首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Iron chlorites with compositions intermediate between the two end-members daphnite (Fe5Al2Si3O10(OH)8) and pseudothuringite (Fe4Al4Si2O10(OH)8) were synthesized from mixtures of reagent chemicals. The polymorph with a 7 Å basal spacing initially crystallized from these mixtures at 300 °C and 2 kb after two weeks. Conversion to a 14 Å chlorite required a further 6 weeks at 550 °C. Shorter conversion times were required at higher water pressures. The products contained up to 20% impurities.The maximum equilibrium decomposition temperature for iron chlorite, approximately 550 °C at 2kb, is at an between assemblages (1) and (2) listed below. Synthetic iron chlorite will break down by various reactions with variable P, T, and fugacity of oxygen. For the composition FeAlSi = 523, the sequence of high temperature breakdown products with increasing traversing the magnetite field for P total = =2kb is: (1) corierite+ fayalite+hercynite; (2) cordierite+fay alite+magnetite; (3) cordierite+magnetite+quartz; (4) magnetite+mullite+quartz. Almandine should replace cordierite in assemblages (1) and (2) but it did not nucleate. The significance of the relationship between iron cordierite and almandine in this system is discussed.At water pressures from 4 to 8.5 kb and at the nickel-bunsite buffer, iron chlorite+quartz break down to iron gedrite+magnetite with temperature 550 to 640 °C along the curve. At temperatures 50 °C greater and along a parallel curve, almandine replaces iron gedrite. For on this buffer curve, almandine is unstable below approximately 4 kb for temperatures to approximately 750 °C.  相似文献   

2.
Near-liquidus melting experiments were performed on a high-K latite at fO2's ranging from iron-wustite-graphite (IWG) to nickel-nickel oxide (NNO) in the presence of a C-O-H fluid phase. Clinopyroxene is a liquidus phase under all conditions. At IWG , the liquidus at 10 kb is about 1,150° C but is depressed to 1,025° C at NNO and . Phlogopite and apatite are near-liquidus phases, with apatite crystallizing first at pressures below 10 kb. Phlogopite is a liquidus phase only at NNO and high . Under all conditions the high-K latites show a large crystallization interval with phlogopite becoming the dominant crystalline phase with decreasing temperature. Increasing fO2 affects phlogopite crystallization but the liquidus temperature is essentially a function of . The chemical compositions of the near-liquidus phases support formation of the high-K latites under oxidizing conditions (NNO or higher) and high . It is concluded from the temperature of the H2O-saturated liquidus at 10 kb, the groundmass: crystal ratio and presence of chilled latite margins around some xenoliths that the Camp Creek high-K latite magma passed thru the lower crust at temperatures of 1,000° C or more.  相似文献   

3.
In a regional metamorphic terrain where six isograds have been mapped based on mineral reactions that are observed in metacarbonate rocks, the P-T conditions and fugacities of CO2 and H2O during metamorphism were quantified by calculations involving actual mineral compositions and experimental data. Pressure during metamorphism was near 3,500 bars. Metamorphic temperatures ranged from 380° C (biotite-chlorite isograd) to 520° C (diopside isograd). \(f_{{\text{CO}}_{\text{2}} }\) and \(f_{{\text{CO}}_{\text{2}} }\) / \(f_{{\text{H}}_{\text{2}} {\text{O}}}\) in general is higher in metacarbonate rocks below the zoisite isograd than in those above the zoisite isograd. Calculated \(f_{{\text{CO}}_{\text{2}} }\) and \(f_{{\text{H}}_{\text{2}} {\text{O}}}\) are consistent with carbonate rocks above the zoisite isograd having equilibrated during metamorphism with a bulk supercritical fluid in which \(P_{{\text{CO}}_{\text{2}} }\) + \(P_{{\text{H}}_{\text{2}} {\text{O}}}\) = P total. Calculations indicate that below the zoisite isograd, however, \(P_{{\text{CO}}_{\text{2}} }\) + \(P_{{\text{H}}_{\text{2}} {\text{O}}}\) was less than Ptotal, and that this condition is not due to the presence of significant amounts of species other than CO2 and H2O in the system C-O-H-S. Calculated \(P_{{\text{CO}}_{\text{2}} }\) /( \(P_{{\text{CO}}_{\text{2}} }\) + \(P_{{\text{H}}_{\text{2}} {\text{O}}}\) ) is low (0.06–0.32) above the zoisite isograd. The differences in conditions above and below the zoisite isograd may indicate that the formation of zoisite records the introduction of a bulk supercritical H2O-rich fluid into the metacarbonates. The results of the study indicate that \(f_{{\text{CO}}_{\text{2}} }\) and \(f_{{\text{H}}_{\text{2}} {\text{O}}}\) are constant on a thin section scale, but that gradients in \(f_{{\text{CO}}_{\text{2}} }\) and \(f_{{\text{H}}_{\text{2}} {\text{O}}}\) existed during metamorphism on both outcrop and regional scales.  相似文献   

