首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In many sandstones quartz cements significantly reduce porosity. The origin of these cements is often unclear. This paper investigates a possible mechanism for the generation of silica for quartz cement by pressure dissolution in interbedded mudstones. Theoretical models of quartz pressure dissolution, including the effects of silica precipitation kinetics, show that the concentration of dissolved silica in the pore fluids of a compacting sediment increases with decreasing grain size and silica precipitation constant. Quartz precipitation is strongly inhibited by the presence of small amounts of clay within a sediment, suggesting that siltstones and quartz-rich mudstones which are undergoing pressure dissolution may act as a source of dissolved silica for export to nearby, coarser sediments. A computational model for the diagenetic modification of a sandstone-mudstone interface due to pressure dissolution is described. Both sandstone and mudstone layers are assumed to be actively compacting by pressure dissolution, and mass transport by molecular diffusion is considered. As quartz precipitation in the mudstone layer is relatively slow compared to that in the sandstone, significant amounts of dissolved silica become available in the mudstone, and may be exported into the adjacent sandstone. In the absence of pore-fluid advection, this may result in the formation of extensive secondary quartz within the sandstone, close to the interface. The volume of silica exported from the mudstone is limited by the length scale over which diffusion through the mudstone is effective. This is typically 3–5 m. The volume of silica available therefore suggests that extensive porosity modification within the adjacent sandstone can only occur close to the mudstone. Thus it is possible that thin sandstones could become cemented by slow diffusive transfer of silica, but that in thicker sandstones the silica may become dispersed by pore-fluid advection.  相似文献   

2.
Geochemical composition (major and trace elements) of Miocene sandstones of the Surma Group exposed in Sitapahar anticline, Southeastern Bengal Basin was determined to reveal their provenance, tectonic setting and source area weathering conditions. The sandstones are sub-arkosic, sub-lithic and greywacke in composition with abundant low-grade metamorphic, sedimentary lithics (mainly chert with some shale fragments), low feldspars and little volcanic detritus. Compared to the average sandstone value, the Surma Group sandstones are depleted in CaO and enriched in Al2O3, Fe2O3 and Na2O. The Chemical Index of Alteration (CIA) values for the Miocene Surma Group sandstones vary from 57 to 73 with an average of 65, indicating low to moderate weathering of the source areas. The geochemical characteristics suggest an active continental margin to passive margin setting for the Surma Group sandstones; preserve the signatures of a recycled provenance that is agreement with sandstone petrography and derivation of these sandstones from felsic source rocks.  相似文献   

3.
采用铸体薄片、岩石薄片、扫描电镜和压汞实验、物性分析等测试资料,对珠江口盆地白云凹陷北坡珠江组陆架边缘三角洲前缘砂体储层特征及控制因素进行研究。结果表明,该储层主要为灰色中细粒岩屑砂岩,成分成熟度、结构成熟度均较低。储集空间以次生孔隙为主,其次为剩余原生粒间孔、原生孔隙等。储层具有排驱压力较高、配位数较高、孔喉半径小和孔喉分选性较差的孔隙结构特点,为中-低孔、中-低渗型储层。储层发育受沉积相和成岩作用的复合控制,水下分流河道砂体储集物性明显优于其它微相砂体。成岩作用过程主导储层物性变化,砂岩储集体中的原生储集空间因机械压实作用、胶结作用而大幅降低,后期溶蚀作用产生较多的次生储集空间,尤其是长石的溶蚀极大改善了本区储层物性,导致储集体中溶蚀性次生孔隙为主要的储存空间。  相似文献   

4.
位于鄂尔多斯盆地的直罗油田三叠系延长组长6油层组为近年来新开发的一个主力油气产层。岩石学和成岩作用特征研究表明,直罗油田长6油层组以细粒长石砂岩和岩屑长石砂岩为主,砂岩经历了机械压实作用、胶结作用、交代作用和溶蚀作用等成岩作用,成岩作用处于晚成岩阶段A期。成岩作用控制了储层砂岩孔隙发育特征,其中压实作用与胶结作用是导致储层超低渗的主导因素,而次生溶蚀孔隙的形成对储层砂岩物性具有一定改造作用,并控制了该区长6油层组相对高孔高渗储层的展布特征。  相似文献   

