layer in the daytime. The prolonged periods of clear weather that often occurs in this area allow the cumulative effect of the atmospheric residual layer to develop fully, which creates thermal conditions beneficial for the growth of the daytime convective boundary layer. At the same time, the land surface process and atmospheric motion within the surface layer in this area also provide helpful support for forming the particular structure of the thermal ABL. High surface temperature is clearly the powerful external thermal forcing for the deep convective boundary layer. Strong sensible heat flux in the surface layer provides the required energy. Highly convective atmosphere and strong turbulence provide the necessary dynamic conditions, and the accumulative effect of the residual layer provides a favorable thermal environment.  相似文献   

6.
The survey for the HEIFE(Atmosphere-Land Surface Processes Experiment at Heihe RiverBasin,Western China)is given in the paper.The following basic subjects for land-surface process-es in arid areas are studied:(1)the general characteristics of the energy budget on ground surfacein arid areas;(2)the parameterization of the land surface processes;(3)the interaction betweenoasis and its desert circumstances,a special phenomenon in arid areas.The analysis shows that thesensible heat flux in the surface energy budget is in the majority,and the latent heat flux may beneglected.The influence of atmospheric stratification stability on the turbulent transfer of energyand substance must be considered in parameterization of land surface processes in arid areas.The“cold island effect”phenomenon in oasis and the“humidity inversion”phenomenon in desert nearoasis are the result of the interaction between them.The results would improve the understandingof land surface processes in arid areas.  相似文献   

7.
Oasis is a special geographic landscape among the vast desert/Gobi in Northwest China (NWC). The surface sensitive heat flux and latent heat flux at Zhangye Oasis during 1 to 11 August 1991 are simulated using the NCAR nonhydrostatic mesoscale model MM5 Version 3. The horizontal grid resolution is set as 1km. By comparing the simulation results with HEIFE observations, it is proved that the model can be used to simulate the surface energy and water mass exchange of arid and semiarid regions in NWC.Based on the above results, the influence of different oasis scales on the local atmospheric field near the ground surface, and the critical scale of oasis maintenance, in NWC are studied dynamically. The following conclusion is obtained: the local thermal circulation between the oasis and the desert/Gobi is formed in the oasis downstream if the oasis scale is larger than 4 km. This local thermal circulation between the oasis and the desert adjacent to the oasis helps to conserve water vapor over the oasis. At the sametime, it transfers the abundant water vapor from the oasis into the desert/Gobi near to the oasis to supply relatively plentiful water vapor for desert crops to grow on the fringe of the oasis. So, it is advantageous for oasis extension. However, if the scale of the oasis is smaller than 4 km, it is not easy for the local thermal circulation between the oasis and the desert/Gobi to take shape. This study provides a new standpoint for oasis maintenance and development.  相似文献   

8.
AMSU-A (Advanced Microwave Sounding Unit-A) measurements for channels that are sensitive to the surface over land have not been widely assimilated into numerical weather prediction (NWP) models due to complicated land surface features. In this paper, the impact of AMSU-A assimilation over land in Southwest Asia is investigated with the Weather Research and Forecasting (WRF) model. Four radiance assimilation experiments with different land-surface schemes are designed, then compared and verified against radiosonde observations and global analyses. Besides the surface emissivity calculated from the emissivity model and surface temperature from the background field in current WRF variational data assimilation (WRF-VAR) system, the surface parameters from the operational Microwave Surface and Precipitation Products System (MSPPS) are introduced to understand the influence of surface parameters on AMSU-A assimilation over land. The sensitivity of simulated brightness temperatures to different surface configurations shows that using MSPPS surface alternatives significantly improves the simulation with reduced root mean square error (RMSE) and allows more observations to be assimilated. Verifications of 24-h temperature forecasts from experiments against radiosonde observations and National Centers for Environmental Prediction (NCEP) global analyses show that the experiments using MSPPS surface alternatives generate positive impact on forecast temperatures at lower atmospheric layers, especially at 850 hPa. The spatial distribution of RMSE for forecast temperature validation indicates that the experiments using MSPPS surface temperature obviously improve forecast temperatures in the mountain areas. The preliminary study indicates that using proper surface temperature is important when assimilating lower sounding channels of AMSU-A over land.  相似文献   

