首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Aeolian granule ripple deposits, Namibia   总被引:1,自引:0,他引:1  
Granule ripples are a common feature of most dunefields, yet they have seldom been recognized in ancient deposits. Although granule ripples are common in erosional settings, such as windward slopes of dunes, or scour surfaces in interdunes, they nevertheless migrate laterally and leave distinctive deposits that can be recognized in ancient rocks. These deposits have characteristics of ‘type B’sand sheet deposits, including: ‘poured-in’texture; curving ripple trough; tangential, coarse-grained foresets; irregular silty layers; well-sorted coarse and fine layers (either horizontal or within foresets); and fine layers in ripple troughs. Wind tunnel experiments suggest that under low-velocity wind conditions, granule ripples grow to a significant degree as parasites dependent on saltation of fine sand grains whose impact moves the larger grains of the granule ripple. Although the depositional surface of granule ripples is commonly coated with a layer of coarse grains, this is in most places only a few grains thick. Underlying deposits commonly have a poorly sorted, or ‘poured-in’texture. This texture results from an admixture of fine grains that fall among the spaces between the larger grains during deposition.  相似文献   

2.
Granule ripples are found mainly in four regions of the Kumtagh Desert in China; they are characterized by an asymmetrical shape, with gentle lower slopes on both sides and abrupt crests. The ripples tend to be oriented perpendicular to the prevailing winds, except when they form near obstacles such as yardangs. The wavelengths (λ) range between 0·31 m and 26 m and heights (h) range from 0·015 m to 1 m. The relationship between wavelength and height can be described by a simple linear function, and the mean ripple index (λ/h) is about 20·4 for the study sites. The sediments are poorly sorted, with negative to very negative skewness at lee and stoss slopes and between‐ripple troughs, which confirms the ‘poured in’ and ‘shadow’ appearance described by previous researchers. The bimodal or trimodal distributions of grains (with modes of ?1·16φ, ?0·5φ and 3·16φ) and the enrichment of coarse particles at the ripple surface (with coarse granule contents ranging between 5·2% and 62·1%) indicate that the underlying layer is the original sediment source and that the granule ripples resist erosional processes. Although the impact of saltating particles and, consequently, the creep and reptation of coarse grains are responsible for granule ripple initiation at a micro‐scale, however, the characteristics of local sediments, wind regimes and topographical obstacles, as well as the feedbacks among bedform and airflow, more strongly affect the development and alignment of granule ripples at a macro‐scale.  相似文献   

3.
Turbidite sandstones of the Miocene Marnoso‐arenacea Formation (northern Apennines, Italy) display centimetre to decimetre long, straight to gently curved, 0·5 to 2·0 cm regularly spaced lineations on depositional (stratification) planes. Sometimes these lineations are the planform expression of sheet structures seen as millimetre to centimetre long vertical ‘pillars’ in profile. Both occur in the middle and upper parts of medium‐grained and fine‐grained sandstone beds composed of crude to well‐defined stratified facies (including corrugated, hummocky‐like, convolute, dish‐structured and dune stratification) and are aligned sub‐parallel to palaeoflow direction as determined from sole marks often in the same beds. Outcrops lack a tectonic‐related fabric and therefore these structures may be confidently interpreted to be sedimentary in origin. Lineations resemble primary current lineations formed by the action of turbulence during bedload transport under upper stage plane bed conditions. However, they typically display a larger spacing and micro‐topography compared to classic primary current lineations and are not associated with planar‐parallel, finely laminated sandstones. This type of ‘enhanced lineation’ is interpreted to develop by the same process as primary current lineations, but under relatively high near‐bed sediment concentrations and suspended load fallout rates, as supported by laboratory experiments and host facies characteristics. Sheets are interpreted to be dewatering structures and their alignment to palaeoflow (only noted in several other outcrops previously) inferred to be a function of vertical water‐escape following the primary depositional grain fabric. For the Marnoso‐arenacea beds, sheet orientation may be linked genetically to the enhanced primary current lineation structures. Current‐aligned lineation and sheet structures can be used as palaeoflow indicators, although the directional significance of sheets needs to be independently confirmed. These indicators also aid the interpretation of dewatered sandstones, suggesting sedimentation under a traction‐dominated depositional flow – with a discrete interface between the aggrading deposit and the flow – as opposed to under higher concentration grain or hindered‐settling dominated regimes.  相似文献   

