首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《自然地理学》2013,34(4):319-336
Visual interpretation of aerial photography suggests that certain geomorphological similarities exist between the hummocky terrain of central Alberta, Canada, and the Rogen terrain of Nunavut, Canada. This study statistically compares the two landform types based on measures of depression shapes and ridge orientations. Comparison of depression shapes indicates that two of three sample areas chosen from the hummocky terrain study area are statistically similar to those of the Rogen terrain study area. Analysis of ridge orientations indicates the ridge crests from two of three hummocky terrain sample areas, and ridge crests from within the Rogen terrain study site all exhibit a preferred trend. Variability in the process of formation may explain why only particular areas throughout the hummocky terrain exhibit patterns similar to the Rogen terrain and others do not. Statistical similarities in two-dimensional form between the hummocky terrain of central Alberta and the Rogen terrain of the Northwest Territories however, suggest that these landforms may have a common or similar origin.  相似文献   

2.
Advance of part of the margin of the Greenland ice sheet across a proglacial moraine ridge between 1968 and 2002 caused progressive changes in moraine morphology, basal ice formation, debris release, ice‐marginal sediment storage, and sediment transfer to the distal proglacial zone. When the ice margin is behind the moraine, most of the sediment released from the glacier is stored close to the ice margin. As the margin advances across the moraine the potential for ice‐proximal sediment storage decreases and distal sediment flux is augmented by reactivation of moraine sediment. For six stages of advance associated with distinctive glacial and sedimentary processes we describe the ice margin, the debris‐rich basal ice, debris release from the glacier, sediment routing into the proglacial zone, and geomorphic processes on the moraine. The overtopping of a moraine ridge is a significant glaciological, geomorphological and sedimentological threshold in glacier advance, likely to cause a distinctive pulse in distal sediment accumulation rates that should be taken into account when glacial sediments are interpreted to reconstruct glacier fluctuations.  相似文献   

3.
This paper presents estimates of detailed seasonal variations in ice-flow velocity for Shirase Glacier calculated using data obtained by Japanese Earth Resources Satellite-1 (JERS-1) synthetic aperture radar (SAR). We used 12 pairs of images (44-day repeat cycle) over the interval from 30 April 1996 to 1 July 1998 to estimate ice-flow fields using an image correlation method. Geometric registration was performed with reference to the RADARSAT Antarctic Mapping Project (RAMP) image dataset. Error analysis based on feature mismatch indicated an absolute error of ±0.30 km/a and relative error of ±0.04 km/a in the estimated flow velocity. The obtained ice-flow velocity increases rapidly from the upstream region (1.18 km/a) to the grounding line, where it becomes stagnant (2.32 km/a), before accelerating gradually to 2.62–2.82 km/a in the downstream region and then increasing to 3.05–3.50 km/a at the terminus of the floating ice tongue. The ice-flow velocities in the downstream region are highly variable, depending on both the distance from the grounding line and the observed epoch (season). Most of the obtained seasonal variations in ice-flow velocity at the floating ice tongue are within the range of the associated error estimate, but the annual difference between 1997 (3.11 km/a) and 1998 (3.50 km/a) is significant, reflecting a possible acceleration in the ice-flow velocity in association with the disappearance of the floating ice tongue between April and May of 1998. In terms of the summer–winter difference in averaged air temperature, the large difference recorded in 1997 (17.0 °C) relative to 1996 (13.9 °C) corresponds to a reduced ice-flow velocity in 1997 (approximately 0.20 km/a) relative to that in 1996 (approximately 0.30 km/a), indicating interactions between air, sea ice, and glacier flow in Lützow-Holm Bay.  相似文献   

4.
Drumlins are enigmatic subglacial landforms that have been interpreted to form by a number of processes, including incremental accumulation of till, erosion of previously deposited sediment, catastrophic meltwater floods, and sediment deformation. However, relatively little is known about the controls on drumlin formation, such as spatially variable glacial processes or substrate characteristics, and how these controls may be identified from variations in drumlin morphology within a single drumlin field. This paper explores a computational method that allows identification of drumlins and extraction of their morphological characteristics from existing topographic digital data for a portion of the Peterborough drumlin field in Ontario, Canada. Spatial and non‐spatial analysis of the form and distribution of drumlins across the study area identifies drumlin characteristics such as size, elongation ratio, symmetry and long axis orientation and shows that drumlins are not randomly distributed across the region and their form characteristics have distinct regional trends. Kernel density analysis is used to identify the regional trends in drumlin characteristics. Factors that appear to influence the form and distribution of drumlins in the study area include sediment thickness, length of time beneath the ice, ice velocity and direction of ice movement. The distribution of particularly well developed asymmetric and elongate drumlins coincides with the location of a broad bedrock low and is interpreted to identify the former location of a fast‐flowing ice stream.  相似文献   