9.
The impact of well watered mesoscale wheat over mid-latitude arid areas on mesoscale boundary layer structures (MBLS) and climate has been investigated in the study .using a mesoscale biophysical, meteorological model (BM) developed in the current study. The BM is composed of six modules:mesoscale atmospheric module, soil module, vegetation module, snow-atmosphere interaction module, underlying surface meteorology module and subgrid scale flux parameterization module. The six modules constitute an interacting system by supplying boundary conditions to each other.The investigation indicates that a horizontal pressure gradient associated with mesoscale perturbations in temperature and humidity is created during the day, which results from more water transpired from the vegetation canopy (VC) and evaporated from underlying wet soil. Non-classical mesoscale circulations (called as vegetation-breeze) are forced by the pressure perturbations with wind speeds about 5 m / s, flowing from the VC to the adjacent  相似文献   

10.
Based on turbulence theory,a 1.5-order closure turbulence model is established.The model incorporating with theground surface energy budget equation is constructed by means of a vertical one-dimensional(1-D)40-levelgrid-mesh.The numerical results reveal the 24-h evolution of the clear planetary boundary layer comparing with theWangara boundary layer data of days 33—34.The model also takes into account some physical processes of radiativetransfer and baroclinicity,revealing some important characteristics observed in the boundary layer,especially for theevolution of the mixed layer and low-level jet.The calculated results are in good agreement with the observational data.On the other hand,we also run the high-resolution model of the planetary boundary layer in the Mesoscale Model Ver-sion 4(MM4)with the same physical processes and initial conditions.The results show that the high-resolution modelcan not reveal those important characteristics as the 1.5-order closure model did.In general,it is shown that the 1.5-or-der closure turbulence model based on turbulence theory is better in rationality and reality.  相似文献   

11.
绿洲与荒漠相互影响下大气边界层特征的模拟   总被引:12,自引:2,他引:10  
用发展的二维中尺度土壤-植被-大气连续体数值模式模拟了绿洲与荒漠相互影响下的大气边界层特征。得到了绿洲和临近荒漠之间的边界层高度、风螺线、风速廓线、位温廓线和比湿廓线的差别,并给出了绿洲对其上游和下游荒漠大气的不同影响。基本再现了白天绿洲大气逆温和临近绿洲的荒漠大气逆湿。模拟实验研究不仅验证了外场观测结果,而且也使我们对复杂下垫面边界层结构有了一些新的认识。  相似文献   

12.
森林下垫面陆面物理过程及局地气候效应的数值模拟试验   总被引:5,自引:0,他引:5  
文中基于大气边界层和植被冠层微气象学基本原理 ,建立了一个森林植被效应的陆面物理过程和二维大气边界层数值模式。并应用该模式进行了植被和土壤含水量等生物和生理过程在陆面过程和局地气候效应方面的数值模拟试验。所得数值模拟试验结果与实际情况相吻合。结果表明 ,应用该模式可获得植被温度、植被冠层内空气温度、地表温度日变化特征 ;森林下垫面大气边界层风速、位温、比湿、湍流交换系数的时空分布和日变化特征。该模式还可应用于不同下垫面 ,模拟陆面物理过程与大气边界层相互作用机制及其局地气候效应的研究 ,这将为气候模式与生物圈的耦合研究奠定一个良好的基础。  相似文献   

13.
非均匀下垫面局地气候效应的数值模拟   总被引:18,自引:24,他引:18  
高艳红  吕世华 《高原气象》2001,20(4):354-361
使用美国NCAR非静力平衡模式MM 5V3,模拟了黑河地区非均匀下垫面局地小气候效应 ,再现了山谷风环流及夏季“绿洲效应”、沙漠上的“逆湿”和由于地表热力分布不均匀引起的绿洲—沙漠垂直环流等绿洲—沙漠相互作用的典型特征 ,较全面地揭示了非均匀地表大气边界层内的风、温、湿度场与陆面相互作用的物理机理 ,验证了野外实验的结果  相似文献   