4.
5.
A. Guy Plint 《Sedimentology》2014,61(3):609-647
Determining sediment transport direction in ancient mudrocks is difficult. In order to determine both process and direction of mud transport, a portion of a well‐mapped Cretaceous delta system was studied. Oriented samples from outcrop represent prodelta environments from ca 10 to 120 km offshore. Oriented thin sections of mudstone, cut in three planes, allowed bed microstructure and palaeoflow directions to be determined. Clay mineral platelets are packaged in equant, face‐face aggregates 2 to 5 μm in diameter that have a random orientation; these aggregates may have formed through flocculation in fluid mud. Cohesive mud was eroded by storms to make intraclastic aggregates 5 to 20 μm in diameter. Mudstone beds are millimetre‐scale, and four microfacies are recognized: Well‐sorted siltstone forms millimetre‐scale combined‐flow ripples overlying scoured surfaces; deposition was from turbulent combined flow. Silt‐streaked claystone comprises parallel, sub‐millimetre laminae of siliceous silt and clay aggregates sorted by shear in the boundary layer beneath a wave‐supported gravity flow of fluid mud. Silty claystone comprises fine siliceous silt grains floating in a matrix of clay and was deposited by vertical settling as fluid mud gelled under minimal current shear. Homogeneous clay‐rich mudstone has little silt and may represent late‐stage settling of fluid mud, or settling from wave‐dissipated fluid mud. It is difficult or impossible to correlate millimetre‐scale beds between thin sections from the same sample, spaced only ca 20 mm apart, due to lateral facies change and localized scour and fill. Combined‐flow ripples in siltstone show strong preferred migration directly down the regional prodelta slope, estimated at ca 1 : 1000. Ripple migration was effected by drag exerted by an overlying layer of downslope‐flowing, wave‐supported fluid mud. In the upper part of the studied section, centimetre‐scale interbeds of very fine to fine‐grained sandstone show wave ripple crests trending shore normal, whereas combined‐flow ripples migrated obliquely alongshore and offshore. Storm winds blowing from the north‐east drove shore‐oblique geostrophic sand transport whereas simultaneously, wave‐supported flows of fluid mud travelled downslope under the influence of gravity. Effective wave base for sand, estimated at ca 40 m, intersected the prodelta surface ca 80 km offshore whereas wave base for mud was at ca 70 m and lay ca 120 km offshore. Small‐scale bioturbation of mud beds co‐occurs with interbedded sandstone but stratigraphically lower, sand‐free mudstone has few or no signs of benthic fauna. It is likely that a combination of soupground substrate, frequent storm emplacement of fluid mud, low nutrient availability and possibly reduced bottom‐water oxygen content collectively inhibited benthic fauna in the distal prodelta.  相似文献   

6.
植物的存在改变了河流水动力特性,造成独特的床面冲淤态势。利用实验室水槽模拟含淹没植物的河道,对床面形态和紊流统计特性参数进行测量,研究不同类型紊流作用下的床面冲淤特征以及床面起伏对流动的影响。结果表明:床面剪切紊流条件下,床面形态为马蹄坑-沙沟/沙脊与沙波复合分布,床面变形加剧了流速沿水深不均匀分布并促进水流动量交换;在自由剪切混合层紊流条件下,床面形态为植物根部马蹄形冲坑及其后方沙沟、沙脊交错分布,床面变形对流动的影响并不显著;“类二重紊流”条件下,床面形态同样表现为马蹄坑-沙沟/沙脊-沙波复合,床面变形促进植物层内部的水流动量交换、抑制紊动清扫,抑制植物层外部的动量交换、促进紊动喷射。  相似文献   

