首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Because of major differences in both bulk chemical composition and silicate mineralogy between metabasalts and metaperidotites, valid comparison of the degree or intensity of carbonate alteration cannot be made in terms of weight per cent CO2. Molar CO2/CaO is preferred as an index of the intensity of carbonate alteration in metabasalts; molar CO2/CaO in carbonatized metabasalts is independent of CaO/MgO and only mildly sensitive to bulk composition and to the proportions of tremolite and clinozoisite. Molar CO2/CaO reflect the proportions of calcite and dolomite in metabasalts and the proportions of dolomite and magnesite in metaperidotites. However, neither molar CO2/CaO nor the proportions of dolomite and magnesite are reliable measures of carbonate alteration in metaperidotites of variable composition because both are strongly dependent on MgO/CaO in the whole rock. The preferred alteration index in metaperidotites is m CO2/m (CaO + MgO + FeO), which represents the proportion of total relevant cations that exist in carbonate form. An empirical equation relating molar CO2/CaO in metabasalts (x) and MCO2/m(CaO+MgO+FeO) in metaperidotites (y) is: y=0.16+0.30 x.  相似文献   

2.
Principal components analysis is used to study the chemical compositions of pyroxenes of five Apollo 12 specimens. Important correlations recognized in the variation of oxide weight per cent are: MGO, Al2O3, SiO2| CaO, TiO2, FeO MgO, Al2O3, SiO2| FeO MgO, SiO2, FeO | Al2O3, CaO, TiO2 where the oxides on one side of the bar are correlated positively with each other and negatively with the oxides on the other side. Several other similarly distinct relationships with significantly less variance could be noted. These correlations indicating substitutional relationships can be interpreted as representative of stable and metastable trends of crystallization by using crystal-chemical and thermodynamic information. The per cent variance of pyroxene groups with characteristic trends in each specimen can be evaluated and interpreted in terms of history of crystallization. Distribution of Fe and Mg in certain pairs of olivine and pyroxene, which are found in contact in the rock and which may have crystallized simultaneously, is useful in recognizing the tendency towards chemical equilibrium in FeMg distribution during a limited interval in the liquidus or subsolidus stages.  相似文献   

3.
4.
About 5 per cent of all feldspars in sediments are authigenic. This amounts to 0·94 per cent of the total sedimentary mass. At least 2.1 × 1018 kg Na and 3.4 × 1018kg K have been removed from sea water by reconstitution of authigenic feldspars in the total mass of surviving sediments. Consequently, 9.3 × 1019 moles CO2 have been released by the formation of authigenic albite and 8.8 × 1019 moles CO2 by the formation of authigenic K-feldspar.  相似文献   

5.
Metasomatic reaction zones which developed at marble-pelitic schist contacts in a granulite facies terrane in West Greenland contain a consistent sequence of five mineralogical zones. Outward from the carbonates the zones are characterized by the assemblages grossular-diopside-meionite (I), meionite-anorthite-diopside (II), anorthite-diopside-edenitic hornblende (III), anorthite-enstatite (IV), plagioclase-almandine-sillimanite (V). Sphene is superceded by ilmenite between zones (II) and (III); quartz is present in all zones except zone I. Scapolite, plagioclase, clinopyroxene and mica exhibit a small degree of compositional variation which correlates with distance from the carbonate. These small compositional variations are superimposed on a strong CaO chemical potential gradient. Compositional features, zone distributions and CaO activity calculations demonstrate that the zones developed in response to CaO diffusion along a chemical potential gradient of 2 kcal/m. The CaO source appears to be carbonate rocks which release calcium as decarbonation reactions proceed. The maximum volume of CO2 released in this process, and that released during discontinuous reactions in the marbles, will contribute a total volume of CO2 approximately equivalent to the volume of carbonate in the rock. Calculations demonstrate that a terrane consisting of as little as 8% carbonate will release sufficient CO2 to result in complete dehydration of an amphibolite terrane, at deep crustal conditions. Dehydration through CO2 release will be accomplished either through rapid burial, which would prevent both equilibration of mineral assemblages and CO2 release at intermediate crustal levels, or through diffusion-driven metasomatic reactions which would lead to CO2 release primarily at the high temperatures of deep crustal environments. The latter process would be the dominant CO2 source at deep crustal levels if carbonate rocks occur predominately as relatively thin layers.  相似文献   

