首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Investigations of string cosmology with a nonperturbative dilaton potential, begun in the first part of this work, are continued. The picture of cosmological evolution of an isotropic, gravi-dilaton model for different cases of the behavior of the potential in the region of strong coupling is analyzed by methods of the qualitative theory of dynamical systems. Features of models with potentials that take negative values in certain ranges of values of the dilaton field are discussed. A specific mechanism of generation of the nonperturbative potential, based on gaugino condensation in a hidden sector of the gauge group, is considered. Translated from Astrofizika, Vol. 40, No. 4, pp. 517–534, October-December, 1997.  相似文献   

2.
Friedmann-Robertson-Walker gravidilaton cosmological models with a dilaton potential generated by gaugino condensation and by nonperturbative corrections to the Kahler potential are analyzed within the framework of effective string gravitation. The question of dilaton stabilization by such potentials is investigated. It is shown that the existence of a range of dilaton values with a negative definite potential results in the possible existence of mixed expansion-contraction models with aflat space. The corresponding phase portraits are constructed for qualitatively different cases, illustrating the possibility of dilaton stabilization. Translated from Astrofizika, Vol. 42, No. 3, pp. 465–476, July–September, 1999.  相似文献   

3.
A mechanism for stabilization of the dilaton field within the framework of low-energy string gravitation with loop corrections to the dilaton coupling function was proposed in the first part of this paper. The mechanism is based on the assumption that loop corrections generate a singular dilaton kinetic function for a certain value of the dilaton field. For a nortgravitational source with a constant barotropic index, the system of cosmological equations reduces to an autonomous, third-order dynamical system. The behavior of the general solution in the vicinity of singularities of the dilaton coupling function is investigated by methods of the qualitative theory of dynamical systems for different values of the singularity index. The conditions under which solutions with a constant dilaton are attractors for a general solution with a variable dilaton are determined. The evolution of models is considered, the corresponding phase diagrams are constructed, and the question of the effectiveness of dilaton stabilization is investigated. Translated from Astrofizika, Vol. 43, No. 2, pp. 313–324, April–June, 2000.  相似文献   

4.
Homogeneous and Isotropic cosmological models of low-energy, string gravitation with loop corrections to the dilaton coupling functions are investigated by methods of the qualitative theory of dynamical systems. An ideal fluid with a barotropic equation of state is considered as the nongravitational source. In the general case of curved models, the cosmological equations are represented in the form of a third-order, autonomous, dynamical system. Phase portraits for different coupling functions are constructed for flat models. The asymptotic behavior of the general solution in limiting regions is investigated. The stabilization of the dilaton is analyzed using the Damour-Polyakov mechanism. Translated from Astrofizika, Vol. 42, No. 1, pp. 117–136, January–March, 1999.  相似文献   

5.
Cosmological evolution is investigated within the framework of low-energy string gravitation with higher-loop corrections to the dilaton coupling functions in the presence of a dilaton potential and a nongravitational source. It is shown that for homogeneous and isotropic models with a flat space, the cosmological system of equations reduces to an autonomous, third-order, dynamical system. Subclasses of models with a constant dilaton, which provide the basis for various cosmological mechanisms of dilaton stabilization, are considered. A class of solutions is distinguished with asymptotic scaling behavior of the energy density of the dilaton field.  相似文献   

6.
Within the framework of the mechanism of dilaton stabilization proposed in Part I of the present work, an analysis of homogeneous and isotropic cosmological models of low-energy string gravitation with loop corrections is continued. The behavior of models with curved space is investigated by methods of the qualitative theory of dynamical systems for different values of the singularity index of the dilaton kinetic function and the barotropic index of nongravitational matter. The conditions under which dilaton stabilization occurs as a result of cosmological expansion are determined, and the corresponding phase diagrams are constructed.  相似文献   

7.
Homogeneous and Isotropic cosmological models of effective string theory with a curved space are investigated by the methods of the qualitative theory of dynamical systems. It is shown that for radiation-dominated models, tthe corresponding dynamical system can be integrated exactly for the general case of dilaton coupling functions. Models in the tree approximation with a two-dimensional phase space are considered separately. In the general case of loop corrections, all possible stationary points are found and their character is determined. The results are illustrated using a specific example. Various cases of fixing the dilaton within the framework of the Damour-Polyakov mechanism are considered. Translated from Astrofizika, Vol. 42, No. 2, pp. 295–310, April–June, 1999.  相似文献   

8.
A new mechanism is proposed for stabilization of the scalar dilaton field within the framework of lowenergy string gravitation with loop corrections to the dilaton coupling functions. It is based on the assumption that the loop corrections generate a kinetic dilaton function, which is singular for some finite value of the dilaton field. For a nongravitational source of the barotropic type, the system of equations describing the evolution of homogeneous and isotropic cosmological models is represented in the form of a thirdorder, autonomous, dynamical system. The behavior of the general solution in the vicinity of singularities of the dilaton coupling function is investigated by methods of the qualitative theory of dynamical systems. It is shown that there is a class of solutions, different from solutions of the general theory of relativity, with a constant dilaton. The conditions under which these solutions are an attractor for a general solution with a variable dilaton are determined. Translated from Astrofizika, Vol. 43, No. 1, pp. 123-136, January–March, 2000.  相似文献   

9.
The low-energy string gravitation is investigated for the case of reduction with a variable (in string units) inner space. A flat cosmological model of the corresponding four-dimensional theory is constructed. The model equations are analyzed qualitatively for a potential-dominated scalar field as the source. It is demonstrated that an extended inflation stage with one purely scalar dilaton field is possible here, in contrast with the case of a constant inner space. The pattern of cosmological evolution in various conformal representations is discussed.Translated from Astrofizika, Vol. 38, No. 1, pp. 99–119, January–March, 1995.  相似文献   