7.
A series of wave‐flume experiments was conducted to closely look at characteristics of geometry and migration of wave‐generated ripples, with particular reference to the effect of velocity ‘hiatuses’ during which the near‐bed flow velocity becomes much smaller than the threshold of sediment movement. Three types of wave patterns were generated: two types for simulating waves with intervening velocity hiatuses; and regular waves for comparison purposes. In the former two types, two different wavelengths of water waves were generated alternately in the course of a wave test: the wave with a longer wavelength was set large enough to mobilize the bottom sediment, whereas the wave with a shorter wavelength was set too small to mobilize the sediment. The former two types were designed to be different in sequence of convexity and concavity of wave patterns. The sequence with the convex–concave longer wave and successive convex–concave shorter wave was described as a ‘zero‐up‐crossing’ wave pattern, and the inverse sequence was described as a ‘zero‐down‐crossing’ wave pattern. The ripples developed under oscillatory flow with intervening hiatuses manifested the following characteristics in geometry and migration. (i) The morphological characteristics of ripples, namely wavelength, height and the ripple steepness, are unaffected by the intervening hiatuses of velocity. (ii) The directions of ripple migration under the zero‐up‐crossing and zero‐down‐crossing wave patterns corresponded well with the directions of the flow immediately before onset of the hiatuses. (iii) The observation of sand particle movement on the ripple surface indicated that, under the zero‐up‐crossing waves, the velocity hiatus prevents the entrained sediment cloud from being thrown onshore, and thus the sediment grains thrown onshore are fewer than those thrown offshore. As a result of the sediment movement over one wave‐cycle, the net sediment transport is directed offshore under the zero‐up‐crossing wave pattern. (iv) The velocity of ripple migration was highly correlated with acceleration skewness. Under most of the zero‐up‐crossing (zero‐down‐crossing) wave patterns, flow acceleration skewed negative (positive) and ripples migrated offshore (onshore).  相似文献   

8.
The presence of a dispersed clast fraction in strata near the base of the Cosquer Formation in west Brittany, does not support a glacial origin for this unit. The upper 25 to 30 m of the underlying Kermeur Formation consists of a prograding sequence of very fine to fine sandstones deposited in a mid to distal current swept shelf setting. This sequence shows signs of slope instability, as do the supposed ‘glacial strata’ which overlie it. The upper two thirds of the Cosquer Formation contain spectacular slump-breccias. Smaller clasts within the laminated mudrocks at the base of the formation are associated with thin graded and non-graded sandstone laminae. They show no evidence of active penetration into underlying laminae other than can be explained by compaction. Larger clasts are confined to thicker massive beds, or disrupted units with marked internal contorted lamination. This, along with the abundance of slump features within the sequence suggests lateral emplacement by sediment gravity flows in a distal shelf-slope setting. Surface textures of sand grains within the formation are related to rock disaggregation along fractures developed during post-depositional deformation and are not related to glacial processes. Distinctive mineralogically immature, poorly-sorted aggregate sediment pellets, which have been considered as positive proof of glaciation, are not present.  相似文献   

9.
The dynamics of large isolated sand dunes moving across a gravel lag layer were studied in a supply‐limited reach of the River Rhine, Germany. Bed sediments, dune geometry, bedform migration rates and the internal structure of dunes are considered in this paper. Hydrodynamic and sediment transport data are considered in a companion paper. The pebbles and cobbles (D50 of 10 mm) of the flat lag layer are rarely entrained. Dunes consist of well‐sorted medium to coarse sand (D50 of 0·9 mm). Small pebbles move over the dunes by ‘overpassing’, but there is a degree of size and shape selectivity. Populations of ripples in sand (D50 < 0·6 mm), and small and large dunes are separated by distinct breaks in the bedform length data in the regions of 0·7–1 m and 5–10 m. Ripples and small dunes may have sinuous crestlines but primarily exhibit two‐dimensional planforms. In contrast, large dunes are primarily three‐dimensional barchanoid forms. Ripples on the backs of small dunes rarely develop to maximum steepness. Small dunes may achieve an equilibrium geometry, either on the gravel bed or as secondary dunes within the boundary layer on the stoss side of large dunes. Secondary dunes frequently develop a humpback profile as they migrate across the upper stoss slope of large dunes, diminishing in height but increasing in length as they traverse the crestal region. However, secondary dunes more than 5 m in length are rare. The dearth of equilibrium ripples and long secondary dunes is probably related to the limited excursion length available for bedform development on the parent bedforms. Large dunes with lengths between 20 m and 100 m do not approach an equilibrium geometry. A depth limitation rather than a sediment supply limitation is the primary control on dune height; dunes rarely exceed 1 m high in water depths of ≈4 m. Dune celerity increases as a function of the mean flow velocity squared, but this general relationship obscures more subtle morphodynamics. During rising river stage, dunes tend to grow in height owing to crestal accumulation, which slows downstream progression and steepens the dune form. During steady or falling stage, an extended crestal platform develops in association with a rapid downstream migration of the lee side and a reduction in dune height. These diminishing dunes actually increase in unit volume by a process of increased leeside accumulation fed by secondary dunes moving past a stalled stoss toe. A six‐stage model of dune growth and diminution is proposed to explain variations in observed morphology. The model demonstrates how the development of an internal boundary layer and the interaction of the water surface with the crests of these bedload‐dominated dunes can result in dunes characterized by gentle lee sides with weak flow separation. This finding is significant, as other studies of dunes in large rivers have attributed this morphological response to a predominance of suspended load transport.  相似文献   