5.
螺髻山地处青藏高原东南缘,是确切存在第四纪古冰川遗迹的典型山地之一,该区冰川地貌演化对于研究环境变化具有重要的科学意义。螺髻山东坡清水沟保存两套古冰川槽谷,分别为上槽谷和下槽谷,其中下槽谷保存完整,而上槽谷在3450~3600 m的阴坡部分出现缺失。采用野外地貌调查与模型分析相结合的方法,对冰川槽谷地貌进行分析,结果表明:清水沟槽谷的抛物线模型中,|A|值在1.3101~15.2064 之间变动,B 值变化于0.9695~3.2965 之间,且随着海拔由高到低,都存在着先变小后变大的规律,A、B值同时反映出在海拔3450~3600 m处冰川槽谷的演化不符合常态。分析认为岩性差异和河流溯源侵蚀是影响上槽谷形态的主要原因。对保存在清水沟上下槽谷内的高、低侧碛进行ESR年代测定,结果显示:高侧碛形成于58-84 ka BP左右的末次冰期早期,对应深海氧同位素4 阶段(MIS4);低侧碛形成于13-17 ka BP,属于于全球末次冰盛期晚期的产物。两次冰川作用分别塑造出两套冰川槽谷,即在末次冰期早期冰川作用形成上槽谷,末次冰期晚期形成下槽谷。  相似文献   

6.
The basaltic Azas Plateau volcanic field is located in the Tuva Republic of the Russian Federation. The area was glaciated multiple times, and the field is characterized by the formation of subglacial volcanoes called tuyas, but subaerial volcanoes and lava fields also exist. A combined study of remote sensing and field observations in the vicinity of the tuyas in the southeastern Azas Plateau volcanic field identified landforms that are best explained by the jökulhlaup hypothesis. The landforms include elongated hills, paleochannels, and butte and basin topography. These landforms are hypothesized to have formed by both erosion and deposition caused by high-energy water streams. The triggering for the hypothesized jökulhlaups was either melting of ice by subglacial volcanism and/or destabilization of ice-dammed/subglacial reservoirs. The age estimation of the flood events is difficult, but they probably occurred during the ice ages of the Quaternary, as late as in the Middle-Late Pleistocene.  相似文献   

7.
Whalebacks are convex landforms created by the smoothing of bedrock by glacial processes. Their formation is attributed to glacial abrasion either by bodies of subglacial sediment sliding over bedrock or by individual clasts contained within ice. This paper reports field measurements of sediment depth around two whaleback landforms in order to investigate the relationship between glacigenic deposits and whaleback formation. The study site, at Lago Tranquilo in Chilean Patagonia, is situated within the Last Glacial Maximum (LGM) ice limits. The two whalebacks are separated by intervening depressions in which sediment depths are generally 0.2 to 0.3 m. Two facies occur on and around the whalebacks. These facies are: (1) angular gravel found only on the surface of the whalebacks, interpreted as bedrock fracturing in response to unloading of the rock following pressure release after ice recession, and (2) sandy boulder‐gravel in the sediment‐filled depressions between the two whalebacks, interpreted as an ice‐marginal deposit, with a mixture of sediment types including basal glacial and glaciofluvial sediment. Since the whalebacks have heavily abraded and striated surfaces but are surrounded by only a patchy and discontinuous layer of sediment, the implication is that surface abrasion of the whalebacks was achieved primarily by clasts entrained in basal ice, not by subglacial till sliding.  相似文献   

8.
9.
This paper introduces a new hypothesis about the formation of circular moraine features (CMFs) on felsenmeer-covered plateaux of the Varanger Peninsula, northern Norway. CMFs and glacial lineations in the northwestern part of the Varanger Peninsula were mapped from aerial photographs. In two CMF-rich areas, Base œrro-Plateau and Båtsfjordfjellet, the CMFs were investigated during fieldwork. The aim was to investigate possible entrainment, transport and deposition mechanisms of the CMFs in connection to ice sheet properties.The CMFs were deposited in connection with a polythermal ice cover. During glaciations, the ice sheet was cold-based on the boulder field plateaux and warm-based in valleys, especially in ice drainage pathways towards fjords. The CMF material was probably entrained en masse, on the Varanger Peninsula, in transition zones between warm- and cold-based ice. The debris transport took place close to the ice base. During deglaciation, the debris formed dirt cones, slowing down the melting of underlying dead-ice blocks. As material slid down the margins of the cones, the typical CMF shape was formed.  相似文献   