4.
In the Rogers Pass area of British Columbia the almandine garnet isograd results from a reaction of the form: 5.31 ferroan-dolomite+8.75 paragonite+4.80 pyrrhotite+3.57 albite+16.83 quartz+1.97 O2=1.00 garnet+16.44 andesine+1.53 chlorite+2.40 S2+1.90 H2O+10.62 CO2. The coefficients of this reaction are quite sensitive to the Mn content of ferroan-dolomite.Experimental data applied to mineral compositions present at the isograd, permits calculation of two intersecting P, T equilibrium curves. P=29088–39.583 T is obtained for the sub-system paragonite-margarite (solid-solution), plagioclase, quartz, ferroan-dolomite, and P=28.247 T–14126 is obtained for the sub-system epidote, quartz, garnet, plagioclase. These equations yield P=3898 bars and T=638° K (365° C). These values are consistent with the FeS content of sphalerite in the assemblage pyrite, pyrrhotite, sphalerite and with other estimates for the area.At these values of P and T the composition of the fluid phase in equilibrium with graphite in the system C-O-H-S during the formation of garnet is estimated as: bars, bars, bars, bars, bars, bars, bars, bars, , bars, bars.  相似文献   

5.
Ignimbrites from the central North Island consist mainly of glass or its devitrified product (70–95%); their phenocryst mineralogy is varied and includes plag., hyp., ti-mag., ilm., aug., hblende, biot., san., qtz, ol., with accessory apatite, zircon and pyrrhotite. The Fe-Mg minerals can be used to divide the ignimbrites into four groups with hyp.+aug. reflecting high quench temperatures and biot.+hblende +hyp.+aug., low quench temperatures. Oxygen fugacities lie above the QMF buffer curve and even in ignimbrites with low crystal contents the solid phases apparently buffered fO2. Some ignimbrites contain the assemblage actinolite, gedrite, magnetite and hematite, reflecting post-eruption oxidation. The mineralogy also allows estimation of using pyrrhotite and thence , . The assemblage biotite-sanidine can be used to estimate and thence . Water fugacity is calculated in a variety of ways using both biotite and hornblende as well as the combining reaction . It is high and approaches P total in most ignimbrites (~4kb) but is lower in unwelded pumice breccias. Comparison of temperature estimates using mineral geothermometers for the various phenocryst phases suggests that the ignimbrite magmas showed temperature differences of 60–100 °C and pressure differences of several kilobars. Individual magma chambers therefore, would have extended over several kilometres vertically. The chemical potential of water may have been constant through the magma.  相似文献   

6.
Clinochlore, which is, within the limits of error, the thermally most stable member of the Mg-chlorites, breaks down at = P tot to the assemblage enstatite+forsterite+spinel+H2O along a univariant curve located at 11 kb, 838 ° C; 15kb, 862 ° C; and 18 kb, 880 ° C (±1 kb ±10 ° C). At water pressures above that of an invariant point at 20.3 kb and 894 ° C involving the phases clinochlore, enstatite, forsterite, spinel, pyrope, and hydrous vapor, clinochlore disintegrates to pyrope+forsterite+spinel+H2O. The resulting univariant curve has a steep, negative dP/dT slope of –930 bar/ °C at least up to 35 kb.Thus, given the proper chemical environment, Mg-chlorites have the potential of appearing as stable phases within the earth's upper mantle to maximum depths between about 60 and 100 km depending on the prevailing undisturbed geotherm, and to still greater depths in subduction zones. However, unequivocal criteria for mantle derived Mg-chlorites are difficult to find in ultrabasic rocks.  相似文献   