10.
《Geodinamica Acta》2001,14(4):213-230
The deformation behavior of fine grained limestones from the Monte Sirino area (Lucania region) of the southern Apennines has been analysed by constraining microstructural observations and crystallographic fabrics with data on the metamorphic conditions of deformation. X-ray and infrared analysis of clay minerals, together with illite ‘crystallinity’ data, suggest that the studied rocks underwent very low grade metamorphism in the deep diagenetic zone. The limestones consist of very fine grained (<10 μm) aggregates of micrite. Elliptically-shaped radiolarians, preserved as moulds with coarser (>20 μm) crystalline fillings, provide common strain markers. Optical microstructures and strain analysis indicate heterogeneous intracrystalline strain in the coarser (>50 μm) calcite. On the other hand, SEM and TEM observations, and crystallographic fabrics determined by X-ray texture goniometry, indicate a deformation involving not only intracrystalline slip, but also an important component of grain boundary sliding in the fine grained matrix. The inferred microscopic deformation mechanisms are compared with constitutive flow laws derived from experimental studies. For the maximum inferred temperature of deformation of 250 °C and geologic strain rates of 10–13–10–15 s–1, deformation mechanism maps for calcite suggest twinning and other glide mechanisms to be active in grains larger than about 5–10 μm. Smaller grains would be mostly deformed by grain size sensitive creep mechanisms, which include both diffusion mass transfer processes and grain boundary sliding. Deformation features observed in the study limestones are compatible with the prediction of such temperature-dependent mechanism maps.  相似文献   

11.
Abstract

The deformation behavior of fine grained limestones from the Monte Sirino area (Lucania region) of the southern Apennines has been analysed by constraining microstructural observations and crystallographic fabrics with data on the metamorphic conditions of deformation. X-ray and infrared analysis of clay minerals, together with illite ‘crystallinity’ data, suggest that the studied rocks underwent very low grade metamorphism in the deep diagenetic zone. The limestones consist of very fine grained (<10 μm) aggregates of micrite. Elliptically-shaped radiolarians, preserved as moulds with coarser (>20 μm) crystalline fillings, provide common strain markers. Optical microstructures and strain analysis indicate heterogeneous intracrystalline strain in the coarser (>50 μm) calcite. On the other hand, SEM and TEM observations, and crystallographic fabrics determined by X-ray texture goniometry, indicate a deformation involving not only intracrystalline slip, but also an important component of grain boundary sliding in the fine grained matrix. The inferred microscopic deformation mechanisms are compared with constitutive flow laws derived from experimental studies. For the maximum inferred temperature of deformation of 250 °C and geologic strain rates of 10?13?10?15 s?1, deformation mechanism maps for calcite suggest twinning and other glide mechanisms to be active in grains larger than about 5?10 μm. Smaller grains would be mostly deformed by grain size sensitive creep mechanisms, which include both diffusion mass transfer processes and grain boundary sliding. Deformation features observed in the study limestones are compatible with the prediction of such temperature-dependent mechanism maps. © 2001 Éditions scientifiques et médicales Elsevier SAS  相似文献   

