首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using the extended Poincaré-Lighthill-Kuo (PLK) reductive perturbation method, which incorporates the phase-shift variations, it is shown that common features on propagation and head-on collisions of ion-acoustic waves exist for a magnetized plasmas of different inertial-less particle distributions. For instance it is remarked that, the soliton amplitude is always independent of magnetic field strength while strictly depends on its angle regarding the propagation direction. Both types of solitons (compressive or rarefactive) are shown to exist which are defined through the critical angle γ=π/2 or other critical values depending on plasma fractional parameters. These critical plasma parameter values also define the sign of head-on collision phase shift. Furthermore, it is proved that for a given set of plasma parameters there is always a relative angle of propagation regarding to that of the magnetic-field for which the soliton width is maximum. Current findings apply to a wide range of magnetized plasmas including those containing background dust ingredients or two-temperature inertial-less particles and may be used to study laboratory or astrophysical magnetoplasmas.  相似文献   

2.
3.
《Planetary and Space Science》2007,55(10):1358-1367
Propagation of plasma-acoustic wave has been studied in magnetized plasma contaminated with dust charged grains. It has shown that, because of the configuration of magnetized plasma contaminated with dust charge fluctuation, pseudopotential method fails to derive nonlinear wave equation. We thus exercise an alternate approach to yield wave equation in the form of Sagdeev-like potential equation which enables the success to study the nonlinear waves. Again a modified mathematical formalism known as tanh-method has the merit to evaluate the soliton features in relation to its expectation in space. The method has its success in finding the solitary waves along with other exciting formation of shock-like wave, soliton radiation in soliton propagation. The results have more realistic interpretation in showing explicitly the interaction of magnetic field and impurity caused by dust charge variation.  相似文献   

4.
Ion-acoustic solitary waves in a warm, magnetized plasma with electron inertia have been investigated through Sagdeev pseudopotential method. It has been established the existence of both compressive supersonic solitons, and rarefactive subsonic and supersonic solitons within the parametric domains. The effect of the external magnetic field for generation of the supersonic compressive solitons of constant amplitudes appears to be passive after some critical direction of propagation of the wave. However, up to the critical direction of propagation, the magnetic resistance is found to be quite active to drastically reduce the soliton amplitudes. The generation of rarefactive solitons in this warm magnetized plasma is rather more feasible to be supersonic without electron inertia.  相似文献   

5.
The combined effects of the obliqueness and nonextensive electrons are incorporated in the study of ion acoustic (IA) waves in a magnetized plasma. The propagation properties of two possible modes (in the linear regime) are investigated. It is found that the electron nonextensivity decreases the phase velocities of both two modes. Also obliqueness leads to increase of separation between two modes. The nonlinear evolution of IA solitary waves is governed by an energy-like equation. The influence of electron nonextensivity, obliqueness and electron population on the existence domain of solitary waves and the soliton characteristics are examined. It is shown that the existence domain of the IA soliton and its profile is significantly depended on the deviation of electrons from thermodynamic equilibrium and obliqueness. Interestingly, the present model supports compressive as well as rarefactive IA solitary waves. Our finding should elucidate the nonlinear electrostatic structures that propagate in astrophysical and cosmological plasma scenarios where nonextensive and magnetized plasma can exist; like instellar plasma stellar polytropes, solar neutrino problem, peculiar velocities of galaxy clusters, dark-matter halos, protoneutron stars, hadronic matter, quark-gluon plasma, and magnetosphere, etc.  相似文献   

6.
7.
The Head on collision of dust ion acoustic solitary waves (DIASWs) in a magnetized quantum dusty plasma is investigated. Two sides Korteweg-de Vries (KdV) equations are obtained, the analytical phase shifts and the trajectories after the head-on collision of two DIASWs in a three species quantum dusty plasma are derive by using the extended version of Poincaré-Lighthill-Kuo (PLK) method. It is observed that the phase shifts are significantly affected by the quantum parameters like quantum diffraction, the ion cyclotron frequency and the ratio of the densities of electrons to ions.  相似文献   

8.
On the basis of kinetic theory, the electron-acoustic instability is studied in a three component plasma consisting of a hot electron-beam and stationary cool electrons and ions. The transformation of the instability into the modified two-stream instability for wave propagation oblique to the confining magnetic field is also investigated. In our model both the electrons and ions are magnetized, with the beam drifting across the external magnetic field. The dependence of the growth rate on plasma parameters, such as electron-beam density, electron-beam speed, magnetic field strength and propagation angle, is examined. In addition, we investigate the effect of anisotropies in the velocity distributions of the hot electron-beam and the cool electrons on the instability growth rate.  相似文献   

9.
Nonlinear propagation of two dimensional dust-acoustic solitary waves in a magnetized quantum dusty plasma whose constituents are electrons, ions, and negatively charged heavy dust particles are investigated using quantum hydrodynamic model. The Zakharov-Kuznetsov (ZK) equation is derived by using reductive perturbation technique (RPT). The higher order inhomogeneous ZK-type differential equation is obtained for the correction to ZK- soliton. The dynamical equation for dressed soliton is solved by using renormalization method. The effects of obliqueness (l x ) of the wave vector, magnetic field strength (B 0), quantum parameter for ions (H i ), soliton velocity (θ) and Fermi temperature ratio (σ) on amplitudes and widths of the ZK-soliton and as well as of the dressed soliton are investigated. The conditions for the validity of the higher order correction are described. Suitable parameter ranges for the existence of compressive and rarefactive dressed solitons are also discussed.  相似文献   