10.
Large debris-flow units commonly occur on the distal sides of subaqueous end moraines deposited by surges of Svalbard tidewater glaciers, but have rarely been described in terrestrial settings. Some researchers have argued that these kinds of debris flows reflect processes unique to the subaqueous environment, such as the extrusion of subglacial deforming layers or extensive failure of oversteepened moraine fronts. In this paper, we describe terrestrial and subaqueous parts of a single late Holocene moraine system deposited by a major surge of the tidewater glacier Paulabreen in west Spitsbergen. The ice-marginal landforms on land closely resemble the corresponding landforms on the seabed as evidenced by geomorphic mapping and geophysical profiles from both environments. Both onland and offshore, extensive areas of hummocky moraine occur on the proximal side of the maximum glacier position, and large mud aprons (interpreted as debris flows) occur on the distal side. We show that the debris-flow sediments were pushed in front of the advancing glacier as a continuously failing, mobile push moraine. We propose that the mud aprons are end members of a proglacial landforms continuum that has thrust-block moraines as the opposite end member. Two clusters of dates (~ 8000 YBP and ~ 700 YBP) have previously been interpreted to indicate two separate surges responsible for the moraine formation. New dates suggest that the early cluster indicates a local extinction of the abounded species Chlamys islandica. Other changes corresponding to the widespread 8.2 ka event within the fjord, may suggest that the extinction of the C. islandica corresponds to that time.  相似文献   

11.
Depending on thickness, debris‐cover can enhance or reduce ablation, compared to bare‐ice conditions. In the geological record, hummocky moraines often represent the final product of the melt‐out of ice‐cored moraines, and the presence or absence of such moraine deposits can have paleoclimatic implications. To evaluate the effects of varying debris‐cover and climate on ice‐melt in a maritime mid‐latitude setting, an 11‐day ablation stake study was undertaken on ice‐cored moraine at Fox Glacier, on the western flank of the New Zealand Southern Alps. Ablation rates varied from 1.3 to 6.7 cm d?1, with enhancement of melt‐rate under thin debris‐covers. Highest melt‐rates (effective thickness) occurred under debris‐cover of c. 2 cm, with ~3 cm being the debris thickness at which melt‐rates are equal to adjacent bare‐ice (critical thickness). Air temperature from nearby Franz Josef Glacier allowed for a simple degree‐day approach to ablation calculations, with regression relationships indicating air temperature is the key climatic control on melt. Digital elevation models produced from topographic surveys of the ice‐cored moraine over the following 19 months indicated that ablation rates progressively decreased over time, probably due to melt‐out of englacial debris increasing debris‐cover thickness. The morphology of the sandur appears to be strongly determined by episodic high‐magnitude fluvial flows (jökulhlaups), in conjunction with surface melt. Thus, ‘hummocky’ moraine appears to be a transient landform in this climatic setting.  相似文献   

12.
The existence of a large subglacial lake beneath the antarctic Ice Sheet at Terre Adélie indicates the presence of basal ice at its pressure-melting temperature. A numerical model of the ice-sheet thermal regime is employed using the balance velocity of the ice sheet as an initial model input in order to calculate ice-sheet basal temperatures. However, the results from this model show the Terre Adélie area to be characterised by basal freezing. Heat in addition to that accounted for in the model is thus required at the ice-sheet base in order for pressure melting temperatures to be attained. The sources for such heat are (1) an enhanced geothermal heat flux and (2) an increase in frictional heating caused by the flow of ice. In this paper the latter possibility is expanded by hypothesising that subglacial topography induces convergent ice flow around Terre Adélie, causing enhanced basal ice velocities. Model experiments indicate that an increase in ice velocity (from 7 to at least 42 m yr−1) is required to raise the temperature of the basal ice to the pressure melting value. Increased ice velocity, and consequent frictional heat production due to convergent ice flow, may therefore be important in explaining the location of the subglacial lake in this region. These results allow the process of convergent ice flow within a contemporary ice sheet to be quantified. A verification (or otherwise) of the model results may be possible if ice surface velocity measurements from modem GPS methods are made.  相似文献   