7.
Eclogites are found as lenses or layers in the Precambrian gneiss terrain of the Bitlis Massif in eastern Turkey. Kyanite-eclogites from the region of Gablor Hill in the Bitlis Massif exhibit relatively minor alteration, and consist of garnet, omphacite, kyanite, zoisite, calcic amphibole, phengite, rutile and quartz. In terms of geological setting and mineral compositions, Gablor eclogites are very similar to eclogites from high-grade gneiss terrains. Metamorphic conditions during the eclogite crystallisation are determined as 625±35° C and 16±3 kbars. The coexistence of white mixa, omphacite and kyanite constrains between 0.4 and 1. Primary calcic amphiboles from the Gablor eclogites exhibit conflicting textures, indicating stable coexistence with, as well as growth from omphacite and garnet. This is explained by a buffering reaction between amphibole, garnet, omphacite, zoisite and kyanite during the eclogite crystallisation, whereby is controlled and buffered by the mineral assemblage.  相似文献   

8.
Under hydrous conditions the stability field of the assemblage Mg-cordierite+K feldspar+quartz is limited on its low-temperature side by the breakdown of cordierite+K feldspar into muscovite, phlogopite and quartz, whereas the high-temperature limit is given by eutectic melting. The compatibility field of the assemblage ranges from 530° C to 745° C at 1 kbar , from 635 to 725° C at 3 kbars , from 695 to 725° C at 5 kbars and terminates at 5.5 kbars . Most components not considered in the model system will tend to restrict this field even more. However, the condition < P total will increase the range of stable coexistence drastically, making the assemblage common at elevated temperatures from contact metamorphic rocks up to intermediate pressure granulites of appropriate bulk composition.  相似文献   

9.
We investigated the dissolved major elements, $ {}^{87}{\text{Sr/}}{}^{86}{\text{Sr}},\;\delta {}^{34}{\text{S}}_{{\text{SO}}_{\text{4}} } ,\;{\text{and}}\;\delta {}^{18}{\text{O}}_{{\text{SO}}_{\text{4}} } $ composition of the Min Jiang, a headwater tributary of the Chang Jiang (Yangtze River). A forward calculation method was applied to quantify the relative contribution to the dissolved load from rain, evaporite, carbonate, and silicate reservoirs. Input from carbonate weathering dominated the major element composition (58–93%) and that from silicate weathering ranged from 2 to 18% in unperturbed Min Jiang watersheds. Most samples were supersaturated with respect to calcite, and the CO2 partial pressures were similar to or up to ~5 times higher than atmospheric levels. The Sr concentrations in our samples were low (1.3–2.5 μM) with isotopic composition ranging from 0.7108 to 0.7127, suggesting some contribution from felsic silicates. The Si/(Na* + K) ratios ranged from 0.5 to 2.5, which indicate low to moderate silicate weathering intensity. The $ \delta {}^{34}{\text{S}}_{{\text{SO}}_{\text{4}} } \;{\text{and}}\;\delta {}^{18}{\text{O}}_{{\text{SO}}_{\text{4}} } $ for five select samples showed that the source of dissolved sulfate was combustion of locally consumed coal. The silicate weathering rates were 23–181 × 103 mol/km2/year, and the CO2 consumption rates were 31–246 × 103 mol/km2/year, which are moderate on a global basis. Upon testing various climatic and geomorphic factors for correlation with the CO2 consumption rate, the best correlation coefficients found were with water temperature (r 2 = 0.284, p = 0.009), water discharge (r 2 = 0.253, p = 0.014), and relief (r 2 = 0.230, p = 0.019).  相似文献   

