首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Primary productivity (PP), bacterial productivity (BP) and the uptake rates of nitrate and ammonium were measured using isotopic methods (13C, 3H, 15N) during a mesoscale iron (Fe)-enrichment experiment conducted in the western subarctic Pacific Ocean in 2004 (SEEDS II). PP increased following Fe enrichment, reached maximal rates 12 days after the enrichment, and then declined to the initial level on day 17. During the 23-day observation period, we observed the development and decline of the Fe-induced bloom. The surface mixed layer (SML) integrated PP increased by 3-fold, but was smaller than the 5-fold increase observed in the previous Fe-enrichment experiment conducted at almost the same location and season during 2001 (SEEDS). Nitrate uptake rates were enhanced by Fe enrichment but decreased after day 5, and became lower than ammonium uptake rates after day 17. The total nitrogenous nutrient uptake rate declined after the peak of the bloom, and accumulation of ammonium was obvious in the euphotic layer. Nitrate utilization accounted for all the requirements of N for the massive bloom development during SEEDS, whereas during SEEDS II, nitrate accounted for >90% of total N utilization on day 5, declining to 40% by the end of the observation period. The SML-integrated BP increased after day 2 and peaked twice on days 8 and 21. Ammonium accumulation and the delayed heterotrophic activity suggested active regeneration occurred after the peak of the bloom. The SML-integrated PP between days 0 and 23 was 19.0 g C m−2. The SML-integrated BP during the same period was 2.6 g C m−2, which was 14% of the SML-integrated PP. Carbon budget calculation for the whole experimental period indicated that 33% of the whole (particulate plus dissolved) PP (21.5 g C m−2) was exported below the SML and 18% was transferred to the meso-zooplankton (growth). The bacterial carbon consumption (43% of the whole PP) was supported by DOC or POC release from phytoplankton, zooplankton, protozoa and viruses. More than a half (56%) of the whole PP in the Fe patch was consumed within the SML by respiration of heterotrophic organisms and returned to CO2.  相似文献   

2.
Community metabolism (respiration and production) and bacterial activity were assessed in the upper water column of the central Arctic Ocean during the SHEBA/JOIS ice camp experiment, October 1997–September 1998. In the upper 50 m, decrease in integrated dissolved oxygen (DO) stocks over a period of 124 d in mid-winter suggested a respiration rate of ∼3.3 nM O2 h−1 and a carbon demand of ∼4.5 gC m−2. Increase in 0–50 m integrated stocks of DO during summer implied a net community production of ∼20 gC m−2. Community respiration rates were directly measured via rate of decrease in DO in whole seawater during 72-h dark incubation experiments. Incubation-based respiration rates were on average 3-fold lower during winter (11.0±10.6 nM O2 h−1) compared to summer (35.3±24.8 nM O2 h−1). Bacterial heterotrophic activity responded strongly, without noticeable lag, to phytoplankton growth. Rate of leucine incorporation by bacteria (a proxy for protein synthesis and cell growth) increased ∼10-fold, and the cell-specific rate of leucine incorporation ∼5-fold, from winter to summer. Rates of production of bacterial biomass in the upper 50 m were, however, low compared to other oceanic regions, averaging 0.52±0.47 ngC l−1 h−1 during winter and 5.1±3.1 ngC l−1 h−1 during summer. Total carbon demand based on respiration experiments averaged 2.4±2.3 mgC m−3 d−1 in winter and 7.8±5.5 mgC m−3 d−1 in summer. Estimated bacterial carbon demand based on bacterial productivity and an assumed 10% gross growth efficiency was much lower, averaging about 0.12±0.12 mgC m−3 d−1 in winter and 1.3±0.7 mgC m−3 d−1 in summer. Our estimates of bacterial activity during summer were an order of magnitude less than rates reported from a summer 1994 study in the central Arctic Ocean, implying significant inter-annual variability of microbial processes in this region.  相似文献   