13.
Johan M. Bonow   《Geomorphology》2005,72(1-4):106-127
Classifications of large-scale landscapes in Greenland have traditionally been based on type and intensity of glacial erosion, with the general idea that present landforms are mainly the result of erosion from ice sheets and glaciers. However, on southern Disko and in areas offshore in Disko Bugt, a basement surface has preserved remnants of weathered gneiss and pre-Paleocene landforms, recently exhumed from Paleocene basalt. Isolated hills and lineaments have been mapped in a digital terrain model and aerial photographs. Offshore have hills been mapped from seismic lines. The medium size bedrock forms on southern Disko as tors, clefts and roche moutonées have been studied in the field. Remnant saprolites were inventoried, sampled and analysed according to grain size and clay mineralogy. The basement surface retains saprolites up to 8 m thick in close relation to the cover rocks. The landforms in the basement rocks belong essentially to an etched surface only slightly remodelled by glacial erosion and, below the highest coastline, also by wave action. The outline of hills is governed by two lineament directions, ENE–WSW representing the schistocity of the gneiss and NW–SE fracture zones. These structures are thus interpreted to have been exploited by the deep weathering while the frequent N–S lineaments have not and thus might be younger. Main ice-flow has been from the NE and has resulted in plucking of SW facing lee sides, however the resulting bedrock forms are mainly controlled by structures and orientation of joints. The identification of re-exposed sub-Paleocene etch forms on Disko and the hills of similar size offshore, forming a hilly relief, have implications for identification of a hilly relief south of Disko Bugt, its relation to younger planation surfaces as well as for conclusions of uplift events.  相似文献   

14.
15.
Drumlin Formation Time: Evidence from Northern and Central Sweden   总被引:2,自引:0,他引:2  
Large‐scale drumlins occur abundantly throughout central and northern Sweden. Whereas many drumlins in the north are an integral part of a relict glacial landscape >100,000 years old, those to the south are generally interpreted as of last deglaciation age. Typically, the latter ones have not been overprinted by younger glacial landforms. Despite this apparent difference in formation history, drumlins in both regions have similar directional and morphological characteristics. A systematic analysis of >3000 drumlins in (i) areas within relict landscapes, (ii) areas with an ambiguous deglaciation age assignment, and (iii) areas within deglacial landscapes, indicates that these latter deglaciation drumlins differ clearly in both shape and size from drumlins in the other two types of landscapes. In addition, numerical modelling indicates that basal melting conditions, a prerequisite for drumlin formation, prevailed only for a very limited time over much of northern Sweden during the last deglaciation, but lasted for longer periods of time during earlier stages of the Weichselian. A reconnaissance radionuclide bedrock exposure date from the crag of a large drumlin in the relict landscape indicates that glacial erosion, and presumably drumlin formation, at this location predated Marine Isotope Stage 7. We conclude, therefore, that the large‐scale drumlins of central and northern Sweden did not form during the last deglaciation, or during any other specific ice flow event. Instead, we suggest that they were formed by successive phases of erosion and deposition by ice sheets of similar magnitude and configuration.  相似文献   

16.
Two characteristic landforms, landslide blocks and drainage channels, were investigated in Adventdalen, central Spitsbergen. The landslides in the middle reaches of Adventdalen comprise large-scale bedrock slumps which form a hummocky surface on the south slope of Arctowskifjellet. The fourteen recognized landslide blocks are divided into upper and lower sections, according to altitude. The drainage channels consist of tributary rivers to Adventelva which flow in two distinct directions, either parallel with or oblique to the direction of the main river. Glacial deposits were found to cover the ridges between these tributary channels. The upper and lower landslide divisions may indicate former positions of the ice surface, and the channels appear to have originated during the existence of lateral moraine ridges with high ice content. These geomorphological findings have allowed reconstruction of former ice marginal positions, and they strongly suggest the existence of stagnant ice or minor re-advance phases during the course of deglaciation in Adventdalen.  相似文献   

17.
Interpreting past glacial dynamics from the glacial record requires that the depositional environments of glacial sediments and landforms be understood. In the case of interlobate deposits, models that incorporate various components of pro, supra and subglacial deposition have been developed and tested in the northern Kettle Moraine (nKM), Wisconsin; a large interlobate deposit that formed between the Green Bay and Lake Michigan lobes of the Laurentide Ice Sheet during the last deglaciation. In this paper, we interpret a new genesis for the nKM using sediment analysis and distribution along with landform distribution. In Sheboygan County, the nKM consists of two steep-sided, high-relief, hummocky ridges separated by a low elevation and low-relief central axis. Gravel in the bounding hummocky ridges is well-sorted and well-rounded. Some bedding is collapsed. Large, isolated moulin kames are restricted to the axis area and composed of relatively poorly sorted, more angular gravel and diamicton. The distribution of these different sediments and landforms are explained by the accumulation of supraglacial debris that insulated the ice below the axis of the nKM, while the melting of cleaner ice on either side formed channels on the ice surface. As deglaciation proceeded, a substantial thickness of well-rounded, stream-deposited sand and gravel accumulated on ice in the bounding channels. Eventual collapse of this sediment formed the two hummocky ridges. Poorly sorted debris along the axis fell and slid into moulins and larger collapse areas in the ice. Thus, differential debris insulation and ice ablation controlled the mainly supraglacial deposition of this part of the nKM.  相似文献   