14.
In this study the role of atmospheric boundary layer schemes in climate models is investigated. Including a boundary layer scheme in an Earth system model of intermediate complexity (EMIC) produces only minor differences in the estimated global distribution of sensible and latent heat fluxes over land (upto about 15% of the net radiation at the surface). However, neglecting of boundary layer processes, such as the development of a well-mixed layer over land or the impact of stability on the exchange coefficient in the surface layer, leads to erroneous surface temperatures, especially in convective conditions with low wind speeds. As these conditions occur frequently, introducing a boundary layer scheme in an EMIC gives reductions in June-July-August averaged surface temperature of 1–2 °C in wet areas, to 5–7 °C in desert areas. Even a relatively simple boundary layer scheme provides reasonable estimates of the surface fluxes and surface temperatures. Detailed schemes that solve explicitly the turbulent fluxes within the boundary layer are only required when vertical profiles of potential temperature are needed.  相似文献   

15.
不均匀植被分布对地表面和大气边界层影响的数值试验   总被引:9,自引:0,他引:9  
季劲钧  苗曼倩 《大气科学》1994,18(3):293-302
研究陆地与大气间相互作用的方法之一是建立联系地表面层与大气间各种过程的数值模式进行模拟。本文是建立一个陆面过程与二维大气边界层相耦合的模式,耦合模式中包含了发生在大气边界层、植被冠层和土壤表层各种动力、热力和水文过程。运用这一模式模拟了荒漠环境中一片绿洲的不均匀地表面形成的局地气候。由于绿洲植被与周围荒漠有着显著不同的水份与能量平衡关系,使绿洲表面与边界层较四周荒漠冷而湿,并形成了相应的局地环流,即所谓“绿洲效应”。试验结果表明,模拟的气候状况与观测现象是一致的。模式可以用于陆气相互作用的研究。  相似文献   

16.
沙漠-绿洲大气边界层结构的数值模拟   总被引:14,自引:6,他引:8  
吕世华  罗斯琼 《高原气象》2005,24(4):465-470
利用美国NCAR新版中尺度MM5V3.6非静力平衡模式,采用三重嵌套的模拟方法,模拟研究了沙漠绿洲的环流及边界层特征。结果表明:在没有西风气流背景的影响下,绿洲沙漠环流和大气边界层结构是对称的。沙漠绿洲改变了原有沙漠地区环流结构及温、湿场的分布,绿洲上空大气下沉,沙漠上空大气上升,从而产生了绿洲上空大气冷干,沙漠上空大气暖湿的边界层特征。绿洲边缘形成了由干到湿的强湿度梯度带围绕着绿洲,起到了保护绿洲的作用。在有西风背景气流的影响下,绿洲沙漠环流和大气边界层结构是非对称的。但是,西风背景气流的存在可以破坏绿洲系统对称的环流结构,不利于绿洲系统的稳定发展。  相似文献   

17.
A nested grid regional model with a high vertical resolution in the atmospheric boundary layer is used to simulate various atmospheric processes during an active monsoon period. A turbulence kinetic energy closure scheme is used to predict the boundary-layer structure. Model predictions indicate different structures of the boundary layer over land and oceans, as observed. Significant diurnal variation in boundary-layer structure and associated processes is predicted over land and negligible variations over oceans. The Somali jet over the Arabian Sea is well predicted. Location of the predicted monsoon depression and the associated rainfall are in good agreement with the observations. Also, predicted rainfall and its spatial distribution along the west coast of India are in good agreement with the observations.  相似文献   

18.
In this paper,an interactive model between land surface physical process and atmosphere boundary layer is established,and is used to simulate the features of soil environmental physics,surface heat fluxes,evaporation from soil and evapotranspiration from vegetation and structures of atmosphere boundary layer over grassland underlying.The sensitivity experiments are engaged in primary physics parameters.The results show that this model can obtain reasonable simulation for diurnal variations of heat balance,soil volumetric water content,resistance of vegetation evaporation,flux of surface moisture,and profiles of turbulent exchange coefficient,turbulent momentum,potential temperature,and specific humidity.The model developed can be used to study the interaction between land surface processes and atmospheric boundary layer in city regions,and can also be used in the simulation of regional climate incorporating a mesoscale model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号