10.
Two metamorphic isograds cut across graphitic schist near Pecos Baldy, New Mexico. The southern isograd marks the first coexistence of staurolite with biotite, whereas the northern isograd marks the first coexistence of andalusite with biotite. The isograds do not record changes in temperature or pressure. Instead, they record a regional gradient in the composition of the metamorphic fluid phase. Ortega Quartzite, which contains primary hematite, lies immediately north of the graphitic schist. Mineral compositions within the schist change gradually toward the quartzite, reflecting gradients in and . The chemical potential gradients, locally as high as 72 cal/m in and 9 cal/m in , controlled the positions of the two mapped isograds. The staurolite-biotite isograd records where fell below 0.80, at near 10–23 bars; the andalusite-biotite isograd records where fell below 0.25, at near 10–22 bars. Dehydration and oxidation were coupled by graphite-fluid equilibrium.The chemical potential gradients apparently formed during metamorphism, as graphite in schist reacted with hematite in quartzite. Local oxidation of graphite formed CO2 which triggered dehydration reactions along the schistquartzite contact. This process created a C-O-H fluid which infiltrated into overlying rocks. Upward infiltration, local fluid-rock equilibration and additional infiltration proceeded until the composition of the infiltrating fluid evolved to that in equilibrium with the infiltrated rock. This point occurs very close to the staurolite-biotite isograd. Pelitic rocks structurally above this isograd show no petrographic evidence of infiltration, even though calculations indicate that volumetric fluid/rock ratios may have exceeded 15 and thin, rare calc-silicate beds show extensive K-metasomatism and quartz veining.  相似文献   

11.
Aenigmatite is common in many trachytes, phonolites and agpaitic nepheline syenites. Petrographic evidence suggests that the aenigmatite in these rocks arises by the reaction of Ti-magnetite with a peralkaline silica-undersaturated liquid, and it is postulated that a no-oxide field, where aenigmatite is stable, exists in alkaline undersaturated magmas. This field is similar to that found in silicic liquids but lies below the FMQ buffer curve in space and is probably confined within narrow limits of temperature and oxygen fugacity. The hydrated equivalent of aenigmatite is possibly astrophyllite and the latter mineral is frequently associated with Na-amphiboles in natural rocks. This suggests that the stability field of astrophyllite is similar to that of Na-amphiboles with respect to temperature and .  相似文献   

12.
The proportions of species in a C-O-H-S fluid in equilibrium with graphite, pyrite and pyrrhotite were calculated for a range of pressure, temperature and conditions, using the equilibrium constants and mass balance method, for ideal and non-ideal mixing in the fluid. Under typical metamorphic conditions, H2O, CO2, CH4 and H2S are the principal fluid species with H2S favored by higher temperatures, lower pressures and lower conditions. The dominance of H2S in the fluid at high temperatures leads to values of becoming significantly less than 1, and causes hydrous minerals to dehydrate at lower temperatures than the case when . The production of H2S-bearing fluids provides a mechanism for the selective transfer of sulfur from a graphite-pyrite-pyrrhotite bearing pelite into a pluton via a fluid phase, without requiring wholesale melting and assimilation of rocks. Such a process is feasible if a magma is intruded by stoping, which allows a significant volume of pelite country rock to be raised rapidly to temperatures approaching that of the magma. H2S-bearing fluids produced from graphite-pyrite-pyrrhotite pelites (due either to magmatic intrusion or regional metamorphism) may also mobilize ore-forming metals as sulfide complexes.  相似文献   

13.
Microphenocrystic pyrrhotites were observed in the glassy groundmass of two dacite rocks from Satsuma-Iwojima, southwest Kyushu, Japan. It suggests that the dacite magma was saturated with respect to pyrrhotite at the time of eruption, and thus the sulfur contents in the groundmass can be taken as the solubility of sulfur in the dacite magma. The solubility of sulfur in the dacite rocks thus calculated is 65 to 72 ppm sulfur at the estimated conditions of T=900±50°C, and atm.  相似文献   

14.
The experimental distribution coefficient for Ni/ Fe exchange between olivine and monosulfide (KD3) is 35.6±1.1 at 1385° C, \(f_{{\text{O}}_{\text{2}} } = 10^{ - 8.87} ,f_{{\text{S}}_{\text{2}} } = 10^{ - 1.02} \) , and olivine of composition Fo96 to Fo92. These are the physicochemical conditions appropriate to hypothesized sulfur-saturated komatiite magma. The present experiments equilibrated natural olivine grains with sulfide-oxide liquid in the presence of a (Mg, Fe)-alumino-silicate melt. By a variety of different experimental procedures, K D3 is shown to be essentially constant at about 30 to 35 in the temperature range 900 to 1400° C, for olivine of composition Fo97 to FoO, monosulfide composition with up to 70 mol. % NiS, and a wide range of \(f_{{\text{O}}_{\text{2}} } \) and \(f_{{\text{S}}_{\text{2}} } \) .  相似文献   