5.
根据钻井、测井与分析测试等资料,研究了塔里木盆地天山南缘区块北带苏维依组的沉积相带和储层特征。苏维依组分为下部底砂岩段和上部的膏泥岩段,在研究区主要发育辫状河三角洲和湖泊沉积体系。本区储层多为粉砂岩、细砂岩、中砂岩和含砾砂岩,主要岩石类型为长石石英砂岩和岩屑长石砂岩。孔隙类型主要是原生粒间孔、溶蚀孔,还有裂缝和微孔隙等。底砂岩段储层物性较好,总体属于中孔-中、低渗储层,非均质性较强,其中以三角洲前缘的分流河道和席状砂微相砂体物性最好。影响研究区储层物性的主要因素有沉积相带、成岩作用等,压实作用、溶蚀作用和胶结作用是对储层物性影响最大的成岩作用。  相似文献   

6.
《Applied Geochemistry》2000,15(3):295-309
Calculation of the quantity and distribution of quartz cement as a function of time and temperature/depth in quartzose sandstones is performed using a coupled dissolution/diffusional–transport/precipitation model. This model is based on the assumptions that the source of the silica cement is quartz surfaces adjoining mica and/or clay grains at stylolite interfaces within the sandstones, and the quantity of silica transport into and out of the sandstone by advecting fluids is negligible. Integration of the coupled mass transfer/transport equations over geologically relevant time frames is performed using the quasi-stationary state approximation. Results of calculations performed using quartz dissolution rate constants and aqueous diffusion coefficients generated from laboratory data, are in close agreement with both the overall porosity and the distribution of quartz cement in the Middle Jurassic Garn Formation only after optimizing the product of the effective surface area and quartz precipitation rate constants with the field data. When quartz precipitation rate constants are fixed to equal corresponding dissolution rate constants, the effective surface area required to match field data depends on the choice of laboratory generated quartz rate constant algorithm and ranges from 0.008 cm−1 to 0.34 cm−1. In either case, these reactive surface areas are ∼2 to 4 orders of magnitude lower than that computed using geometric models.  相似文献   

7.
塔里木盆地西北地区苏盖特布拉克组发育一套潮坪相沉积,是该层系油气勘探的主要目标。基于什艾日克剖面、奇格布拉克剖面、肖尔布拉克剖面的地质测量,采用薄片鉴定、阴极发光、扫描电镜、流体包裹体测温及黏土矿物X衍射等分析手段开展海相碎屑岩成岩作用和成岩演化研究,为塔里木盆地苏盖特布拉克组进一步开展油气勘探部署和甜点储层预测提供地质依据。结果表明:(1)研究区苏盖特布拉克组发育潮坪沉积环境的砂体,砂岩类型以岩屑石英砂岩、岩屑砂岩为主,偶见长石岩屑砂岩,成分成熟度和结构成熟度中等;(2)苏盖特布拉克组砂岩经历了压实(溶)作用、胶结作用、溶蚀作用及交代作用等成岩作用,压实作用是造成储层致密的直接原因,钙质胶结和硅质胶结是储层致密化的根本因素;(3)苏盖特布拉克组砂岩的成岩演化阶段已达到中成岩B期,成岩演化序列为:压实作用/自生黏土矿物(绿泥石)环边—第一期长石、岩屑溶蚀作用—第一期硅质胶结—第一期泥微晶方解石胶结/压溶作用/黏土矿物的伊利化—第二次硅质胶结/第二期铁方解石胶结—钙质胶结物溶蚀。据此建立的成岩演化模式为塔里木盆地超深层致密砂岩中甜点储层预测提供可靠的地质依据。  相似文献   