3.
The goal of this study was to explore how net community production (NCP) is influenced by the relationship between primary production and community respiration in the western Arctic Ocean. Plankton NCP and respiration were determined by measuring changes in oxygen in light and dark bottle incubations, respectively. Rates of NCP averaged over shelf, slope and basin waters were positive in summer 2002 (57±191 mmol O2 m−2 d−1) and spring 2004 (85±86 mmol O2 m−2 d−1) and negative in summer 2004 (−25±176 mmol O2 m−2 d−1). Determinations of NCP obtained from bottle incubations were similar to rates inferred from in situ changes in dissolved inorganic carbon. An examination of the spatial variability of primary production and community respiration indicated that respiration is distributed more uniformly than primary production. A spatial offset between photosynthesis and respiration from the shelf to the Arctic basin was present in spring 2004, but was not seen at other times. NCP and the potential for export appear to be dependent on an uncoupling of primary production and community respiration. NCP continued into the summer after the stock of NO3 had been depleted. Our data suggest that the uniform distribution of respiration relative to primary production is an important factor influencing NCP and the potential for export in the western Arctic.  相似文献   

4.
To assess the magnitude, distribution and fate of net community production (NCP) in the Chukchi Sea, dissolved inorganic carbon (DIC), dissolved organic carbon (DOC) and dissolved organic nitrogen (DON), and particulate organic carbon (POC) and particulate organic nitrogen (PON) were measured during the spring and summer of 2004 and compared to similar observations taken in 2002. Distinctive differences in hydrographic conditions were observed between these two years, allowing us to consider several factors that could impact NCP and carbon cycling in both the Chukchi Shelf and the adjacent Canada Basin. Between the spring and summer cruises high rates of phytoplankton production over the Chukchi shelf resulted in a significant drawdown of DIC in the mixed layer and the associated production of DOC/N and POC/N. As in 2002, the highest rates of NCP occurred over the northeastern part of the Chukchi shelf near the head of Barrow Canyon, which has historically been a hotspot for biological activity in the region. However, in 2004, rates of NCP over most of the northeastern shelf were similar and in some cases higher than rates observed in 2002. This was unexpected due to a greater influence of low-nutrient waters from the Alaskan Coastal Current in 2004, which should have suppressed rates of NCP compared to 2002. Between spring and summer of 2004, normalized concentrations of DIC in the mixed layer decreased by as much as 280 μmol kg−1, while DOC and DON increased by ∼16 and 9 μmol kg−1, respectively. Given the decreased availability of inorganic nutrients in 2004, rates of NCP could be attributed to increased light penetration, which may have allowed phytoplankton to increase utilization of nutrients deeper in the water column. In addition, there was a rapid and extensive retreat of the ice cover in summer 2004 with warmer temperatures in the mixed layer that could have enhanced NCP. Estimates of NCP near the head of Barrow Canyon in 2004 were ∼1500 mg carbon (C) m−2 d−1 which was ∼400 mg C m−2 d−1 higher than the same location in 2002. Estimates of NCP over the shelf-break and deep Canada Basin were low in both years, confirming that there is little primary production in the interior of the western Arctic Ocean due to near-zero concentrations of inorganic nitrate in the mixed layer.  相似文献   

5.
Microzooplankton grazing impact on phytoplankton was assessed using the Landry–Hassett dilution technique in the Western Arctic Ocean during spring and summer 2002 and 2004. Forty experiments were completed in a region encompassing productive shelf regions of the Chukchi Sea, mesotrophic slope regions of the Beaufort Sea off the North Slope of Alaska, and oligotrophic deep-water sites in the Canada Basin. A variety of conditions were encountered, from heavy sea-ice cover during both spring cruises, moderate sea-ice cover during summer of 2002, and light to no sea ice during summer of 2004, with a concomitant range of trophic conditions, from low chlorophyll-a (Chl-a; <0.5 μg L−1) during heavy ice cover in spring and in the open basin, to late spring and summer shelf and slope open-water diatom blooms with Chl-a >5 μg L−1. The microzooplankton community was dominated by large naked ciliates and heterotrophic gymnodinoid dinoflagellates. Significant, but low, rates of microzooplankton herbivory were found in half of the experiments. The maximum grazing rate was 0.16 d−1 and average grazing rate, including experiments with no significant grazing, was 0.04±0.06 d−1. Phytoplankton intrinsic growth rates varied from the highest values of about 0.4 d−1 to the lowest values of zero to slightly negative growth, on average 0.16±0.15 d−1. Light limitation in spring and post-bloom senescence during summer were likely explanations of observed low phytoplankton growth rates. Microzooplankton grazing consumed 0–120% (average 22±26%) of phytoplankton daily growth. Grazing and growth rates found in this study were low compared to rates reported in another Arctic system, the Barents Sea, and in major geographic regions of the world ocean.  相似文献   