6.
Analytical data for 40 elements are reported for Apollo 16 soils 60601, 61181, 61501, 64801, 67701, 68501, 65701 and breccias 60015, 60017, 60018, 60315, 61016, 61175, 65015 and 66055. The soils are uniform except for the North Ray Crater rim sample which is richer in Al2O3.The breccia components show great diversity in composition. Low-K Fra Mauro basalt, Highland basalt (anorthositic gabbro) and plagioclase are important constituents. Medium-K Fra Mauro basalt is an important constituent of breccias 65015 and 60315.The breccias contain many meteorite fragments and high nickel contents, evidence of the early highland bombardment.Most of the refractory elements (REE, Th, U, Zr, Hf, Nb, Ba) show strong positive correlations, interpreted as resulting from mixing. The REE patterns of the breccias show extreme variation relative to chondrites. There is a good inverse correlation between REE and the europium anomaly (EuEux). The LaYb ratio is constant at 3.1 except in plagioclase. Eu depletion or enrichment is interpreted as due to addition or removal of plagioclase.The Cayley and Descartes formations cannot be distinguished chemically and the differences in surface expression are not due to chemical distinctions. They are interpreted as structural differences, related to early highland cratering and mare basin formation.The complex soil and breccia compositions are related to mixing of four components. These are Low-K Fra Mauro basalt, Highland basalt (anorthositic gabbro) and subordinate plagioclase and Medium-K Fra Mauro basalt. These compositions have been used in a computer program (PETMIX III) to provide fits for the analytical data in terms of the end-members.An average highland composition is proposed, based on the Apollo 15 and 16 orbital data for Si, Al, Mg and Th. Abundances for most other elements are derived from the interelement relationships and correlations, and checked by the mixing program.The resulting composition consists of 69 per cent Highland basalt (anorthositic gabbro) and 31 per cent Low-K Fra Mauro basalt. There is no significant Eu anomaly. The abundances are: SiO2: 45.2 per cent; TiO2: 0.68 per cent; Al2O3: 24.9 per cent; FeO: 6.3 per cent; MgO: 8.5 per cent; CaO: 13.8 per cent; Na2O: 0.4 per cent; K2O: 0.11 per cent; Cr2O3: 0.11 per cent; Ba: 144 ppm; Th: 1.8 ppm; U: 0.46 ppm; Pb: 1.6 ppm; Zr: 156 ppm; Hf: 3.2 ppm; Nb: 10.8 ppm; Y: 32 ppm; ΣREE: 85 ppm.  相似文献   

7.
The identification of gaseous molecular species and mechanisms of their release from glassy lava have been investigated with a high temperature mass spectrometer. Using Pele's tears as representative of quenched liquids of Hawaiian tholeiitic basalts, it was found that volatiles are released at low temperatures by a rate-limiting diffusion mechanism and, at temperatures in the softening range of the glass, by bursting of bubbles trapped near the vaporizing surface of the sphere-like particles.Gases released by bursting gave pressure surges and were found to be water vapor, CO2 and CO. Those released principally by diffusion, and in some cases generated by thermal degradation and further reaction with the sample, include H2, O2, N2, S2, H2S, SO2, SO3, COS, HCl, HF and NH3. Average mole percent compositions of the volatiles H2O, CO2 and SO2 relative to the total gas released were found to be 95 per cent, 3·5 per cent and 1 per cent, respectively. Minor concentrations of organic constituents, previously unobserved in volcanic gas analyses, were also found. Fragmentation patterns and gas release behavior suggest that these are derived from a mixture of low-molecular weight saturated and unsaturated acyclic hydrocarbons (C1-C4).  相似文献   