10.
11.
In this investigation, the polarization transfer equations in terms of the Stokes parameters are derived for electromagnetic waves propagating in an arbitrary direction in an inhomogeneous magnetized plasma. This system of transfer equations is then solved analytically in the case when the magnetized plasma is homogeneous. For simplicity in presentation, the source term in the equation of transfer has been omitted. Transitting to the special case of quasi-longitudinal propagation, the results obtained here are shown to be in agreement to that derived by Zheleznyakov earlier.  相似文献   

12.
It has been shown that the Korteweg-de Vries equation, derived in inhomogeneous plasma, finds difficulty in obtaining the complete soliton solution and its propagation in plasma and thus fails to exhibit the actual nature of plasma acoustic-wave. The key here lies in the use of an approach, known as sine-Gordon method, which describes successfully soliton propagation along with its precursor. The study shows that the soliton, due to the interaction of negative ions, collapses expecting a source of soliton radiation. Moreover, inhomogeneity, along with weak ionization, effects the precursor to grow faster by generating the energy from its main soliton. The results are interesting in the light of having a parallel observation on radiation, and the formation of dip and hump solitons as similar to those observations made by the scientific satellites.  相似文献   

13.
This article presents the first study of the head-on collision between two magnetoacoustic solitary waves (MASWs) in magnetized quantum plasma consisting of electrons, positrons, and ions, using the extended Poincaré-Lighthill-Kou (PLK) method. The effects of the magnetic field intensity, the positron to ion number density ratio, the quantum parameter, the Fermi temperature ratio, and plasma number density on the solitary wave collisions are investigated. It is shown that these factors significantly modify the phase shift.  相似文献   

14.
The effects of Bohm potential on the head-on collision between two quantum electron-acoustic solitary waves (QEASWs) in two electron species quantum plasma have been investigated using the extended Poincaré–Lighthill–Kuo (PLK) method. The analytical phase shifts after the head-on collision of the two QEASWs are derived. Numerically, in two cases (i.e., the dense solid state plasma and the dense astrophysical environments), the results show that the cold electron-to-hot electron number density ratio, the quantum corrections of diffraction and Fermi temperature of hot electrons have strong effects on the nature of the phase shifts and the trajectories of two QEASWs after collision.  相似文献   

15.
This article presents the first study of the head-on collision of two ion-acoustic solitary waves (IASWs) in magnetized plasmas with nonextensive electrons and positrons using the extended Poincaré-Lighthill-Kuo (PLK) method. The effects of the ion gyro-frequency to ion plasma frequency ratio, the positron to ion number density ratio, the electrons temperature to positrons temperature ratio, and the nonextensive parameter q on the phase shifts are investigated. It is shown that these factors significantly modify the phase shifts.  相似文献   

16.
Nonlinear dynamics of electron-acoustic solitary waves in a magnetized plasma whose constituents are cold magnetized electron fluid, hot electrons featuring Tsallis distribution, and stationary ions are examined. The nonlinear evolution equation (i.e., Zakharov–Kuznetsov (ZK) equation), governing the propagation of EAS waves in such plasma is derived and investigated analytically and numerically, for parameter regimes relevant to the dayside auroral zone. It is revealed that the amplitude, strength and nature of the nonlinear EAS waves are extremely sensitive to the degree of the hot electron nonextensivity. Furthermore, the obtained results are in good agreement with the observations made by the Viking satellite.  相似文献   

17.
Linear and nonlinear properties of coupled modes in a magnetized quantum plasma in the presence of electron Fermi pressure are studied in a nonuniform magnetoplasma composed of electrons, ions, and extremely massive and negatively charged immobile dust grains. Stationary solutions of the nonlinear equations that govern the dynamics of coupled modes are presented. It is found that electrostatic dipolar vortex structure can form in such a plasma. The dipolar structures in dense plasmas are observed to be formed on a much shorter scalelength by comparison with their classical counterparts. It is found that the increasing Fermi temperature shortens the scalelength over which the nonlinear coherent structures are formed. The relevance of the present investigation with regard to the dense astrophysical plasmas is also pointed out.  相似文献   

18.
Propagation regimes of large-amplitude dust-ion acoustic solitary wave in a dusty plasma with nonthermal electrons are analyzed by employing the Sagdeev potential technique. Two domains of the Mach numbers are defined depending on the nonthermal and plasma parameters. The two types of soliton solution are found to be exited corresponding to certain values of the nonthermal parameter. Numerical solutions are presented that illustrate the dependence of soliton characteristics on practically interesting plasma and nonthermal parameters. The findings of this investigation could be useful in understanding the detected solitary waves in space plasma in the presence of nonthermal electrons such as electrostatic solitary structures observed in Saturn’s E-ring.  相似文献   

19.
The dispersion law for the propagation of waves in cold magnetized plasmas is derived for arbitrary directions of the rotation axis with respect to the static magnetic field. The waves are shown to be stable, not only in the case of a cold plasma, but in any plasma case which yields hermitian mobility tensors. An interesting special case is when the rotation and magnetization axes are parallel, because then for suitable values of rotation and external magnetic field the two effects can cancel each other, though only for one plasma species at the time. The rotation thus decisively affects and shifts the number and width of the existing pass- and stop-bands in a magnetized plasma. The inclusion of thermal effects through a scalar barotropic pressure is not nearly as significant.  相似文献   

20.
Existence of both compressive and rarefactive solitons are found to exists in a magnetized plasma model consisting of ions, electrons and positive ion beams using the Korteweg-de Vries (KdV) equation. Both fast and slow modes are found to exist due to the presence of ion temperature in the plasma. Moreover, the amplitude of the soliton decreases with an increase in temperature for Q′ (, beam-ion mass to warm-ion mass ratio) >2 and the amplitude becomes maximum when the wave propagates parallel with the direction of the magnetic field. The investigation further revealed that though both compressive and rarefactive solitons exist for slow mode, only compressive soliton exist for the fast mode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号