6.
Whereas diatoms (class Bacillariophyceae) often dominate phytoplankton taxa in the Amazon estuary and shelf, their contribution to phytoplankton dynamics and impacts on regional biogeochemistry are poorly understood further offshore in the western tropical Atlantic Ocean (WTAO). Thus, relative contribution of diatoms to phytoplankton biomass and primary production rates and associated environmental conditions were quantified during three month-long cruises in January–February 2001, July–August 2001, and April–May 2003. The upper water column was sampled at 6 light depths (100%, 50%, 25%, 10%, 1% and 0.1% of surface irradiance) at 64 stations between 3° and 14°N latitude and 41° and 58°W longitude. Each station was categorized as ‘oceanic’ or ‘plumewater’, based on principal component analysis of eight physical, chemical and biological variables. All stations were within the North Brazil Current, and plumewater stations were characterized by shallower mixed layers with lower surface salinities and higher dissolved silicon (dSi) concentrations than oceanic stations. The major finding was a much greater role of diatoms in phytoplankton biomass and productivity at plumewater stations relative to oceanic stations. Mean depth-integrated bSi concentrations at the plumewater and oceanic stations were 14.2 and 3.7 mmol m−2, respectively. Mean depth-integrated SiP rates at the plumewater and oceanic stations were 0.17 and 0.02 mmol m−2 h−1, respectively. Based on ratios of SiP and PP rates, and typical Si:C ratios, diatoms contributed on average 29% of primary productivity at plumewater stations and only 3% of primary productivity at oceanic stations. In contrast, phytoplankton biomass (as chlorophyll a concentrations) and primary production (PP) rates (as 14C uptake rates) integrated over the euphotic zone were not significantly different at plumewater and oceanic stations. Chlorophyll a concentrations ranged from 8.5 to 42.4 mg m−2 and 4.0 to 38.0 mg m−2 and PP rates ranged from 2.2 to 11.2 mmol m−2 h−2 and 1.8 to 10.8 mmol m−2 h−2 at plumewater and oceanic stations, respectively. A conservative estimate of annual integrated SiP in offshore waters of Amazon plume between April and August is 0.59 Tmol Si, based on mean SiP rates in plumewaters and satellite-derived estimates of the area of the Amazon plume. In conclusion, river plumewaters dramatically alter the silicon dynamics of the WTAO, forming extensive diatom-dominated phytoplankton blooms that may contribute significantly to the global Si budget as well as contributing to energy and matter flow off of the continental shelf.  相似文献   

7.
The latitudinal distributions of phytoplankton biomass, composition and production in the Atlantic Ocean were determined along a 10,000-km transect from 50°N to 50°S in October 1995, May 1996 and October 1996. Highest levels of euphotic layer-integrated chlorophyll a (Chl a) concentration (75–125 mg Chl m−2) were found in North Atlantic temperate waters and in the upwelling region off NW Africa, whereas typical Chl a concentrations in oligotrophic waters ranged from 20 to 40 mg Chl m−2. The estimated concentration of surface phytoplankton carbon (C) biomass was 5–15 mg C m−2 in the oligotrophic regions and increased over 40 mg C m−2 in richer areas. The deep chlorophyll maximum did not seem to constitute a biomass or productivity maximum, but resulted mainly from an increase in the Chl a to C ratio and represented a relatively small contribution to total integrated productivity. Primary production rates varied from 50 mg C m−2 d−1 at the central gyres to 500–1000 mg C m−2 d−1 in upwelling and higher latitude regions, where faster growth rates (μ) of phytoplankton (>0.5 d−1) were also measured. In oligotrophic waters, microalgal growth was consistently slow [surface μ averaged 0.21±0.02 d−1 (mean±SE)], representing <20% of maximum expected growth. These results argue against the view that the subtropical gyres are characterized by high phytoplankton turnover rates. The latitudinal variations in μ were inversely correlated to the changes in the depth of the nitracline and positively correlated to those of the integrated nitrate concentration, supporting the case for the role of nutrients in controlling the large-scale distribution of phytoplankton growth rates. We observed a large degree of temporal variability in the phytoplankton dynamics in the oligotrophic regions: productivity and growth rates varied in excess of 8-fold, whereas microalgal biomass remained relatively constant. The observed spatial and temporal variability in the biomass specific rate of photosynthesis is at least three times larger than currently assumed in most satellite-based models of global productivity.  相似文献   