8.
Some clinopyroxenes from ultramafic inclusions in Dreiser Weiher,Eifel   总被引:6,自引:1,他引:6  
Eight clinopyroxenes from wehrlites and clinopyroxenites and three clinopyroxenes of crystal lapilli in tuff of Dreiser Weiher in Eifel, Germany, have been separated and chemically analysed. One hornblende and two phlogopites from a wehrlite and clinopyroxenites have also been analysed. The rocks enclosing these inclusions are alkali basalts of basanite composition. The analysed clinopyroxenes contain considerable amounts of Al2O3 (3.87–10.84 wt%). The calculated Tschermak's component ranges from 5.9 to 18.4 mol per cent. All of the analysed clinopyroxenes are clearly different from chromian diopsides in lherzolite inclusions in basaltic rocks in Dreiser Weiher and other localities; the former has higher contents of total FeO, CaO and TiO2 and lower contents of MgO and Cr2O3 than the latter. Two clinopyroxenes separated from apatite-bearing clinopyroxenites show high contents of Fe2O3 with about 2 per cent of Na2O, indicating the presence of considerable amounts of acmite component in addition to Tschermak's component. The relative proportions of Al in the tetrahedral site and that in the octahedral site in the analysed clinopyroxenes are clearly different from those of the common igneous clinopyroxenes and eclogites, and similar to those of the clinopyroxenes from other inclusions in basaltic rocks and granulites. It is suggested that all the analysed clinopyroxenes and their host inclusions have crystallized from alkali basalt magmas in relatively deep levels of the continental crust.  相似文献   

9.
Four natural peridotite nodules ranging from chemically depletedto Fe-rich, alkaline and calcic (SiO2 = 43.7–45.7 wt.per cent, A12O3 = 1.6O–8.21 wt. per cent, CaO = 0.70–8.12wt. per cent, alk = 0.10–0.90 wt. per cent and Mg/(Mg+Fe2+)= 0.94–0.85) have been investigated in the hypersolidusregion from 800? to 1250?C with variable activities of H2O,CO2, and H2. The vapor-saturated peridotite solidi are 50–200?Cbelow those previously published. The temperature of the beginningof melting of peridotite decreases markedly with decreasingMg/(Mg+SFe) of the starting material at constant CaO/Al2O3.Conversely, lowering CaO/Al2O3 reduces the temperature at constantMg/(Mg+Fe) of the starting material. Temperature differencesbetween the solidi up to 200?C are observed. All solidi displaya temperature minimum reflecting the appearance of garnet. Thisminimum shifts to lower pressure with decreasing Mg/(Mg + Fe)of the starting material. The temperature of the beginning ofmelting decreases isobarically as approximately a linear functionof the mol fraction of H2O in the vapor (XH2Ov). The data alsoshow that some CO2 may dissolve in silicate melts formed bypartial melting of peridotite. Amphibole (pargasitic hornblende) is a hypersolidus mineralin all compositions, although its P/T stability field dependson bulk rock chemistry. The upper pressure stability of amphiboleis marked by the appearance of garnet. The vapor-saturated (H2O) liquidus curve for one peridotiteis between 1250? and 1300?C between 10 and 30 kb. Olivine, spinel,and orthopyroxene are either liquidus phases or co-exist immediatelybelow the temperature of the peridotite liquidus. The data suggest considerable mineralogical heterogeneity inthe oceanic upper mantle because the oceanic geotherm passesthrough the P/T band covering the appearance of garnet in variousperidotites. The variable depth to the low-velocity zone is explained byvariable aHjo conditions in the upper mantle and possibly alsoby variations in the composition of the peridotite itself. Itis suggested that komatiite in Precambrian terrane could formby direct melting of hydrous peridotite. Such melting requiresabout 1250?C compared with 1600?C which is required for drymelting. The genesis of kimberlite can be related to partial meltingof peridotite under conditions of XH2Ov = 0.5–0.25 (XCO2v= 0.5–0.75). Such activities of H2O result in meltingat depths ranging between 125 and 175 km in the mantle. Thisrange is within the minimum depth generally accepted for theformation of kimberlite.  相似文献   