12.
The parautochthonous Cloridorme Formation is a syn-orogenic flysch succession that was deposited in an elongate foredeep basin as mainly lower middle-fan, outer-fan, and basin-floor deposits. The basin-floor deposits (about 1.5 km thick) are confined to members β1, β2 and γ1, and are characterized by graded, thick (1–10 m) mud-rich calcareous greywacke beds previously interpreted as deposits of concentrated, muddy, unidirectional turbidity currents that locally generated backset (antidune) lamination in internally stratified flows. The dominant flow directions were from east to west, but west to east transport also occurred, as seen in the orientation of ripples, climbing ripples, flutes, consistently overturned flames, and grain imbrication. We believe that the flows that deposited these thick calcareous greywacke beds reversed by roughly 180° one or more times during deposition of the lower sandy part of the beds. Flow reversals are consistent with the sharp grain-size breaks and mud partings within sandy divisions. Measurement of grain fabric relative to stratification in the most celebrated ‘antidune’ bedforms indicates flow from west to east; thus, the bedforms were produced by west-to-east migration of megaripples, not by the upcurrent migration of antidunes. The thick muddy beds were deposited by large-volume, muddy flows that were deflected and reflected from the side slopes and internal topographic highs of a confined basin floor, much like the ‘Contessa’ and similar beds of the Italian Apennines. Large quantities of suspended mud were ponded above the irregular basin floor and settled to produce the thick silty mudstone caps seen on each bed. Because of their mode of emplacement, we propose that these beds be called contained turbidites.  相似文献   

13.
Regional mapping of Middle Albian, shallow‐marine clastic strata over ca 100 000 km2 of the Western Canada Foreland Basin was undertaken to investigate the relationship between large‐scale stratal architecture and lithology. Results suggest that, over ca 5 Myr, stratal geometry and facies were dynamically linked to tectonic activity in the adjacent Cordillera. Higher frequency modulation of accommodation is most reasonably ascribed to eustasy. The Harmon and Cadotte alloformations were deposited at the southern end of an embayment of the Arctic Ocean. The Harmon alloformation, forming the lower part of the succession, constitutes a wedge of marine mudstone that thickens westward over 400 km from <5 m near the forebulge to >150 m in the foredeep. Constituent allomembers are also wedge‐shaped but lack distinct clinothems, a rollover point or downlapping geometry. Ubiquitous wave ripples indicate that the sea floor lay above storm wave base. Deposition took place on an extremely low‐gradient ramp, where accommodation was limited by effective wave base. Lobate, river‐dominated deltas fringed the southern margin of the basin. The largest deltas are stacked in the same area, suggesting protracted stability of the feeder river. A buried palaeo‐valley on the underlying sub‐Cretaceous unconformity may have influenced compaction and controlled river location for ca 3 Myr. Adjacent to the western Cordillera, a predominantly mudstone succession is interbedded with abundant storm beds of very fine‐grained sandstone and siltstone that reflect supply from the adjacent orogen. Bioturbation indices in the Harmon alloformation range from zero to six which reflects the influence of stressors related to river‐mouth proximity. Harmon alloformation mudstone grades abruptly upward into marine sandstone and conglomerate of the overlying Cadotte alloformation. The Cadotte is composed of three allomembers ‘CA’ to ‘CC’, that represent the deposits of prograding strandplains 200 × 300 km in extent. Allomembers ‘CA’ and ‘CB’ are strongly sandstone‐dominated, whereas allomember ‘CC’ contains abundant conglomerate in the west. The dominantly aggradational wedge of Harmon alloformation mudstone records flexural subsidence driven by active thickening in the adjacent orogen: the high accommodation rate trapped coarser clastic detritus close to the basin margin. In contrast, the tabular, highly progradational sandstone and conglomerate bodies of the Cadotte alloformation record a low subsidence rate, implying tectonic quiescence in the adjacent orogen. Erosional unloading of the orogen through Cadotte time steepened rivers to the extent that they delivered gravel to the shore. These observations support an ‘anti‐tectonic’ model of gravel supply proposed previously for the United States portion of the Cretaceous foreland basin. Because Cadotte allomembers do not thicken appreciably into the foredeep, accommodation changes that controlled these transgressive–regressive successions were probably of eustatic origin.  相似文献   