8.
The siliciclastic Wishart Formation of the Early Proterozoic Labrador trough is a high-energy shelf deposit. Wishart sandstones contain both interstitial chert with textures of void-filling cement and thin chert intercalations contaminated with siliciclastic mud. Although volumetrically minor, these cherts occur in several thin, areally extensive stratigraphic intervals. The Wishart contains intraclasts of both the chert-cemented sandstone and the impure chert layers (as well as several other types of chert sand and gravel). This suggests the cherts formed penecontemporaneously, which is consistent with the absence of any signs of replacement in all but one of the chert types and the clear-cut distinctions between chert types, even where they are side by side in a single thin section. The origin which appears to be most compatible with available evidence is that the cherts represent silica precipitated from thermal waters that rose through the sediments of the Wishart shelf and discharged into suprajacent seawater. A biogenic origin is unlikely in view of the lack of appropriate organisms during the Early Proterozoic and the rapidity with which the cements formed. A volcanogenic origin is unlikely because volcaniclastic textures are plentiful in associated formations but absent from the Wishart. Precipitation induced by evaporative concentration is unlikely in view of the widespread evidence of tidal currents and the lack of evidence of desiccation in the Wishart. Finally, the cherts are not restricted to the lowest-energy facies, and therefore they presumably did not accumulate as a background sediment. Deposition of silica above the sediment/water interface was probably made possible by ambient concentrations of silica that were significantly higher than those of Phanerozoic seawater. Cherts with similar textures occur in other Early Proterozoic sediments, most notably arenitic or granular iron-formations.  相似文献   

9.
The Early Palaeoproterozoic Brockman Supersequence comprises banded iron formation (BIF), bedded chert, limestone, mudrock, sandstone, breccia, tuffaceous mudstone, ashfall tuff and, in sections not reported here, basalt and rhyolite. Density current rhythms are preserved in sandstones, mudrocks, tuffaceous mudstones and limestones. Relics of similar rhythms in BIF imply that its precursor sediments were also deposited by density currents. Hemipelagic deposits are siliciclastic or mixed siliciclastic–volcaniclastic mudstones. Bedded chert, chert nodules and the chert matrix of BIF preserve evidence for formation by diagenetic replacement. For bedded chert (and chert nodules), silica replacement occurred before compaction close to or at the sediment–water interface, indicating that it is siliceous hardground. The chert matrix of BIF formed during compaction but before burial metamorphism. Original sediments were resedimented from two sources: (1) limestone, mudrock, sandstone, breccia and tuffaceous mudstone from a shelf; and (2) BIF from within the basin realm. Shelf sediments were resedimented to basin-floor fans during third-order lowstands. The precursor sediments to BIF are interpreted to have been granular hydrothermal muds, composed of iron-rich smectite and particles of iron oxyhydroxide and siderite that were deposited on the flanks of submarine volcanoes and resedimented by density currents. Resedimentation occurred by either bottom currents or gravity-driven turbidity currents, and the resulting sediment bodies may have been contourite drifts. The concept that BIF records high-frequency alternating precipitation from ambient sea water of iron minerals and silica is negated by this study. Instead, it is postulated that the precursor sediments to BIF originated in much the same way as modern Red Sea hydrothermal iron oxide deposits, implying that at least the particles of iron oxyhydroxide originated from the oxidation of vent fluids by sea water. Several orders of cyclicity in basin filling establish a relationship between rising to high sea levels, episodic sea-floor hydrothermal activity and BIF that is reminiscent of the link between eustacy and spreading-ridge pulses.  相似文献   

10.
《Engineering Geology》1986,23(1):29-43
The “classical” form of alkali-aggregate reaction involves the disordered forms of silica particularly opal, chert and chalcedony. The alkali-carbonate reaction involves argillaceous dolomitic limestones and the alkali silicate reaction is found in some grey-wackes, phyllites and argillites.Concrete deterioration due to the alkali-silica reaction has been reported from nearly all major geographic regions of Canada. In the very far north expansive cherts were found on Ellesmere Island. On the Prairies chert is common in the gravels derived from various limestone formations in the Cordillera. These cherts seem to show a low level of alkali-expansivity but when this is combined with other forms of attack on concrete it may contribute to durability failure. Chert containing sands and gravels which show a lowlevel of alkali-expansivity are also known from Quebec. Siliceous limestones, some of whichcontain chalcedony, are known from Ontario and Quebec and in some instances, appear to be a major factor in concrete deterioration. The classical areas of alkali-carbonate reaction occur in Kingston and other parts of Ontario. Greywackes, phyllites and argillites associated with alkali-expansive reactions in concrete have been described particularly from the Maritime Provinces, from parts of the Canadian Shield and from the northern part of Ellesmere Island.  相似文献   