10.
The abundances of 24 major, minor and trace elements have been measured by INAA in Luna 20 metaigneous rocks 22006,1 and 22007,1, breccia 22004 and soil 22001,9 and in Apollo 16 soils 62281, 66041 and 66081. An additional 12 trace meteoritic and non-meteoritic elements have also been determined in 22001 and 62281 soils by RNAA. The bulk compositions of L 20 and Ap 16 rocks and soils show close similarity between the two highland sites. There are appreciable differences in bulk compositions between the L 20 highland and the L 16 mare site (120 km apart), suggesting little intermixing of rocks and soils from either site. Luna 20 rocks 22006 and 22007 are nearly identical in chemical composition to Ap 16 metaigneous rocks 61156 and 66095. Luna 20 rocks are feldspathic and are similar to low K-type Fra Mauro basalts. Such rocks and anorthositic gabbros appear to be the major components in highland soils. Luna 20 soil can be distinguished from Ap 16 soils by lower abundances of Al2O3, CaO and large ion lithophilic elements. Luna 20 breccia 22004 probably is compacted soil. All L 20 samples show negative Eu anomalies with SmEu ratios of 5.8, 7.2, 3.9 and 3.3 for rocks 22006, 22007, breccia 22004 and soil 22001, respectively. Norite-KREEP is insignificant, ≤1 per cent, at the L 20 highland site. The derivation of the L 20 soil may be explained by ≈33 per cent of L 20 metaigneous rocks and ≈ 65 per cent anorthositic gabbroic breccia rocks like 15418 (with a positive Eu anomaly) and ≈ 2 per cent meteoritic contributions. Interelement correlations observed previously for maria are also found in highland samples. Luna 20 and Ap 16 soils are low in alkalis. Both soils show an apparent Cd-Zn rich component similar to that observed at the mare sites and high 11 abundances relative to mare sites. The Ap 16 (62281) soil contains a fractionated meteoritic component (probably ancient) of ≈ 1.5 per cent in addition to ≈ 1.9 per cent Cl like material. Luna 20 soil may simply contain 1.9 per cent Cl equivalent.  相似文献   

11.
Electron probe analysis of isotropic to weakly birefringentglassy inclusions in apatite crystals within the Usaki ijoliteof western Kenya, indicates that two contrasting compositionsexist. These inclusions are thought to represent samples oforiginal silicate melts. One is rich in K2O(6 weight per cent),poor in Na2O(0.3 weight per cent), and oversaturated with respectto silica; and the other is rich in Na2O(6–14 weight percent), poor in K2O(0.2 weight per cent), has an antipatheticrelation between Na2O and CaO (together they usually total 15weight per cent) and is undersaturated with respect to silica.One inclusion shows these two compositions co-existing, apparentlyin an immiscible relationship. Other inclusions show compositionsintermediate between the Na-rich and K-rich types, and theyare interpreted as the result of reduced immiscibility. Thepresence of halides and calcium phosphate is considered to enhancethe immiscibility process. The parental composition, estimatedon a volatile-free basis is: SiO2 54.9, Al2O3, 27.4, CaO 7.3,Na2O 3.4, K2O 6.9, which corresponds to a lime-rich aluminoussyenite.  相似文献   

12.
Chemical mass transfer was quantified in a metacarbonate xenolith enclosed within the granodiorite of the Quérigut massif (Pyrenees, France). Mass balance calculations suggest a strong decrease of CaO, SrO and CO2 contents (up to −90%), correlated with a decrease of modal calcite content as the contact is approached. Most other chemical elements behave immobile during metasomatism. They are therefore passively enriched. Only a small increase of SiO2, Al2O3 and Fe2O3 contents occurs in the immediate vicinity of the contact. Hence, in this study, skarn formation is characterized by the lack of large chemical element influx from the granitoid protolith. A large decrease of the initial carbonate volume (up to −86%) resulted from a combination of decarbonation reactions and loss of CaO and CO2. The resulting volume change has potentially important consequences for the interpretation of stable isotope profiles: the isotope alteration could have occured over greater distances than those observed today.  相似文献   

