首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We determine the most likely values of the free parameters of an N -body model for the Galaxy developed by Fux via a discrete–discrete comparison with the positions on the sky and line-of-sight velocities of an unbiased, homogeneous sample of OH/IR stars. Via Monte Carlo simulation, we find the plausibility of the best-fitting models, as well as the errors on the determined values. The parameters that are constrained best by these projected data are the total mass of the model and the viewing angle of the central bar, although the distribution of the latter has multiple maxima. The other two free parameters, the size of the bar and the (azimuthal) velocity of the Sun, are less well-constrained. The best model has a viewing angle of ∼ 44°, a semimajor axis of 2.5 kpc (corotation radius 4.5 kpc, pattern speed 46 km s−1 kpc−1), a bar mass of 1.7×1010 M and a tangential velocity of the local standard of rest of 171 km s−1. We argue that the lower values that are commonly found from stellar data for the viewing angle (∼25°) arise when too few coordinates are available, when the longitude range is too narrow or when low latitudes are excluded from the fit. The new constraints on the viewing angle of the Galactic bar from stellar line-of-sight velocities decrease further the ability of the distribution of the bar to account for the observed microlensing optical depth toward Baade's window: our model reproduces only half the observed value. The signal of triaxiality diminishes quickly with increasing latitude, fading within approximately 1 scaleheight (≲3°). This suggests that Baade's window is not a very appropriate region in which to sample bar properties.  相似文献   

2.
3.
We present the analysis of three-colour optical/near-infrared images, in IJK , taken for the DEep Near Infrared Southern Sky Survey (DENIS) project. The region considered covers 17.4 deg2 and lies within <5°, b <1.°5. The adopted methods for deriving photometry and astrometry in these crowded images, together with an analysis of the deficiencies nevertheless remaining, are presented. The numbers of objects extracted in I , J and K are 748 000, 851 000 and 659 000 respectively, to magnitude limits of 17, 15 and 13. Eighty per cent completeness levels typically fall at magnitudes 16, 13 and 10 respectively, fainter by about 2 mag than the usual DENIS limits as a result of the crowded nature of these fields. A simple model to describe the disc contribution to the number counts is constructed, and parameters for the dust layer are derived. We find that a formal fit of parameters for the dust plane, from these data in limited directions, gives a scalelength and scaleheight of 3.4±1.0 kpc and 40±5 pc respectively, and a solar position 14.0±2.5 pc below the plane. This latter value is likely to be affected by localized dust asymmetries. We convolve a detailed model of the systematic and random errors in the photometry with a simple model of the Galactic disc and dust distribution to simulate expected colourmagnitude diagrams. These are in good agreement with the observed diagrams, allowing us to isolate those stars from the inner disc and bulge. After correcting for local dust-induced asymmetries, we find evidence for longitude-dependent asymmetries in the distant J and K sources, consistent with the general predictions of some Galactic bar models. We consider complementary L -band observations in the companion paper.  相似文献   

4.
We analyse a sample of 507 evolved (OH/IR) stars in the region (10°>ℓ>−45°), (| b |<3°). We derive average ages for subsets of this sample, and use those sets as beacons for the evolution of the Galaxy. In the bulge, the oldest OH/IR stars in the plane are 7.5 Gyr (1.3 M), and in the disc 2.7 Gyr (2.3 M). The vertical distribution of almost all AGB stars in the disc is found to be nearly exponential, with scaleheight increasing from 100 pc for stars ≲1 Gyr old to 500 pc for stars ≳5 Gyr old. There may be a small, disjunct population of OH/IR stars. The radial distribution of AGB stars is dictated by the metallicity gradient. Unequivocal morphological evidence is presented for the existence of a central bar, but parameters can be constrained only for a given spatial-density model. Using a variety of indicators, we identify the radii of the inner ultraharmonic (2.5 kpc) and corotation resonance (3.5 kpc). We show that the 3-kpc arm is likely to be an inner ring, as observed in other barred galaxies, by identifying a group of evolved stars that is connected to the 3-kpc H  i filament. Also, using several observed features, we argue that an inner-Lindblad resonance exists, at ∼1–1.5 kpc. The compositions of OH/IR populations within 1 kpc of the Galactic Centre give insight into the bar-driven evolution of the inner regions. We suggest that the bar is ∼8 Gyr old, relatively weak (SAB), and may be in a final stage of its existence.  相似文献   

5.
6.
7.
Based on the undisturbed, finite thickness disk gravitational potential, we carried out 3-D Monte Carlo simulations of normal pulsars. We find that their scale height evolves in a similar way for different velocity dispersions (σv): it first increases linearly with time, reaches a peak, then gradually decreases, and finally approaches a stable asymptotic value. The initial velocity dispersion has a very large influence on the scale height. The time evolution of the scale height is studied. When the magnetic decay age is used as the time variable, the observed scale height has a similar trend as the simulated results in the linear stage, from which we derive velocity dispersions in the range 70- 178km s-1, which are near the statistical result of 90 - 270km s-1 for 92 pulsars with known transverse velocities. If the characteristic age is used as the time variable, then the observed and theoretical curves roughly agree for t > 108 yr only if σv < 25km s-1.  相似文献   