11.
The origin of quartz cement in sandstones can be attributed to supplies (1) from the surrounding shales, and (2) to a lower degree from dissolution of quartz on stylolites within the sandstones. A supply from the surrounding shales, which has been shown by the porosity decrease near the upper and lower surfaces of different sandstones (Füchtbauer, 1974), can be explained by the following observations in Upper Triassic and Middle Jurassic sandstones and siltstones of Northern Germany as well as in concretions of Devonian to Upper Cretaceous age from different localities:
  1. Quartz grains in silt layers are flattened by dissolution compared with quartz grains of the same size in the adjacent sandstones, the amount of shrinking being about 35 percent (fig. 1).
  2. Concretions prevent the enclosed insoluble residues from diagenesis. The main difference between the concretions and the adjacent shale of 31 occurrences examined is the quartz content, which is by 10–50 percent lower in the adjacent shale, due to diagenetical dissolution (fig. 2).
It is suggested that the dissolved silica was brought to the sandstones by the compaction stream of interstitial water percolating through the rock sequence, and that the sandstones acted as sinks triggering the dissolution. Only a small amount of silica, about 10 percent of the silica from dissolved quartz, is provided by the transition montmorillonite — illite. Both sources together would be able to explain the precipitation of 20 percent quartz cement in a sequence composed of 1/3 sandstones and 2/3 shales. In the sandstones mentioned above stylolites can be observed (fig. 3), the amplitudes of which increase from 0,5–1 mm to 2–5 mm with increasing depth, between 1300 and 2600 metres. The real amount of dissolution on each stylolite — about 4 mm — has been calculated using large mica which were collected by the stylolites from the adjacent sandstone. Using this figure, the decrease of porosity in the sandstones shown in fig. 4 can be quantitatively explained by the frequency of stylolite intercalations. It is suggested that this process, which was due to local diffusion, occurred late in diagenesis, when the compaction stream was already insufficient to move large quantities of silica.  相似文献   

12.
Sixteen penecontemporaneously deposited mudrock-sandstone pairs ranging in age from Devonian to Cretaceous were treated chemically to isolate the quartz and chert fraction from the other constituents of the rocks. The amount of crystalline silica was determined from the chemical treatments; its size distribution was determined using a combination of normal and Micro Mesh sieving and settling tube analysis; the crystalline silica coarser than 10 μu was examined petrographically to determine the amount of chert. Percentages of crystalline silica in the mudrocks range from 6·7 to 46·7 % and average 27·6 (σ= 10·7). Mean grain size ranges from 4·4 φ to 7·3 φ and averages 6·1 φ. The crystalline silica fraction is a poorly sorted medium to fine silt consisting of one-eighth sand, six-eighths silt, and one-eighth clay size sediment. Percentage of crystalline silica and mean size of crystalline silica in the thirty-two mudrocks and sandstones are positively correlated; r= 0·685, which is significant at the 99 % level. The best fit linear regression line is: Y= 102·7–11·3X. Extrapolation of the regression line indicates that, on the average, crystalline silica is lacking in mudrocks in grain sizes finer than 9·1 φ (1·μm), a result consistent with observations by clay mineralogists. The crystalline silica fraction of both the mudrocks and associated sandstones averages 4% chert in the >10 μm portion. There is no correlation between the mean grain size of the crystalline silica and the percentage of chert in it.  相似文献   

13.
A systematic petrographic and geochemical studies of 92 representative sandstone samples from exploration wells E-AH1, E-AJ1, E-BA1, E-BB1 and E-D3 in the southern part of the Bredasdorp Basin was undertaken to classify the sandstones as well as unravel the main diagenetic processes and their time relations. Petrographic study shows that the sandstones are largely subarkosic arenite and arkosic litharenite, which have underwent series of diagenetic processes as a result burial, rifting and subsequent uplift. The main diagenetic processes that have affected the reservoir properties of the sandstones are cementation by authigenic clay, carbonate and silica, growth of authigenic glauconite, dissolution of minerals and load compaction. The major diagenetic processes reducing the porosity are calcite cementation in the subarkosic arenite, and compaction and quartz cementation in arkosic litharenite. On the other hand, the formation of secondary porosity due to the partial to complete dissolution of early calcite cement, feldspars and minor grain fracturing has improved the reservoir property of the sandstone to some extent. The clay minerals in the sandstones commonly acts as pore choking cement, which reduces porosity. In general, there is no particular diagenetic process that exclusively controls the type or form of porosity evolution in the sandstones.  相似文献   