13.
Scapolite at Mary Kathleen (North-Western Queensland) occurs in calcareous and non-calcareous metapelites, acid and basic metavolcanics and metadolerites. Graphical treatment of the relationship between scapolite composition (Me%) and the host rock oxide ratios CaO/Na2O and Al2O3/(CaO + Na2O) reveals the following points:
  1. The calcareous metapelites are also very sodic.
  2. Scapolite in calcareous metapelites is more marialitic than that in low-calcium equivalents.
  3. In graphs of Me% against CaO/Na2O and Al2O3/(CaO + Na2O) the metasediments and the metaigneous rocks show markedly different trends.
It is concluded that scapolite in the metasediments originated by isochemical metamorphism of shales and marls containing evaporitic halite. The local abundance of halite was the main control on the composition and distribution of the scapolite, but the relative abundance of CaO and Na2O was a modifying factor. In the metaigneous rocks scapolite formed metasomatically during regional metamorphism by the introduction of volatile-rich fluids derived from the adjacent evaporitic sediments. The relative availability of CO2 and Cl2 again appears to have been the primary control on scapolite composition and may in turn have been controlled by bulk rock composition.  相似文献   

14.
Early Archean (3.46 Ga) hydrothermally altered basaltic rocks exposed near Marble Bar, eastern Pilbara Craton, have been studied in order to reveal geological and geochemical natures of seafloor hydrothermal carbonatization and to estimate the CO2 flux sunk into the altered oceanic crust by the carbonatization. The basaltic rocks are divided into basalt and dolerite, and the basalt is further subdivided into type I, having original igneous rock textures, and type II, lacking these textures due to strong hydrothermal alteration. Primary clinopyroxene phenocrysts are preserved in some part of the dolerite samples, and the alteration mineral assemblage of dolerite (chlorite + epidote + albite + quartz ± actinolite) indicates that the alteration condition was typical greenschist facies. In other samples, all primary minerals were completely replaced by secondary minerals, and the alteration mineral assemblage of the type I and type II basalts (chlorite + K-mica + quartz + carbonate minerals ± albite) is characterized by the presence of K-mica and carbonate minerals and the absence of Ca-Al silicate minerals such as epidote and actinolite, suggesting the alteration condition of high CO2 fugacity. The difference of the alteration mineral assemblages between basalt and dolerite is probably attributed to the difference of water/rock ratio that, in turn, depends on their porosity.Carbonate minerals in the carbonatized basalt include calcite, ankerite, and siderite, but calcite is quite dominant. The δ13C values of the carbonate minerals are −0.3 ± 1.2‰ and mostly within the range of marine carbonate, indicating that the carbonate minerals were formed by seafloor hydrothermal alteration and that carbonate carbon in the altered basalt was derived from seawater. Whole-rock chemical composition of the basaltic rocks is essentially similar to that of modern mid-ocean ridge basalt (MORB) except for highly mobile elements such as K2O, Rb, Sr, and Ba. Compared to the least altered dolerite, all altered basalt samples are enriched in K2O, Rb, and Ba, and are depleted in Na2O, reflecting the presence of K-mica replacing primary plagioclase. In addition, noticeable CO2 enrichment is recognized in the basalt due to the ubiquitous presence of carbonate minerals, but there was essentially neither gain nor loss of CaO. This suggests that the CO2 in the hydrothermal fluid (seawater) was trapped by using Ca originally contained in the basalt. The CaO/CO2 ratios of the basalt are generally the same as that of pure calcite, indicating that Ca in the basalt was almost completely converted to calcite during the carbonatization, although Mg and Fe were mainly redistributed into noncarbonate minerals such as chlorite.The carbon flux into the Early Archean oceanic crust by the seafloor hydrothermal carbonatization is estimated to be 3.8 × 1013 mol/yr, based on the average carbon content of altered oceanic crust of 1.4 × 10-3 mol/g, the alteration depth of 500 m, and the spreading rate of 1.8 × 1011 cm2/yr. This flux is equivalent to or greater than the present-day total carbon flux. It is most likely that the seafloor hydrothermal carbonatization played an important role as a sink of atmospheric and oceanic CO2 in the Early Archean.  相似文献   