8.
Stellar halos may hold some of the best preserved fossils of the formation history of galaxies. They are a natural product of the merging processes that probably take place during the assembly of a galaxy, and hence may well be the most ubiquitous component of galaxies, independently of their Hubble type. This review focuses on our current understanding of the spatial structure, the kinematics and chemistry of halo stars in the Milky Way. In recent years, we have experienced a change in paradigm thanks to the discovery of large amounts of substructure, especially in the outer halo. I discuss the implications of the currently available observational constraints and fold them into several possible formation scenarios. Unraveling the formation of the Galactic halo will be possible in the near future through a combination of large wide field photometric and spectroscopic surveys, and especially in the era of Gaia.  相似文献   

9.
From an analysis of the stars remaining in central regions of the Galaxy after subtracting those belonging to the disc and the bulge, we deduce that the inner bulge must have an extra young population with respect to the rest of the bulge. It is shown that there is a higher ratio of very bright stars in the central bulge than there is in the outer bulge. This is interpreted as being an additional young component due to the presence of star formation regions near the Galactic Centre which is absent in the outer bulge.  相似文献   

10.
11.
12.
13.
14.
We present a three-dimensional (3D) dynamical model of the orbital-induced curvature of the wind–wind collision region in binary star systems. Momentum balance equations are used to determine the position and shape of the contact discontinuity between the stars, while further downstream the gas is assumed to behave ballistically. An Archimedean spiral structure is formed by the motion of the stars, with clear resemblance to high-resolution images of the so-called 'pinwheel nebulae'. A key advantage of this approach over grid or smoothed particle hydrodynamic models is its significantly reduced computational cost, while it also allows the study of the structure obtained in an eccentric orbit. The model is relevant to symbiotic systems and γ-ray binaries, as well as systems with O-type and Wolf–Rayet stars.
As an example application, we simulate the X-ray emission from hypothetical O+O and WR+O star binaries, and describe a method of ray tracing through the 3D spiral structure to account for absorption by the circumstellar material in the system. Such calculations may be easily adapted to study observations at wavelengths ranging from the radio to γ-ray.  相似文献   

15.
In this paper, the fourth in a series, we examine again one of the implications of the Lin‐Shu density‐wave theory, specifically, the noncircular systematic motion of the Galactic objects. Our previous investigation is extended by analyzing simultaneously both the line‐of‐sight and transversal velocities of a sample of open clusters for which velocities, distances and ages are available. The ordinary equations of the Oort‐Lindblad theory of galactic differential rotation are used. The minor effects caused by the two‐dimensional tightly‐wound density waves are also taken into account. The published data of 242 currently known optically visible clusters having distances r < 3 kpc from the Sun and ‐200 < z < 200 pc from the Galactic plane, and ages 2 × 108 < t < 2 × 109 yr are collected from Dias et al. (2014), excluding extremely far, high‐velocity, young and old objects in our fitting. The most noteworthy result is the fact that the parameters of Lin–Shu type density waves estimated from two independent line‐of‐sight and transversal along the Galactic longitude velocities are nearly equal. We argue that the resemblance of these Galactic wave structures is so remarkable that no doubt is felt as to the theory's truth with respect to these data. The results obtained allow us to conclude that several low‐m trailing density‐wave patterns with different number of spiral arms m (say, m = 1, 2, 3, and 4), pitch angles (about 5°, 8°, 11°, and 14°, respectively) and amplitudes of the perturbed gravitational potential may coexist in the Galaxy. The latter suggests the asymmetric multiarm, not well‐organized (“flocculent”) spiral structure of the system. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
17.
18.
19.
20.
Under the two initial 1‐D one parameter velocity distribution forms (one is normal, the other is exponential), the z direction scale height evolution of normal neutron stars in the Galaxy is studied by numerical simulation. We do statistics for the cases at different time segments, also do statistics for the cumulative cases made of each time segment. The results show in the cumulative cases the evolution curves of the scale heights are smoother than in the each time segment, i.e., the cumulation improve the signal‐to‐noise ratio. Certainly the evolution cases are different at different Galactic disk locations, which also have very large difference from the average cases in the whole disk. In the initial stages of z evolution of normal neutron stars, after the beginning transient states, the cumulative scale heights increase linearly with time, and the cumulative scale height increasing rates have linear relationship with the initial velocity distribution parameters, which have larger fluctuation in the vicinity of the Sun than in the whole disk. We utilize the linear relationship of the cumulative scale height increasing rates vs. the initial velocity distribution parameters in the vicinity of the Sun to make comparison with the observation near the Sun. The results show if there is no magnetic decay, then the deserved initial velocity parameters are obvious lower than the present well known results from some authors; whereas if introducing magnetic decay, for the 1‐D normal case we can make consistence among concerning results using magnetic decay time values which are supported by some authors, while for the 1‐D exponential case the results show the lackness of young pulsar samples in the larger z in the vicinity of the Sun (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号