14.
Although the Permian–Triassic Semanggol Formation is widely distributed in northwestern Peninsula Malaysia and is made of various lithofacies, its sedimentology and possible relation with the Permian–Triassic boundary (PTB) were not considered before. In this study, detailed facies analysis was conducted for two sections of the Semanggol Formation at the Bukit Kukus and Baling areas, South Kedah to clarify its sedimentology and relation to the PTB. Four facies from the Permian part of the Semanggol Formation that were identified at the Bukit Kukus section include laminated black mudstone, interbedded mudstone and sandstone, volcanogenic sediments, and bedded chert. In Baling area, the Triassic part of the formation is classified into three members. The lower member comprises of claystone and bedded chert facies, while the middle member is composed of sandstone and claystone interbeds (rhythmite). On the other hand, the upper member is grouped into two main units. The lower unit is mainly claystone and includes two facies: the varve-like laminated silt and clay and massive black claystone. The upper unit is composed of various sandstone lithofacies ranging from hummocky cross stratified (HCS) sandstone to thinly laminated sandstone to burrowed sandstone facies. The HCS sandstones occur as two units of fine-grained poorly sorted sandstone with clay lenses as flaser structure and are separated by a hard iron crust. They also show coarse grains of lag deposits at their bases. The laminated black mudstone at the lowermost part of the Semanggol Formation represents a reducing and quite conditions, which is most probably below the fairweather wave base in offshore environment that changed upwards into a fining upward sequence of tide environment. Abundance of chert beds in the volcanogenic sediments suggests the deposition of tuffs and volcanic ashes in deep marine setting which continues to form the Permian pelagic bedded chert and claystone. The bedded chert in the lower member of the Triassic section suggests its formation in deep marine conditions. The rhythmic sandstone and claystone interbeds of the middle member are suggestive for its formation as a distal fan of a turbidite sequence. Lithology and primary sedimentary structure of the upper member suggest its deposition in environments range from deep marine represented by the varve-like laminated silt and clay to subtidal environment corresponds to the massive black claystone to coastal environment represented by the hummocky sandstone units and reaches the maximum regression at the hiatus surface. Another cycle of transgression can be indicated from the second hummocky unit with transgressive lag deposits that develops to relatively deeper conditions as indicated from the formation of relatively thick laminated sandstone and bioturbated massive sandstone facies that represent tidal and subtidal environment, respectively. Late Permian lithological variation from the radiolarian chert into early Triassic claystone probably resulted from a decrease in productivity of radiolarians and might represent a PTB in the Semanggol Formation. Volcanogenic sediments in the studied section can be used as an evidence for volcanic activities at the end of the Permian, which is probably connected to the nearby volcanic ash layers in the eastern China, the ultimate cause of the PTB in this area. Black mudstone in the Permian part of the studied section may be interrelated to the Latest Permian Anoxia that started to build in the deep ocean well before the event on shallow shelves.  相似文献   

15.
Petrographic, geochemical, and scanning electron microscope analyses of the sandstone and mudstone units of the Upper Miocene Injana Formation are presented. Furthermore, microprobe analysis for amphiboles, pyroxenes, garnet, and chromian spinels as common heavy mineral species present is done to support other results for better understanding of the provenance history of the Injana Formation. The sandstones of the Injana Formation consist of terrigenous carbonate lithic fragments as common type of sedimentary rock fragments in addition to chert, argillaceous, and rare sandstone fragments. They also include metamorphic and igneous lithic fragments, quartz, feldspars, and mica and generally, the sandstones are lithic arenites and immature. Scanning electron microscopic analysis for the heavy minerals shows that they have been affected by dissolution due to chemical etching and mechanical abrasion through several surface texture generated either in arid and semihumid environment or in diagenetic environment. Clay mineralogy of the mudstone units indicates the presence of illite, chlorite, kaolinite, palygorskite, and illite–smectite mixed layers. Bulk-rock and mineral phase geochemistry in addition to petrographic data suggest the derivation of the Injana Formation from a nearby sources with contribution from igneous, metamorphic, and sedimentary provenance mainly from the high lands in the northeastern parts of Iraq which comprise mainly the Zagros mountains and the older sedimentary formations.  相似文献   