8.
We analyzed the taxonomic structure and spatial variability of phytoplankton abundance and biomass in the Chukchi and Beaufort Seas during spring and summer seasons of the SBI program. Phytoplankton samples were collected during two surveys from May 10 to June 13 and from July 19 to August 21 of 2002. In May and June, ice cover exceeded 80% over most of the study area and there was no vertical stratification, indicating that the successional state of the phytoplankton corresponded to the end of the winter biological season. The phytoplankton abundance ranged from a few tens to a few thousands of cells per liter, while biomass varied from 0.1 to 3.0 mg C m−3. Small areas of high phytoplankton abundance (0.13–1.3×106 cells L−1) and biomass (22–536 mg C m−3), dominated by early spring diatoms Pauliella taeniata and Fragilariopsis oceanica in the surface waters, which indicated the beginning of the spring bloom, were observed only in the southeastern part of the Chukchi shelf and off Point Barrow. In July and August summer period, more than a half of the study area had <50% ice cover and the water column was stratified by temperature and salinity. Over the Chukchi shelf and continental slope of the Beaufort Sea, the phytoplankton abundance and biomass were an order of magnitude higher in July–August than in May–June. The taxonomic diversity of algae also increased due to the appearance of late-spring and summer diatoms, dinoflagellates, and coccolithophorids (Emiliania huxleyi). Interestingly, the seasonal differences between phytoplankton abundance and taxonomic composition in the spring and summer periods varied the least over the Chukchi Sea slope and in the deep-water area of the Arctic Ocean. High algae concentrations in summer were located in the lower layers of the euphotic zone, suggesting that the spring bloom on both the Chukchi shelf and in the western part of the Beaufort Sea occurred in late June/early July. In the spring and summer, the microalgal community was characterized by a high abundance of 4–10 μm flagellates, which exceeded the abundance of all other taxonomic groups. In both seasons studied, phytoplankton reached its maximum abundance within restricted areas in the southern part of the Chukchi Sea southwest of Point Hope, in the northern part of the Chukchi shelf between the 50- and 100-m isobaths, on the shelf northwest of Point Barrow, and over the continental slope in the Beaufort Sea. The pronounced spatial difference in the seasonal state was a characteristic feature of the phytoplankton community in the western Arctic.  相似文献   

9.
To better understand the cause of high summer primary productivity in the Ulleung Basin located in the southwest part of the East/Japan Sea, the spatial dynamics of primary, new, and regenerated productivities (PP, NP, and RP) were examined along the path of the Tsushima Warm Current system in summer 2008. We compared hydrographic and chemical parameters in the Ulleung Basin with those of the Kuroshio Current in the Western Pacific Ocean and the East China Sea. In summer, integrated primary productivity (IPP, 0.37–0.96 g C m−2 d−1) and integrated new productivity (INP, 26–221 mg N m−2 d−1) within the euphotic zone in the Ulleung Basin were higher than those in the East China Sea and the Western Pacific Ocean (0.17–0.28 g C m−2 d−1, 2−5 mg N m−2 d−1, respectively). In contrast, there was no pronounced spatial variation in integrated regenerated productivity (IRP, 43–824 mg N m−2 d−1). Strong positive correlations between IPP and INP (also the f-ratio), and between nitrate uptake rate in the mixed layer and nitrate upward flux through the top of pycnocline in summer in the Ulleung Basin imply that the high IPP was mainly supported by supply of nitrate from the underlying water in the euphotic zone. Shallowing of the pycnocline depth as the current enters the East/Japan Sea facilitates nitrate supply from the nutrient-replete cold water immediately below the pycnocline through nitrate upward flux. A subsurface maximum in PP at or above the pycnocline and a high f-ratio further support the importance of this source of nitrate for maintaining the high summer PP in the Ulleung Basin. In comparison, the high PP layer was observed at the surface in the following fall and spring in the Ulleung Basin. Our results demonstrate the importance of hydrographic features in enhancing PP in this oligotrophic Tsushima Warm Current system.  相似文献   