10.
Homogeneous cosmological models are investigated within the framework of low- energy string gravitation with loop corrections. Various conformai representations of the effective action are considered. Without specifying the correction functions in the Lagrangian, cosmological solutions are found with an arbitrary curvature and with dilaton fields, moduli fields, and Kalb- Ramond fields corresponding to a source with an extremely stiff equation of state. They generalize previously known solutions of the tree approximation. The behavior of the solutions in different asymptotic domains is investigated. Translated from Astrofizika, Vol. 41, No. 2, pp. 277–295, April-June, 1998.  相似文献   

11.
It is shown that Kantowski–Sachs cosmological models do not exist in Rosen's (1973) bimetric theory of gravitation when the source of gravitation is either perfect fluid or cosmic string. Hence, the vacuum model is constructed.  相似文献   

12.
Plane Symmetric string cosmological models are presented in Barber’s second self creation theory of gravitation and obtained Einstein’s plane symmetric string cosmological models as a special case. Some physical and geometrical properties of the models are also discussed.  相似文献   

13.
Bianchi type-I string cosmological models are studied in Saez-Ballester theory of gravitation when the source for the energy momentum tensor is a viscous string cloud coupled to gravitational field. The bulk viscosity is assumed to vary with time and is related to the scalar expansion. The relationship between the proper energy density ρ and string tension density λ are investigated from two different cosmological models.  相似文献   

14.
We study a gravitational model in which scale transformations play the key role in obtaining dynamical G and Λ. We take a non-scale invariant gravitational action with a cosmological constant and a gravitational coupling constant. Then, by a scale transformation, through a dilaton field, we obtain a new action containing cosmological and gravitational coupling terms which are dynamically dependent on the dilaton field with Higgs type potential. The vacuum expectation value of this dilaton field, through spontaneous symmetry breaking on the basis of anthropic principle, determines the time variations of G and Λ. The relevance of these time variations to the current acceleration of the universe, coincidence problem, Mach’s cosmological coincidence and those problems of standard cosmology addressed by inflationary models, are discussed. The current acceleration of the universe is shown to be a result of phase transition from radiation toward matter dominated eras. No real coincidence problem between matter and vacuum energy densities exists in this model and this apparent coincidence together with Mach’s cosmological coincidence are shown to be simple consequences of a new kind of scale factor dependence of the energy momentum density as ρa −4. This model also provides the possibility for a super fast expansion of the scale factor at very early universe by introducing exotic type matter like cosmic strings.  相似文献   

15.
Field equations in the presence of cosmic string source are obtained in a scalar tensor theory of gravitation proposed by Brans and Dicke (Phys. Rev. 124, 925 (1961)) with the aid of a five-dimensional Kaluza–Klein metric. An exact string cosmological model is presented which represents a five-dimensional Reddy string (Astrophys. Space Sci. 286, 2003b) in Brans–Dicke theory. Some physical properties of the model are also discussed  相似文献   

16.
A. A. Saaryan 《Astrophysics》1995,38(2):164-175
We consider multi-dimensional cosmological models in the low-energy field theory of strings with a boson gravitational sector containing a metric, dilaton field, and antisymmetric Kalb-Ramon field. We study the conformal properties of the action and show that in the general conformal representation the theory is equivalent to a generalized scalar-tensor theory with a Lagrangian of nongravitating matter dependent on the dilaton. We find exact solutions of the flat homogeneous anisotropic model with structure R×M1×...×Mn and with equation of state pi=ai in the space Mi. We discuss the picture of cosmological evolution in different conformal representations.Translated fromAstrofizika, Vol. 38, No. 2, 1995.  相似文献   

17.
Explicit field equations of a scalar tensor theory of gravitation proposed by Saez and Ballester are obtained with the aid of Einstein–Rosen cylindrically symmetric metric in the presence of cosmic string source. The field equations being highly non–linear static and non–static cases have been considered separately. It is observed that in the static case the geometric strings do not exist while in the non–static case cosmological model does not exist in this theory.  相似文献   

18.
Multidimensional, anisotropic cosmological models with Ricci-flat subspaces are investigated within the framework of low-energy string theory. The main properties of these models, their behavior at early and late stages of evolution, in particular, are determined on the basis of a qualitative theory of dynamical systems. The conditions for dynamical compactification of extra dimensions are found. A concrete model with a Kalb — Ramond field as the source is considered as an illustration.Translated from Astrofizika, Vol. 39, No. 2, pp. 287–311, April–June, 1996.  相似文献   

19.
The evolution of a homogeneous, isotropic cosmological model driven by a nonminimally coupled scalar field is studied. The potential for the quintessential inflation model proposed by Peebles and Vilenkin is selected as a scalar potential. Possible scenarios for the cosmological dynamics are described in the conformal Einstein and Jordan representations. It is shown that, unlike in models with a minimal scalar field, here a class of solutions exists for which the scalar field is fixed at finite values during cosmological expansion. __________ Translated from Astrofizika, Vol. 49, No. 3, pp. 487–498 (August 2006).  相似文献   

20.
In this paper, it is shown that five dimensional LRS Bianchi type-I string cosmological models do not survive for Geometric and Takabayasi string whereas Barotropic string i.e. ρ=ρ(λ) survives and degenerates string with ρ+λ=0 in scalar tensor theory of gravitation proposed by Saez and Ballester (Phys. Lett. A 113:467, 1986). Further we studied some physical and geometrical properties of the model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号