16.
The response to CO2 exposure of a variety of carbonate cemented rocks has been investigated using pressurised batch experiments conducted under simulated reservoir conditions, 70 °C and 20 MPa, and with a durations of up to14 months. Calcite, dolomite, ankerite and siderite cement were present in the unreacted reservoir rocks and caprocks. Core plugs of the reservoir rocks were used in order to investigate the alterations in situ. Crushing of the caprock samples was necessary to maximise reactions within the relatively short duration of the laboratory experiments. Synthetic brines were constructed for each batch experiment to match the specific formation water composition known from the reservoir and caprock formations in each well. Chemical matched synthetic brines proved crucial in order to avoid reactions due to non-equilibra of the fluids with the rock samples, for example observations of the dissolution of anhydrite, which were not associated with the CO2 injection, but rather caused by mismatched brines.Carbonate dissolution as a response to CO2 injection was confirmed in all batch experiments by both petrographical observations and geochemical changes in the brines. Increased Ca and Mg concentrations after 1 month reaction with CO2 and crushed caprocks are ascribed to calcite and dolomite dissolution, respectively, though not verified petrographically. Ankerite and possible siderite dissolution in the sandstone plugs are observed petrographically after 7 months reaction with CO2; and are accompanied by increased Fe and Mn contents in the reacted fluids. Clear evidence for calcite dissolution in sandstone plugs is observed petrographically after 14 months of reaction with CO2, and is associated with increased amounts of Ca (and Mg) in the reacted fluid. Dolomite in sandstones shows only minor dissolution features, which are not clearly supported by increased Mg content in the reacted fluid.Silicate dissolution cannot be demonstrated, either by chemical changes in the fluids, as Si and Al concentrations remain below the analytical detection limits, nor by petrographical changes, as partly dissolved feldspar grains and authigenic analcime are present in the sediments prior to the experiments. It is noteworthy, that authigenic K-feldspar and authigenic albite in sandstones show no signs of dissolution and consequently seem to be stable under the experimental conditions.  相似文献   

17.
Ridge sandstone of Jurassic Jumara dome of Kachchh was studied in an attempt to quantify the effects of diagenetic process such as compaction, cementation and dissolution on reservoir properties. The average framework composition of Ridge sandstone is Q80F17L3, medium-to coarse grained and subarkose to arkose. Syndepositional silty to clayey matrix (3% average) is also observed that occurs as pore filling. The diagenetic processes include compaction, cementation and precipitation of authigenic cements, dissolution of unstable grains and grain replacement and development of secondary porosity. The major cause of intense reduction in primary porosity of Ridge sandstone is early cementation which include silica, carbonate, iron, kaolinite, illite, smectite, mixed layer illite-smectite and chlorite, which prevents mechanical compaction. The plots of COPL versus CEPL and IGV versus total cement suggest the loss of primary porosity in Ridge sandstone is due to cementation. Cements mainly iron and carbonate occurs in intergranular pores of detrital grains and destroys porosity. The clay mineral occurs as pore filling and pore lining and deteriorates the porosity and permeability of the Ridge sandstone. The reservoir quality of the studied sandstone is reduced by clay minerals (kaolinite, illite, smectite, mixed layer illitesmectite, chlorite), carbonate, iron and silica cementation but on the other hand, it is increased by alteration and dissolution of the unstable grain, in addition to partial dissolution of carbonate cements. The potential of the studied sandstone to serve as a reservoir is strongly related to sandstone diagenesis.  相似文献   