14.
Besides particle size, density and shape, the erodibility of a sediment bed depends also upon the exposure to prethreshold velocities in the overlying flow. Such flow effectively rearranges the grains (at and below the bed surface), causing them to become more resistant to subsequent erosion. The effects of the ‘stress history’, leading up to the critical condition for sediment movement, are investigated for unidirectional flows generated in a recirculating laboratory flume. The sediment beds investigated consisted of cohesionless quartz sand grains, with mean grain diameters of 0·194 mm (fine sand), 0·387 mm (medium sand) and 0·774 mm (coarse sand), with narrow particle-size distributions. The critical (threshold) shear velocity (target value) for the three beds was established, within 2·5 min of increasing the flow from zero velocity. The subsequent experiments were performed under prethreshold velocities at 70% (for 5, 10, 20, 40 and 80 min exposure duration), 80% (for 5, 10, 20, 40 and 80 min exposure duration), 90 and 95% (for 5, 10, 20, 40, 80 and 120 min exposure duration) of the target value. Following exposure to these different prethreshold conditions, the flow was increased then to reach actual critical conditions, within a period of 2·5 min. The critical condition for the initiation of sediment movement was established using visual observation (supplemented by video recordings), according to the Yalin criterion. The results show that if the exposure duration to prethreshold velocities remains constant, then the critical shear velocity increases with increasing prethreshold velocity. Likewise, if the prethreshold velocity remains constant, then the critical shear velocity increases with increasing exposure duration. In some circumstances, the critical shear velocity was found to increase by as much as 27%. An empirical formula is proposed to account for the exposure correction to be applied to the critical shear velocities of sand-sized sediment beds; this is prior to their inclusion into bedload transport formulae, for an improved prediction of the magnitude and nature of transport.  相似文献   

15.
The Upper Jurassic (Tithonian) plattenkalk successions in the Solnhofen/Eichstätt area consist of alternations of thin‐bedded, laminated, fine‐grained, very pure limestones (so‐called ‘flinz beds’) and softer interlayers with slightly lower carbonate contents that are also laminated and show a foliaceous weathering appearance (‘fäule beds’). These successions are world famous for their exceptionally well‐preserved fossils. In contrast to the well‐studied wealth of fossils, little is known about the origin and diagenesis of the host rock. The reason for this discrepancy might lay in the monotonous appearance of these fine‐grained mudstones that require electron microscopical examination. Study of samples from the Solnhofen–Eichstädt area implies that flinz and fäule beds have undergone differential diagenesis. The ultrastructure of the flinz beds is characterized by interlocking microspar crystals, whereas the fäule beds show smaller and less interlocking crystals. The ratios of diagenetically inert trace elements lack clear differences between the two interlayered lithologies. While most authors agree that the flinz–fäule rhythm reflects rhythmically changing environmental conditions, primary rhythms can be taken as proven only where statistically significant differences in diagenetically resistant proxies are found. The absence of clear primary differences between flinz and fäule beds, however, leaves the question of primary differences unsolved. It is concluded that diagenesis has had a strong influence on the genesis of the lithological rhythm, and that any primary rhythm underlying the diagenetically mature rhythm is less clear than generally assumed.  相似文献   