15.
The compositions of coexisting pyroxmangites, rhodonites, rhodochrosites and manganese calcites in regional metamorphosed manganese cale-silicate marbles from Val Scerscen and Alagna were analysed by microprobe and permit definition of critical tie lines at metamorphic grades appropriate to temperatures between 400 and 450 °C.Variations in composition of coexisting mineral pairs in one and the same locality are attributed to variations in and not to metamorphic temperatures. From the analysed assemblages isothermal plots (with SiO2 as excess component) were constructed for the system CaO-MnO-SiO2-CO2.  相似文献   

16.
The Al-in-hornblende barometer, which correlates Altot content of magmatic hornblende linearly with crystallization pressure of intrusion (Hammarstrom and Zen 1986), has been calibrated experimentally under water-saturated conditions at pressures of 2.5–13 kbar and temperatures of 700–655°C. Equilibration of the assemblage hornlende-biotite-plagioclase-orthoclasequartz-sphene-Fe-Ti-oxide-melt-vapor from a natural tonalite 15–20° above its wet solidus results in hornblende compositions which can be fit by the equation: P(±0.6 kbar) = –3.01 + 4.76 Al hbl tot r 2=0.99, where Altot is the total Al content of hornblende in atoms per formula unit (apfu). Altot increase with pressure can be ascribed mainly to a tschermak-exchange ( ) accompanied by minor plagioclase-substitution ( ). This experimental calibration agrees well with empirical field calibrations, wherein pressures are estimated by contact-aureole barometry, confirming that contact-aureole pressures and pressures calculated by the Al-in-hornblende barometer are essentially identical. This calibration is also consistent with the previous experimental calibration by Johnson and Rutherford (1989b) which was accomplished at higher temperatures, stabilizing the required buffer assemblage by use of mixed H2O-CO2 fluids. The latter calibration yields higher Altot content in hornblendes at corresponding pressures, this can be ascribed to increased edenite-exchange ( ) at elevated temperatures. The comparison of both experimental calibrations shows the important influence of the fluid composition, which affects the solidus temperature, on equilibration of hornblende in the buffering phase assemblage.  相似文献   

17.
Aenigmatite, sodic pyroxene and arfvedsonite occur as interstitial minerals in metaluminous to weakly peralkaline syenite patches in alkali dolerite, Morotu, Sakhalin. Aenigmatite is zoned from Ca, Al, Fe3+-rich cores to Ti, Na, Mn, Si-rich rims reflecting the main substitutions Fe2+Ti4+Fe3+, NaSiCaAl and Mn2+Fe2+. Aenigmatite replaces aegirine and ilmenite supporting the existence of a no-oxide field in — T space. In one case aenigmatite has apparently formed by reaction between ilmenite and arfvedsonite. Titanian aegirine (up to 3.0 wt% TiO2) and Fe-chlorite may replace aenigmatite. Sodic pyroxene occurs as zoned crystals with cores of aegirine-augite rimmed by aegirine and in turn by pale green aegirine containing 93 mol% NaFe3+Si2O6. Additional substitution of the type NaAlCaFe2+ is indicated by significant amounts (up to 6 mol%) of NaAlSi2O6. Arfvedsonite is zoned with rims enriched in Na, Fe and depleted in Ca which parallels the variation of these elements in the sodic pyroxenes.The high peralkalinity of the residual liquid from which the mafic phases formed resulted from the early crystallization of microperthite (which makes up the bulk of the syenites) leading to an increase in the Na2O/(Na2O+K2O) and (Na2O+K2O)/Al2O3 ratios of the remaining interstitial liquid which is also enriched in Ti, Fe, and Mn. Bulk composition of the melt, , temperature and volatile content were all important variables in determining the composition and stability of the peralkaline silicates. in the residual liquid appears to have been buffered by arfvedsonite-aegirine and later by the arfvedsonite-aenigmatite and aenigmatite-aegirine equilibria under conditions of a no-oxide field. An increase in , above that of the alkali buffer reactions, is inferred by an increase of Ti and Mn in aenigmatite rims. The latest postmagmatic vapour crystallization stage of the syenites is marked by extremely low which may have been facilitated by exsolution of a gas phase. Low is supported by the replacement of aenigmatite by titanian aegirine, and the formation of rare Ti-rich garnet with a very low (Ti4++Fe3+)/(Ti+Fe) ratio of 0.51, associated with leucoxene alteration of ilmenite.  相似文献   