10.
Phytoplankton and bacterial abundance, size-fractionated phytoplankton chlorophyll-a (Chl-a) and production together with bacterial production, microbial oxygen production and respiration rates were measured along a transect that crossed the Equatorial Atlantic Ocean (10°N–10°S) in September 2000, as part of the Atlantic Meridional Transect 11 (AMT 11) cruise. From 2°N to 5°S, the equatorial divergence resulted in a shallowing of the pycnocline and the presence of relatively high nitrate (>1 μM) concentrations in surface waters. In contrast, a typical tropical structure (TTS) was found near the ends of the transect. Photic zone integrated 14C primary production ranged from ∼200 mg C m−2 d−1 in the TTS region to ∼1300 mg C m−2 d−1 in the equatorial divergence area. In spite of the relatively high primary production rates measured in the equatorial upwelling region, only a moderate rise in phytoplankton biomass was observed as compared to nearby nutrient-depleted areas (22 vs. 18 mg Chl-a m−2, respectively). Picophytoplankton were the main contributors (>60%) to both Chl-a biomass and primary production throughout the region. The equatorial upwelling did not alter the phytoplankton size structure typically found in the tropical open ocean, which suggests a strong top-down control of primary producers by zooplankton. However, the impact of nutrient supply on net microbial community metabolism, integrated over the euphotic layer, was evidenced by an average net microbial community production within the equatorial divergence (1130 mg C m−2 d−1) three-fold larger than net production measured in the TTS region (370 mg C m−2 d−1). The entire region under study showed net autotrophic community metabolism, since respiration accounted on average for 51% of gross primary production integrated over the euphotic layer.  相似文献   

11.
Size-fractionated chlorophyll-a and carbon incorporation rates were determined on a series of 13 cruises carried out from 1992 to 2001with the aim of investigating the patterns and causes of variability in phytoplankton chlorophyll and production in the Eastern North Atlantic Subtropical Gyral Province (NASE). Averaged (±SE) integrated chlorophyll-a concentration and primary production rate were 17±1 mg m−2 and 253±22 mg C m−2 d−1. Small-sized cells (<2 μm) formed the bulk of phytoplankton biomass (71%) and accounted for 54% of total primary production. A clear latitudinal gradient in these variables was not detected. By contrast, large seasonal variability was detected in terms of primary production, although integrated phytoplankton biomass, as estimated from chlorophyll-a concentration, remained rather constant and did not display significant changes with time. Variability in primary production (PP) was related mainly to variability in surface temperature and surface chlorophyll-a concentration. The control exerted by surface temperature was related to nutrient availability. By contrary, euphotic-zone depth, depth of maximum concentration of chlorophyll-a and integrated chlorophyll-a did not contribute significantly to the high variability in primary production observed in this oligotrophic region.  相似文献   

12.
Recent constructions of the global nitrogen budget estimate that at least half of the ocean's fixed nitrogen is lost by sedimentary denitrification, the majority of which occurs in continental shelves. The Arctic contains approximately 20% of the world's continental shelf, suggesting it is a substantial contributor to the global sedimentary denitrification rate. During two cruises in the summer and spring of 2002 and 2004, respectively, denitrification rates were calculated from the downward diffusive flux of nitrate in the shelf and slope sediments of the Chukchi Sea in the western Arctic. Additionally, in the spring of 2004, denitrification rates were determined by whole-core incubations in which the flux of nitrogen gas out of the sediments was measured. Measurements were made along three transects crossing the shelf and slope (50–3000 m), each transect having different overlying water characteristics. Denitrification rates generally decreased with increasing water depth: rates varied from about 1.6 mmol N m−2 d−1 for the shallow-water sediments to undetectable in deep-water sediments. Rates showed little variation between the two seasons. However, rates were found to correspond with differences in annual overlying primary productivities and particulate organic carbon export fluxes. An extrapolation to the whole Arctic yielded an average Arctic sedimentary denitrification rate of 13 Tg N yr−1. Taken in the context of the global nitrogen budget, it is about 4–13% of the total sink of fixed nitrogen in the ocean.  相似文献   