18.
塔中地区志留系沥青砂岩成岩作用及其对储层性质的影响   总被引:5,自引:0,他引:5  
运用沉积学原理对塔中地区志留系经历复杂成岩演化的沥青砂岩进行研究分析,了解到该岩石主要经过压实作用、胶结作用和溶蚀作用等成岩作用。其胶结物的主要类型有绿泥石、伊利石、高岭石、伊-蒙混层等粘土矿物以及碳酸盐矿物、石英、长石、黄铁矿等。孔隙类型以粒间孔隙、粒内孔、铸模孔、特大孔、裂缝孔隙等为主,其中以粒间孔隙最为发育,低地温梯度有利于在深层形成次生孔隙。志留系沥青砂岩储层物性受沉积和成岩双重因素的影响,成岩演化阶段处于晚成岩A期。根据影响储层物性的储层成岩作用,可将成岩相类型划分为不稳定碎屑溶蚀成岩相、压实-弱溶蚀成岩相、压实充填成岩相、压实压溶成岩相、碳酸盐胶结成岩相等几种主要类型,成岩相类型决定了储层性质,不稳定碎屑溶蚀成岩相和压实-弱溶蚀成岩相是本区较好的油气储层。  相似文献   

19.
雅鲁藏布江缝合带是新特提斯洋俯冲消亡的残余,记录了新特提斯洋打开—闭合的全过程。本文以雅鲁藏布江缝合带西段仲巴地区南侧的纳久混杂岩为研究对象,进行了详细的放射虫年代学,砂岩碎屑锆石U-Pb同位素年代学以及碎屑组分统计研究。我们的数据表明,纳久混杂岩中硅质岩含有大量保存较好的放射虫化石,包含Pseudodictyomitra carpatica带典型分子,根据放射虫时代组合确定其时代为早Barremian阶;混杂岩中砂岩岩块主要为岩屑砂岩,不同样品碎屑锆石得出的最大沉积年龄介于95~73 Ma之间。碎屑锆石U-Pb年龄源区分析表明,碎屑物质来自北侧的冈底斯岩浆弧和拉萨地体。纳久混杂岩南侧的砂岩沉积时代为早白垩世,碎屑锆石U-Pb年龄源区表明具有典型的特提斯喜马拉雅特征。我们的数据表明,纳久混杂岩基质时代为早白垩世,砂岩岩块时代为晚白垩世,与北侧的早白垩世蛇绿岩共同组成了白垩纪的增生楔,随着印度与欧亚大陆的碰撞仰冲到特提斯喜马拉雅之上。  相似文献   

20.
塔里木盆地满加尔凹陷志留系砂岩为无障壁的潮坪、滨岸及辫状河三角洲沉积的岩屑砂岩和岩屑质石英砂岩,对满北和满东、满南地区志留系砂岩成岩作用序次尤其是碳酸盐胶结的时间、方式和特征、物性的对比研究认为:砂岩中碳酸盐胶结的时间早晚对砂岩孔隙演化具有重要影响,满北地区志留系砂岩发育有大量早期泥晶碳酸盐胶结,显微镜下研究表明这种胶结作用发生在岩石受到充分压实之前,呈基底式胶结,岩石颗粒呈点接触或漂浮状分布于早期碳酸盐胶结物之中,这种胶结作用抑制了岩石后期的压实作用。尽管目前其埋藏达5 000~6 500 m,但其经历的压实作用并不强烈,粒间发育大量早期的碳酸盐胶结物,后来这些胶结物被溶蚀,形成了大量次生孔隙。而在满东和满南地区的志留系砂岩,碳酸盐胶结发生在岩石经过充分压实之后,晚期的碳酸盐胶结物仅分布于岩石经充分压实后的粒间孔隙中,含量较前者低,后期可供溶蚀的碳酸盐比前者少,因而溶蚀形成的次生孔隙有限。因此,尽管满东满南地区志留系埋藏比满北浅(3 700~5 000 m),碳酸盐胶结物含量也低,也发育晚期碳酸盐胶结物的溶蚀,但岩石的压实作用比满北强,物性比满北低差。这主要与碳酸盐胶结的早晚有关,早期碳酸盐胶结对孔隙演化具有明显控制作用,有利于岩石孔隙的保存,为后来的溶蚀形成次生孔隙提供了条件。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号