15.
Carbonatites from the Oldoinyo Lengai volcano, northern Tanzania, are unstable under normal atmospheric conditions. Owing to carbonatite interaction with water, the major minerals—gregoryite Na2(CO3), nyerereite Na2Ca(CO3)2, and sylvite KCl—are dissolved and replaced with secondary low-temperature minerals: thermonatrite Na2(CO3) · H2O, trona Na3(CO3)(HCO3) · 2H2O, nahcolite Na(HCO3), pirssonite Na2Ca(CO3)2 · 2H2O, calcite Ca(CO3), and shortite Na2Ca2(CO3)3. Thermodynamic calculations show that the formation of secondary minerals in Oldoinyo Lengai carbonatites are controlled by the pH of the pore solution, H2O and CO2 fugacity, and the ratio of Ca and Na activity in the Na2O–CaO–CO2–H2O system.  相似文献   

16.
Calc-silicate granulites were examined to evaluate the fluid composition and retrograde metamorphic conditions in the Central Zone of the Limpopo Belt, southern Africa. Quartz deficient assemblages are characterized by minerals such as diopside, forsterite, spinel and/or magnesiohornblende and tremolite in the presence of calcite and dolomite. Although the granulites are Al-poor (Al2O3 is less than or equal to 1.0 wt.%) and dolomitic in composition, they include Al-bearing phases. Phase analyses for the assemblages in the two model systems CaO–MgO–SiO2–H2O–CO2 and CaO–MgO–SiO2–Al2O3–H2O–CO2 provide constraints on fluid compositions in the granulite facies and retrograde metamorphisms in the Limpopo Central Zone. In the presence of amphiboles, isobaric T–X(CO2) phase relations suggest that high X(CO2) conditions were established in the calc-silicate rocks of present study. The phase relations with tschermakitic amphiboles at 0.35 GPa restrict diopside-spinel occurrences in the presence of calcite, dolomite and forsterite within very-high X(CO2) with low a(H2O). The fluid compositions, X(CO2), were effectively buffered by the mineral assemblages during granulite facies metamorphism to subsequent decompression and cooling stages. The presence or absence of retrograde magnesiohornblende and tremolite appeared to be controlled not only by infiltration of H2O-rich fluid during retrograde metamorphism but also Al content in the local bulk rock compositions. The presence of the two-amphibole phases shows that the fluid compositions were locally buffered in the Al-bearing dolomitic granulites. Comparing the calculated X(CO2) values in the present study area and in the Alldays area, a difference of retrograde hydration effects is observed.  相似文献   

17.
The type and kinetics of metamorphic CO2-producing processes in metacarbonate rocks is of importance to understand the nature and magnitude of orogenic CO2 cycle. This paper focuses on CO2 production by garnet-forming reactions occurring in calc-silicate rocks. Phase equilibria in the CaO–FeO–Al2O3–SiO2–CO2–H2O (CFAS–CO2–H2O) system are investigated using PT phase diagrams at fixed fluid composition, isobaric TX(CO2) phase diagram sections and phase diagram projections in which fluid composition is unconstrained. The relevance of the CFAS–CO2–H2O garnet-bearing equilibria during metamorphic evolution of calc-silicate rocks is discussed in the light of the observed microstructures and measured mineral compositions in two representative samples of calc-silicate rocks from eastern Nepal Himalaya. The results of this study demonstrate that calc-silicate rocks may act as a significant CO2 source during prograde heating and/or early decompression. However, if the system remains closed, fluid–rock interactions may induce hydration of the calc-silicate assemblages and the in situ precipitation of graphite. The interplay between these two contrasting processes (production of CO2-rich fluids vs. carbon sequestration through graphite precipitation) must be considered when dealing with a global estimate of the role exerted by decarbonation processes on the orogenic CO2 cycle.  相似文献   