13.
Investigations of primary production (PP) were undertaken in the southern Benguela ecosystem during two research surveys in October 2006 and May 2007. Significant differences in environmental conditions, as well as biomass and PP, were observed between October and May. During October, integrated biomass and PP were significantly higher, ranging from 20.43 to 355.01 mg m−2, and 0.71 to 6.98 g C m−2 d−1, respectively, than in May, where the range was 47.92–141.79 mg m−2, and 0.70–3.35 g C m−2 d−1, respectively. Distribution patterns indicated low biomass and PP in newly upwelled water along the coast, higher biomass and PP in the mid-shelf region, while lower values were observed at and beyond the shelf edge. Latitudinal variations showed consistently higher biomass and PP in the St. Helena Bay region compared to biomass and PP south of Cape Town. During both surveys, phytoplankton communities were comprised primarily of diatoms and small flagellates, with no significant differences. Phytoplankton adaptation to environmental variability was characterised by increased PmB and Ek under elevated temperatures and irradiance, while no clear relationships were evident for αB. Generalised Additive Models (GAMs) showed that photosynthetic parameters were all significant predictors of photosynthesis rates (Pz), with PmB being the most important, accounting for 36.97% of the deviance in Pz. However, biomass levels and environmental conditions exerted a much greater influence on Pz, with irradiance explaining the largest proportion (68.24%) of the deviance. Multiple predictor GAMs revealed that 96.26% of the deviance in Pz could be explained by a model which included nitrate, chlorophyll a, and irradiance.  相似文献   

14.
Microbial plankton metabolism was examined during summer 2010 in sea ice-influenced waters of the Fram Strait, eastern Arctic Ocean. Rates of gross primary production and community respiration were tightly coupled over a wide range of values (33±3–143±6 and 20±3–126±6 mmol O2 m−2  −1, respectively) leading to a prevalence of positive net community production. The high variability in community respiration, similar to that of gross primary production, suggests that heterotrophic metabolism may exhibit a significant response to environmental change. Bacterial respiration was assessed at similar time scales to bacterial production measurements, by determining the in vivo INT reduction capacity without pre-filtering the community. Bacteria seem to play a major role in total community respiration, contributing between 5% and 61% of total community respiration, indicating that a high fraction of the organic carbon in Arctic planktonic food webs could flow through these microbes.  相似文献   

15.
Dilution experiments were conducted to investigate microzooplankton grazing impact on phytoplankton of different taxonomic groups and size fractions (< 5, 5–20, 20–200 μm) during spring and summer bloom periods at two different sites (inner Tolo Harbour and Tolo Channel) in the Tolo Harbour area, the northeastern coastal area of Hong Kong. Experiments combined with HPLC pigment analysis in three phytoplankton size fractions measured pigment and size specific phytoplankton growth rates and microzooplankton grazing rates. Pigment-specific phytoplankton growth rates ranged between 0.08 and 3.53 d 1, while specific grazing rates of microzooplankton ranged between 0.07 and 2.82 d 1. Highest specific rates of phytoplankton growth and microzooplankton grazing were both measured in fucoxanthin in 5–20 μm size fraction in inner Tolo Harbour in summer, which coincided with the occurrence of diatom bloom. Results showed significant correlations between phytoplankton growth and microzooplankton grazing rates. Microzooplankton placed high grazing pressure on phytoplankton community. High microzooplankton grazing impact on alloxanthin (2.63–5.13) suggested strong selection toward cryptophytes. Our results provided no evidence for size selective grazing on phytoplankton by microzooplankton.  相似文献   

16.
Six research cruises were conducted off the west coast of Vancouver Island between April and October of 1997 and 1998 as part of the Canadian GLOBEC project to compare nutrient and phytoplankton dynamics between ENSO (1997) and non-ENSO (1998) years. Limited sampling also was conducted during three cruises in 1999. During the 1997 ENSO period, there was a shallow thermocline (∼10 m) that resulted in a shallower mixed layer, lower salinity and density, and stronger summer stratification. In general on the shelf, the 1997 growing season was characterized by higher nitrate (7.5 μM) and silicic acid (17 μM) concentrations, lower total chlorophyll (∼76 mg m−2), lower phytoplankton carbon biomass (0.2 mg C L−1), and lower diatom abundance and biomass than in 1998. Phytoplankton assemblages were dominated by nanoplankton in 1997 and by diatoms in 1998. These results suggest that the 1997 ENSO was responsible for a reduction in the growth and biomass of larger phytoplankton cells. In mid-1998, the hydrographic characteristics off the west coast of Vancouver Island changed suddenly. The 1997 poleward transport of warm water reversed to an equatorward transport of coastal water in July 1998, which was accompanied by normal summer upwelling. During 1998, a large diatom bloom (mainly dominated by Chaetoceros debilis, Leptocylindrus danicus and to a lesser extent by Skeletomema and Pseudo-nitzschia sp.) was observed in July over the continental shelf. This large bloom resulted in chlorophyll concentrations of up to 400 mg m−2, primary productivity of up to 11 g C m−2 d−1, and near undetectable dissolved nitrogen concentrations at some of the shelf stations in 1998. In contrast, during 1997, the sub-tropical waters that were advected over the slope, resulted in low chlorophyll a and primary productivity (generally <1 g C m−2 d−1). Therefore, there was a sharp contrast between the very high primary productivity on the shelf in July 1998, due to normal nutrient replenishment from summer upwelling and outflow from the Strait of Juan de Fuca, and the lower primary productivity during the 1997 ENSO year. During 1998, non-ENSO conditions resulted in phytoplankton biomass that was twice as high on the shelf as that measured in regions beyond the continental shelf of the west coast of Vancouver Island.  相似文献   

