首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We reanalyse archival Ginga data of the soft X-ray transient source GS 2023+338 covering the beginning of its 1989 May outburst. The source showed a number of rather unusual features: very high and apparently saturated luminosity, dramatic flux and spectral variability (often on ∼1 s time-scale), and generally very hard spectrum, with no obvious soft thermal component characteristic for soft/high state.
We describe the spectrum obtained at the maximum of flux and we demonstrate that it is very different from spectra of other soft X-ray transients at similar luminosity. We confirm previous suggestions that the dramatic variability was the result of heavy and strongly variable photoelectric absorption. We also demonstrate that for a short time the spectrum of the source did look like a typical soft/high state spectrum but that this coincided with very heavy absorption.  相似文献   

3.
We propose a model of magnetic connection (MC) of a black hole with its surrounding accretion disc based on large-scale magnetic field. The MC gives rise to transport of energy and angular momentum between the black hole and the disc, and the closed field lines pipe the hot matter evaporated from the disc, and shape it in the corona above the disc to form a magnetically induced disc–corona system, in which the corona has the same configuration as the large-scale magnetic field. We numerically solve the dynamic equations in the context of the Kerr metric, in which the large-scale magnetic field is determined by dynamo process and equipartition between magnetic pressure and gas pressure. Thus we can obtain a global solution rather than assuming the distribution of large-scale magnetic field beforehand. The main MC effects lie in three aspects. (1) The rotational energy of a fast-spinning black hole can be extracted, enhancing the dissipation in the accretion disc, (2) the closed field lines provide a natural channel for corona matter escaping from disc and finally falling into black hole and (3) the scope of the corona can be bounded by the conservation of magnetic flux. We simulate the high-energy spectra of this system by using Monte Carlo method, and find that the relative hardness of the spectra decreases as accretion rate or black hole spin a * increases. We fit the typical X-ray spectra of three black hole binaries  (GRO J1655−40, XTE 1118+480 and GX 339−4)  in the low/hard or very high state.  相似文献   

4.
We compare ultraviolet (UV) spectra of the recent soft X-ray transients XTE J1118+480 and XTE J1859+226. The emission line strengths in XTE J1118+480 strongly suggest that the accreting material has been CNO processed. We show that this system must have come into contact with a secondary star of about 1.5 M, and an orbital period ∼15 h, very close to the bifurcation value at which the nuclear and angular momentum loss time-scales are similar. Subsequent evolution to the current period of 4.1 h was driven by angular momentum loss. In passing through a period of 7.75 h the secondary star would have shown essentially normal surface abundances. XTE J1118+480 could thus represent a slightly later evolutionary stage of A0620-00. We briefly discuss the broad Ly α absorption wings in XTE J1118+480.  相似文献   

5.
6.
With extensive monitoring data spanning over 30 years from Vela 5B , Ariel 5 , Ginga , Compton Gamma Ray Observatory , Rossi X-ray Timing Explorer and BeppoSAX , we find evidence for long-term X-ray variability on time-scales     from the black hole low-mass X-ray binary system     . Such variability resembles the outburst cycle of Z Cam-type dwarf novae, in which the standard disc instability model plays a crucial role. If such a model is applicable to     , then the observed variability might be due to the irradiation of an unstable accretion disc. We show that within the framework of the X-ray irradiation model, when the accretion rate exceeds a critical value,     enters a 'flat-topped' high/soft state, such as seen in 1998, which we suggest corresponds to the 'standstill' state of Z Cam systems.  相似文献   

7.
We show that the light curves of soft X-ray transients (SXTs) follow naturally from the disc instability picture, adapted to take account of irradiation by the central X-ray source during the outburst. Irradiation prevents the disc from returning to the cool state until central accretion is greatly reduced. This happens only after most of the disc mass has been accreted by the central object, on a viscous time-scale, accounting naturally for the exponential decay of the outburst on a far longer time-scale (τ20–40 d) than seen in dwarf novae, without any need to manipulate the viscosity parameter α. The accretion of most of the disc mass in outburst explains the much longer recurrence time of SXTs compared with dwarf novae. This picture also suggests an explanation of the secondary maximum seen in SXT light curves about 50–75 d after the start of each outburst, since central irradiation triggers the thermal instability of the outer disc, adding to the central accretion rate one viscous time later. The X-ray outburst decay constant τ should on average increase with orbital period, but saturate at a roughly constant value ∼40 d for orbital periods longer than about a day. The bolometric light curve should show a linear rather than an exponential decay at late times (a few times τ). Outbursts of long-period systems should be entirely in the linear decay regime, as is observed in GRO J1744−28. UV and optical light curves should resemble the X-rays but have decay time-scales up to 2–4 times longer.  相似文献   

8.
9.
10.
We have constructed a model to describe the optical emission from ultra-luminous X-ray sources (ULXs). We assume a binary model with a black hole accreting matter from a Roche lobe filling companion star. We consider the effects of radiative transport and radiative equilibrium in the irradiated surfaces of both the star and a thin accretion disc. We have developed this model as a tool with which to positively identify the optical counterparts of ULXs, and subsequently derive parameters such as the black hole mass and the luminosity class and spectral type of the counterpart. We examine the dependence of the optical emission on these and other variables. We extend our model to examine the magnitude variation at infrared wavelengths, and we find that observations at these wavelengths may have more diagnostic power than in the optical. We apply our model to existing HST observations of the candidates for the optical counterpart of ULX X-7 in NGC 4559. All candidates could be consistent with an irradiated star alone, but we find that a number of them are too faint to fit with an irradiated star and disc together. Were one of these the optical counterpart to X-7, it would display a significant temporal variation.  相似文献   

11.
We have studied the 1999 soft X-ray transient outburst of XTE J1859+226 at radio and X-ray wavelengths. The event was characterized by strong variability in the disc, corona and jet – in particular, a number of radio flares (ejections) took place and seemed well-correlated with hard X-ray events. Apparently unusual for the canonical 'soft' X-ray transient, there was an initial period of low/hard state behaviour during the rise from quiescence but prior to the peak of the main outburst – we show that not only could this initial low/hard state be a ubiquitous feature of soft X-ray transient outbursts, but also it could be extremely important in our study of outburst mechanisms.  相似文献   

12.
13.
14.
15.
16.
17.
We present the results of both analytical and numerical calculations of the amplitude of the reflection component in X-ray spectra of galactic black hole systems. We take into account the anisotropy of Compton scattering and the systematic relativistic bulk motion of the hot plasma. In the case of the single scattering approximation, the reflection from the disc surface is significantly enhanced owing to the anisotropy of Compton scattering. On the other hand, the calculations of multiple scattering obtained using the Monte Carlo method show that the anisotropy effect is much weaker in that case. Therefore, the enhanced back-scattered flux may affect the observed spectra only if the disc surface is highly ionized, which reduces the absorption in the energy band corresponding to the first Compton scattering.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号