18.
We explore the relationships amongst bedding dip, basin aspect, and glacial landforms using field observations and GIS analyses of the northwestern Uinta Mountains of Utah. We examine basins on opposing sides of three ice divides in which quartzite beds of the Mount Watson Formation maintain a near constant dip. These areas provide contrasting relationships between ice flow and bedding dip directions while holding rock type and climate constant. We map the occurrence of three glacial erosional landforms: cliffs showing evidence of quarrying, scoured surfaces polished by abrasion, and overdeepenings. Cliffs and overdeepenings are more common in basins where bedding dips up‐basin, while scoured surfaces are more prevalent where bedding dips down‐basin. The significance of jointing in controlling glacial erosional forms is well established and we propose that bedding, as well as joints, dictates the geometry of quarried blocks and influences the spatial patterns of process dominance. Where bedding dips up‐basin, the geometry of pre‐existing weaknesses favours quarrying creating both cliffs and overdeepenings. In contrast, where bedding dips down‐basin, block geometry does not favour the creation of overdeepenings via quarrying and exposed bedding planes are subjected to glacial abrasion, producing scoured surfaces.  相似文献   

19.
This paper evaluates current knowledge of Laurentide eskers in Canada in the light of developments in glacier hydrology and glacial sedimentology. Questions regarding the morpho-sedimentary relations of eskers, the synchroneity and operation of R-channel systems, the role of supraglacial meltwater input and proglacial water bodies, the controls on esker pattern, and the glaciodynamic condition of the ice sheet at the time of esker formation are discussed. A morphologic classification of eskers is proposed. Five types of eskers are identified and investigated. Type I eskers likely formed in extensive, synchronous, dendritic R-channel networks under regionally stagnant ice that terminated in standing water. Type II eskers likely formed in short, subaqueously terminating R-channels or reentrants close to an ice front or grounding line that may have actively retreated during esker sedimentation. Type III eskers plausibly formed in short R-channels that drained either to interior lakes in, or tunnel channels under, regionally stagnant ice. Type IV eskers may have formed as time-transgressive segments in short, subaerially terminating R-channels (or reentrants) that developed close to the ice margin as the ice front underwent stagnation-zone retreat or downwasted and backwasted regionally (stagnant ice); however, formation in synchronous R-channels cannot be discounted on the basis of reported observations. Type V eskers may have formed in H-channels that terminated subaerially. The spatial distribution of these esker types is discussed. The factors that determined Laurentide R-channel pattern and operation were likely a complex combination of (i) supraglacial meltwater discharge, (ii) the number and location of sink holes, (iii) the ice surface slope, thickness and velocity, and (iv) the permeability, topography and rigidity of the bed. These factors cause and respond to changes in ice dynamics and thermal regime over the glacial cycle.  相似文献   

20.
Folded outwash occurs in four distinct clusters in an arcuate arrangement just west of the terminal Llanquihue moraines deposited by the Lago Llanquihue piedmont ice lobe at the last glacial maximum. These clusters are physically connected along the eastern side to the Llanquihue terminal moraines, and along the western side to the Llanquihue outwash plain. Each cluster consists of three to eleven elongated ridges. The maximum height of individual ridges varies from cluster to cluster beween 18 and 28 m; the maximum length of individual ridges is between 93 and 1074 m. The average orientation of the ridges ranges over a 60° sector relative to former ice-flow direction. The folded out-wash sediments are cut by two distinct internal fault systems with only a faint surface expression below the Holocene top soil.
The folded outwash ridges are interpreted as a push moraine system produced by the same mechanical forces that act in a critically tapered wedge. The folded sediment is a sandy gravel with an angle of friction on the order of φ = 40°. Interpretations of structural data and of mechanical comparisons point to a basal thrust plane in a sand unit with φ between 24° and 30° and with a pore water pressure index of l = 0.7.
It is very unlikely that the observed and analyzed features wereformed under permafrost conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号