16.
Measurements are described of the geometry of ripples formed on beds of sand exposed to a steady current at right angles to an oscillatory flow. Four different sands were studied. The oscillation was produced by an oscillating tray set into the bed of a steady-flow flume. It was observed that straight-crested ripples formed by oscillatory flow would usually develop a ‘serpentine’ form when the superimposed steady current exceeded a certain limit. For amplitudes of the tray velocity U less than about 0.38 m s-1 this limit corresponded to U/ū*c>31, where ū*c is the shear velocity measured just upstream of the oscillating tray. It is suggested that the serpentine form is caused by the interaction of vortices carried back and forth between adjacent ripples. On this assumption, the wavelength of the serpentine form would be proportional to the product of period of oscillation and near-bed steady current velocity. The present measurements appear to support this hypothesis although there is also evidence that the wavelength is influenced by preferred spacing patterns between vortices. The measurements also show the ratio of the amplitude of the serpentine form to its wavelength to be approximately constant. Empirical relationships are derived relating ripple geometry to flow and sediment properties. It is observed that the influence of Reynolds number and sediment properties on the geometry is very weak. It is suggested that this is typical of ripples formed with relatively low sediment transport rates. It is also found that, under the present experimental conditions, the ripple spacing in the direction of oscillation is almost independent of the magnitude of the steady current and in close agreement with the wavelengths previously measured in an oscillating water tunnel. This suggests that the additional inertia effects associated with oscillating tray rigs were not sufficient to affect bed geometry under the present test conditions.  相似文献   

17.
MARTIN KIRK 《Sedimentology》1983,30(5):727-742
The fluvial sandstone beneath the Mill Coal in the Westphalian ‘A’ of Scotland erosively overlies a lake mudstone. Slightly erosive surfaces within the sandstone, traceable for over 200 m, are used to divide it into two types of major sedimentary units termed type A and type B. Type A sand units are approximately 200 m wide, up to 7 m thick, convex upward, and lenticular in all directions. The constituent cosets overlap to the ENE and dip mainly at 1–2° downcurrent (NNW), but locally at 10–15°. Where thickest, type A sand units display a vertical facies sequence commencing with trough cross-bedded and massive sandstone, overlain by a thick zone of ripple cross-lamination, a thin zone of trough cross-beds, and a variably eroded silt drape up to 0.4 m thick. Attenuated lateral margins are dominated by flat bedded sandstone with primary current lineation. Type A sand units are interpreted as deposits which were accreted on to a large fluvial bar during successive flood events. The bar is thought to have had a similar topographic significance to sand waves described from the Brahmaputra and slip face bounded bars observed in the South Saskatchewan river. Palaeocurrents measured from trough cross-bed sets 0.3–1.0 m thick within type B sand units indicate flow to the WSW, perpendicular to the palaeoflow direction measured from type A units. In sections perpendicular to the WSW flow direction type B units are lenticular, and in ENE-WSW trending sections they can be traced for over 80 m at a constant thickness. Type B sand units are interpreted as the product of low stage channels which flowed across bar fronts and tops. The sandstone described herein is interpreted as a braided-type river deposit but is atypical, because it is fine grained and has an internal structure dominated by ripple cross-lamination and upper phase plane beds. The palaeoriver is thought to have been of low sinuosity, 7–10 m deep, with a high suspended load and large rapidly fluctuating discharge. At low stage a braided-type flow pattern developed around submerged bars. The regime of the palaeoriver was probably controlled by the fine sediment grain size and humid tropical climate.  相似文献   

18.
Scour holes often form in shallow flows over sand on the beach and in morphodynamic scale experiments of river reaches, deltas and estuarine landscapes. The scour holes are on average 2 cm deep and 5 cm long, regardless of the flow depth and appear to occur under similar conditions as current ripples: at low boundary Reynolds numbers, in fine sand and under relatively low sediment mobility. In landscape experiments, where the flow is only about 1 cm deep, such scours may be unrealistically large and have unnatural effects on channel formation, bar pattern and stratigraphy. This study tests the hypotheses that both scours and ripples occur in the same conditions and that the roughness added by sediment saltation explains the difference between the ripple–dune transition and the clear‐water hydraulic smooth to rough transition. About 500 experiments are presented with a range of sediment types, sediment mobility and obstructions to provoke scour holes, or removal thereof to assess scour hole persistence. Most experiments confirm that ripples and scour holes both form in the ripple stability field in two different bedform stability diagrams. The experiments also show that scours can be provoked by perturbations even below generalized sediment motion. Moreover, the hydraulic smooth to rough transition modified with saltation roughness depending on sediment mobility was similar in magnitude and in slope to ripple–dune transitions. Given uncertainties in saltation relations, the smooth to rough transitions modified for movable beds are empirically equivalent to the ripple–dune transitions. These results are in agreement with the hypothesis that scours form by turbulence caused by localized flow separation under low boundary Reynolds numbers, and do not form under generalized flow separation over coarser particles and intense sediment saltation. Furthermore, this suggests that ripples are a superposition of two independent forms: periodic bedforms occurring in smooth and rough conditions plus aperiodic scours occurring only in hydraulic smooth conditions.  相似文献   