18.
To investigate the point defect chemistry and the kinetic properties of manganese olivine Mn2SiO4, electrical conductivity () of single crystals was measured along either the [100] or the [010] direction. The experiments were carried out at temperatures T=850–1200 °C and oxygen fugacities atm under both Mn oxide (MO) buffered and MnSiO3 (MS) buffered conditions. Under the same thermodynamic conditions, charge transport along [100] is 2.5–3.0 times faster than along [010]. At high oxygen fugacities, the electrical conductivity of samples buffered against MS is 1.6 times larger than that of samples buffered against MO; while at low oxygen fugacities, the electrical conductivity is nearly identical for the two buffer cases. The dependencies of electrical conductivity on oxygen fugacity and temperature are essentially the same for conduction along the [100] and [010] directions, as well as for samples coexisting with a solid-state buffer of either MO or MS. Hence, it is proposed that the same conduction mechanisms operate for samples of either orientation in contact with either solid-state buffer.The electrical conductivity data lie on concave upward curves on a log-log plot of vs , giving rise to two regimes with different oxygen fugacity exponents. In the low- regime , the exponent, m, is 0, the MnSiO3-activity exponent, q, is 0, and the activation energy, Q, is 45 kJ/mol. In the high regime 10^{ - 7} {\text{atm}}} \right)$$ " align="middle" border="0"> , m=1/6, q=1/4–1/3, and Q=45 and 200 kJ/mol for T<1100 °c=" and=">T>1100 °C, respectively.  相似文献   

19.
Thermal aureoles surrounding intrusions of the Nain complex, Labrador, contain many unique or unusual mineral assemblages in aluminous gneisses and granulites, ironstones, and ultramafic rocks. Some of the limiting assemblages are (in addition to feldspars±pyrrhotite±ilmenite±graphite ±biotite±magnetite): Ga-Ol-Hy-Sp, Ga-Cd-Hy-Sp, Ga-Hy-Ol-Qz, Cd-Hy-Os-Qz, Ga-Cd-Sp-Si, Cd-Sp-Co-Si, Ga-Ol-Hy-Sp, Ga-Cd-Hy-Sp, Hy-Ol-Qz-Aug, and Ol-Hy-Sp(±Chl±Ca-amph±Aug). On the basis of some of these assemblages are (in addition to feldspars±pyrrhotite±ilmenite±graphite from 3.7–6.6 kbar and temperatures from 645–915 ° C. The paucity of hydrous phases, the preponderance of Ksp-Plag-Qz or even Cd-Ksp-Qz without evidence of a melt at these temperatures, the stable occurrence of osumilite, and the common presence of graphite suggest that was extremely low. The presence of graphite-pyrrhotite, the compositions of ilmenites, the compositions of coexisting Fe-Ti oxides, and other mineralogical data indicate the was relatively low and, despite the wide range in bulk compositions and rock types, may have followed an approximately buffered trend. It is possible that the magmas of the Nain complex may have acted as an external buffer for the aureole rocks. The unique nature of these mineral assemblages appears to be a function of the extremely low .  相似文献   

20.
Metasedimentary migmatites from the Archean charnockitic terrain of South India contain the five phase equilibrium assemblage spinel-cordierite-garnet-corundum-sillimanite. The assemblages is a result of anatexis which has generated a silica-deficient anhydrous restite. Peak metamorphic conditions are defined by the intersection of two divariant reactions in the A12O3-SiO2-FeO-MgO system at which the five phases coexist. These reactions are univariant and their intersection invariant if the Fe/Mg ratio of at least one femic phase is fixed.The location of the invariant point in P/T space is derived from extracting standard stage thermodynamic data from published equilibria experiments in the system Al2O3-SiO2-FeO. Microprobe analyses of coexisting spinel, almandine and cordierite specify the Fe/Mg distributions between phases and allow the computation of the five phase invariant point for =P total (770° C, 5.9 kb) and =O (740° C, 4.8 kb). A low , implied by evidence of extreme anatexis, indicates a P/T field of T=740±20° C and Ptotal=4.8±0.5 kb which is consistent with the field of equilibration of interlayered charnockites computed from garnet-hypersthene and garnet-plagioclase pairs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号