18.
Graphical analysis of free-energy relationships involving binary quadruple points and their associated univariant equilibria in the system CO2-H2O suggests the presence of at least 2 previously unrecognized quadruple points and a degenerate binary invariant point involving an azeotrope between CO2-rich gas and liquid. Thermodynamic data extracted from the equilibrium involving clathrate (hydrate), gas, and ice (H = G+I) are employed along with published data to calculate the P-T range of the 3-ice equilibrium curve, S+I = H, where S is solid CO2. This equilibrium curve intersects the H = G+I curve approximately where the latter curve intersects the S+H = G curve, thus confirming the existence of one of the inferred quadruple points involving the phases S, G, H, and I. Recognition of some binary equilibria probably have been hampered by extremely low mutual solubilities of CO2 and H2O in the fluids phases which, for example, render the S+H = G virtually indistinguishable from the CO2-sublimation curve.To make the published portion of the L(liquid CO2)-G-H equilibrium “connect” with the other new quadruple point involving S, L, G, and H, it is necessary to change the sense of the equilibrium from L = G+H at higher pressures to L+H = G at lower pressures by positing a L = G azeotrope at very low concentrations of H2O. At the low-pressure origin of the azeotrope, which is only a few bars above the CO2-triple point, the azeotrope curve intersects the 3-phase curve tangentially, creating a degenerate invariant point at which the 3-phase equilibrium changes from L+H = G at lower pressures to L = G+H at higher pressures. The azeotrope curve is offset at slightly lower temperature from the L = G+H curve until the 3-phase equilibrium terminates at the quadruple point involving G, L, H, and W (water). With further increase in pressure the azeotrope curve tracks the L = G+W equilibrium and apparently terminates at a critical end point in close proximity to critical endpoints for the CO2-saturation curve and the L = G+W curve.Thermodynamic data for clathrate extracted from the slope of the H = G+I curve are consistent with a solid-state phase transformation in CO2-clathrate between 235 and 255 K. Published work shows that the type-I clathrate phase, whose atomic structure is a framework of water molecules with CO2 molecules situated in large “guest” sites within the framework, is variable in composition with ∼1 guest site vacancy per unit cell at the high-temperature limit of its stability; the number of water molecules, however, remains constant. The formula (CO2)8-y·46H2O, where y is the number of vacancies per unit cell, is in keeping with the atomic structure, whereas the traditional formula, CO2·nH2O, where n (hydration number) = 5.75, is misleading.Ambient P-T conditions in the Antarctic and Greenland ice sheets are compatible with sequestering large amounts of carbon as liquid CO2 and/or clathrate.  相似文献   