19.
Fluvial ribbon sandstone bodies are ubiquitous in the Ebro Basin in North‐eastern Spain; their internal organization and the mechanics of deposition are as yet insufficiently known. A quarrying operation in an Oligocene fluvial ribbon sandstone body in the southern Ebro Basin allowed for a three‐dimensional reconstruction of the sedimentary architecture of the deposit. The sandstone is largely a medium‐grained to coarse‐grained, moderately sorted lithic arenite. In cross‐section, the sandstone body is 7 m thick, occupies a 5 m deep incision and wedges out laterally, forming a ‘wing’ that intercalates with horizontal floodplain deposits in the overbank region. Three architectural units were distinguished. The lowest and highest units (Units A and C) mostly consist of medium‐grained to coarse‐grained sandstone with medium‐scale trough cross‐bedding and large‐scale inclined stratasets. Each of Units A and C comprises a fining‐up stratal sequence reflecting deposition during one flood event. The middle unit (Unit B) consists of thinly bedded, fine‐grained sandstone/mudstone couplets and represents a time period when the channel was occupied by low‐discharge flows. The adjoining ‘wing’ consists of fine‐grained sandstone beds, with mudstone interlayers, correlative to strata in Units A and C in the main body of the ribbon sandstone. In plan view, the ribbon sandstone comprises an upstream bend and a downstream straight reach. In the upstream bend, large‐scale inclined stratasets up to 3 m in thickness represent four bank‐attached lateral channel bars, two in each of Units A and C. The lateral bars migrated downflow and did not develop into point bars. In the straight downstream reach, a tabular cross‐set in Unit A represents a mid‐channel transverse bar. In Unit C, a very coarse‐grained, unstratified interval is interpreted as deposited in a riffle zone, and gives way downstream to a large mid‐channel bar. The relatively simple architecture of these bars suggests that they developed as unit bars. Channel margin‐derived slump blocks cover the upper bar. The youngest deposit is fine‐grained sandstone and mudstone that accumulated immediately before avulsion and channel abandonment. Deposition of the studied sandstone body reflects transport‐limited sediment discharges, possibly attaining transient hyperconcentrated conditions.  相似文献   

20.
The Mesoproterozoic Pandikunta Limestone, a shallow water carbonate platform succession in the Pranhita-Godavari Valley, south India, displays well developed climbing ripple lamination and storm deposited structures, such as HCS, wave ripple-lamination, combined-flow ripple-lamination and low angle trough cross-stratification. Different types of stratification developed in calcisiltite with minor amounts of very fine quartz sand and silt. The climbing ripple structures exhibit a complex pattern of superposition of different types (type A, B and S) within cosets pointing to a fluctuating rate of suspension depositionversus bedform migration, and an unsteady character of the flow. Close association of climbing ripple structures, HCS with anisotropic geometry, wavy lamination and combined-flow ripple-lamination suggest that the structures were formed by storm generated combined-flow in a mid-shelf area above the storm wave base. The combined-flow that deposited the climbing ripple structures had a strong unidirectional flow component of variable magnitude. The climbing ripple structure occurs as a constituent of graded stratified beds with an ordered vertical sequence of different types of lamination, reflecting flow deceleration and increased rate of suspension deposition. It is inferred that the beds were deposited from high-density waning flows in the relatively deeper part of the ancient shelf. The structures indicate that the Pandikunta platform was subjected to open marine circulation and intense storm activities. The storm deposited beds, intercalated with beds of lime-mudstone, consist primarily of fine sand and silt size carbonate particles that were hydrodynamically similar to quartz silt. Detrital carbonate particles are structureless and are of variable roundness. The particles were generated as primary carbonate clasts in coastal areas by mechanical disintegration of rapidly lithified beds, stromatolites or laminites, and the finest grade was transported to the offshore areas by storm-generated currents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号