19.
We determined total CO2 solubilities in andesite melts with a range of compositions. Melts were equilibrated with excess C-O(-H) fluid at 1 GPa and 1300°C then quenched to glasses. Samples were analyzed using an electron microprobe for major elements, ion microprobe for C-O-H volatiles, and Fourier transform infrared spectroscopy for molecular H2O, OH, molecular CO2, and CO32−. CO2 solubility was determined in hydrous andesite glasses and we found that H2O content has a strong influence on C-O speciation and total CO2 solubility. In anhydrous andesite melts with ∼60 wt.% SiO2, total CO2 solubility is ∼0.3 wt.% at 1300°C and 1 GPa and total CO2 solubility increases by about 0.06 wt.% per wt.% of total H2O. As total H2O increases from ∼0 to ∼3.4 wt.%, molecular CO2 decreases (from 0.07 ± 0.01 wt.% to ∼0.01 wt.%) and CO32− increases (from 0.24 ± 0.04 wt.% to 0.57 ± 0.09 wt.%). Molecular CO2 increases as the calculated mole fraction of CO2 in the fluid increases, showing Henrian behavior. In contrast, CO32− decreases as the calculated mole fraction of CO2 in the fluid increases, indicating that CO32− solubility is strongly dependent on the availability of reactive oxygens in the melt. These findings have implications for CO2 degassing. If substantial H2O is present, total CO2 solubility is higher and CO2 will degas at relatively shallow levels compared to a drier melt. Total CO2 solubility was also examined in andesitic glasses with additional Ca, K, or Mg and low H2O contents (<1 wt.%). We found that total CO2 solubility is negatively correlated with (Si + Al) cation mole fraction and positively correlated with cations with large Gibbs free energy of decarbonation or high charge-to-radius ratios (e.g., Ca). Combining our andesite data with data from the literature, we find that molecular CO2 is more abundant in highly polymerized melts with high ionic porosities (>∼48.3%), and low nonbridging oxygen/tetrahedral oxygen (<∼0.3). Carbonate dominates most silicate melts and is most abundant in depolymerized melts with low ionic porosities, high nonbridging oxygen/tetrahedral oxygen (>∼0.3), and abundant cations with large Gibbs free energy of decarbonation or high charge-to-radius ratio. In natural silicate melt, the oxygens in the carbonate are likely associated with tetrahedral and network-modifying cations (including Ca, H, or H-bonds) or a combinations of those cations.  相似文献   

20.
http://www.sciencedirect.com/science/article/pii/S1674987112001296   总被引:1,自引:1,他引:0  
We present field, petrographic, major and trace element data for komatiites and komatiite basalts from Sargur Group Nagamangala greenstone belt, western Dharwar craton. Field evidences such as crude pillow structure indicate their eruption in a marine environment whilst spinifex texture reveals their komatiite nature. Petrographic data suggest that the primary mineralogy has been completely altered during post-magmatic processes associated with metamorphism corresponding to greenschist to lower amphibolite facies conditions. The studied komatiites contain serpentine, talc, tremolite, actinolite and chlorite whilst tremolite, actinolite with minor plagioclase in komatiitic basalts. Based on the published Sm-Nd whole rock isochron ages of adjoining Banasandra komatiites (northern extension of Nagamangala belt) and further northwest in Nuggihalli belt and Kalyadi belt we speculate ca. 3.2–3.15 Ga for komatiite eruption in Nagamangala belt. Trace element characteristics particularly HFSE and REE patterns suggest that most of the primary geochemical characteristics are preserved with minor influence of post-magmatic alteration and/or contamination. About 1/3 of studied komatiites show Al-depletion whilst remaining komatiites and komatiite basalts are Al-undepleted. Several samples despite high MgO, (Gd/Yb)N ratios show low CaO/Al2O3 ratios. Such anomalous values could be related to removal of CaO from komatiites during fluid-driven hydrothermal alteration, thus lowering CaO/Al2O3 ratios. The elemental characteristics of Al-depleted komatiites such as higher (Gd/Yb)N (>1.0), CaO/Al2O3 (>1.0), Al2O3/TiO2 (<18) together with lower HREE, Y, Zr and Hf indicate their derivation from deeper upper mantle with minor garnet (majorite?) involvement in residue whereas lower (Gd/Yb)N (<1.0), CaO/Al2O3 (<0.9), higher Al2O3/TiO2 (>18) together with higher HREE, Y, Zr suggest their derivation from shallower upper mantle without garnet involvement in residue. The observed chemical characteristics (CaO/Al2O3, Al2O3/TiO2, MgO, Ni, Cr, Nb, Zr, Y, Hf, and REE) indicate derivation of the komatiite and komatiite basalt magmas from heterogeneous mantle (depleted to primitive mantle) at different depths in hot spot environments possibly with a rising plume. The low content of incompatible elements in studied komatiites suggest existence of depleted mantle during ca. 3.2 Ga which in turn imply an earlier episode of mantle differentiation, greenstone volcanism and continental growth probably during ca. 3.6–3.3 Ga which is substantiated by Nd and Pb isotope data of gneisses and komatiites in western Dharwar craton (WDC).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号