17.
The fluxes of total mass, organic carbon (OC), biogenic opal, calcite (CaCO3) and long-chain C37 alkenones (ΣAlk37) were measured at three water depths (275, 455 and 930 m) in the Cariaco Basin (Venezuela) over three separate annual upwelling cycles (1996–1999) as part of the CARIACO sediment trap time-series. The strength and timing of both the primary and secondary upwelling events in the Cariaco Basin varied significantly during the study period, directly affecting the rates of primary productivity (PP) and the vertical transport of biogenic materials. OC fluxes showed a weak positive correlation (r2=0.3) with PP rates throughout the 3 years of the study. The fluxes of opal, CaCO3 and ΣAlk37 were strongly correlated (0.6<r2<0.8) with those of OC. The major exception was the lower than expected ΣAlk37 fluxes measured during periods of strong upwelling. All sediment trap fluxes were significantly attenuated with depth, consistent with marked losses during vertical transport. Annually, strong upwelling conditions, such as those observed during 1996–1997, led to elevated opal fluxes (e.g., 35 g m−2 yr−1 at 275 m) and diminished ΣAlk37 fluxes (e.g., 5 mg m−2 yr−1 at 275 m). The opposite trends were evident during the year of weakest upwelling (1998–1999), indicating that diatom and haptophyte productivity in the Cariaco Basin are inversely correlated depending on upwelling conditions.The analyses of the Cariaco Basin sediments collected via a gravity core showed that the rates of OC and opal burial (10–12 g m−2 yr−1) over the past 5500 years were generally similar to the average annual water column fluxes measured in the deeper traps (10–14 g m−2 yr−1) over the 1996–1999 study period. CaCO3 burial fluxes (30–40 g m−2 yr−1), on the other hand, were considerably higher than the fluxes measured in the deep traps (∼10 g m−2 yr−1) but comparable to those obtained from the shallowest trap (i.e. 38 g m−2 yr−1 at 275 m). In contrast, the burial rates of ΣAlk37 (0.4–1 mg m−2 yr−1) in Cariaco sediments were significantly lower than the water column fluxes measured at all depths (4–6 mg m−2 yr−1), indicating the large attenuation in the flux of these compounds at the sediment–water interface. The major trend throughout the core was the general decrease in all biogenic fluxes with depth, most likely due to post-depositional in situ degradation. The major exception was the relatively low opal fluxes (∼5 g m−2 yr−1) and elevated ΣAlk37 fluxes (∼2 mg m−2 yr−1) measured in the sedimentary interval corresponding to 1600–2000 yr BP. Such compositions are consistent with a period of low diatom and high haptophyte productivity, which based on the trends observed from the sediment traps, is indicative of low upwelling conditions relative to the modern day.  相似文献   

18.
Two in situ iron-enrichment experiments were conducted in the Pacific sector of the Southern Ocean during summer 2002 (SOFeX). The “north patch,” established within the Subantarctic Zone (∼56°S), was characterized by high nitrate (∼21 mmol m−3) but low silicic acid (2 mmol m−3) concentrations. North patch iron enrichment increased chlorophyll (Chl) by 12-fold to 2.1 mg m−3 and primary productivity (PPEU) by 8-fold to 188 mmol C m−2 d−1. Surprisingly, despite low silicic acid concentrations, diagnostic pigment and size-fraction composition changes indicated an assemblage shift from prymnesiophytes toward diatoms. The “south patch,” poleward of the Southern Boundary of the Antarctic Circumpolar Current (SBACC) (∼66°S), had high concentrations of nitrate (∼27 mmol m−3) and silicic acid (64 mmol m−3). South patch iron enrichment increased Chl by 9-fold to 3.8 mg m−3 and PPEU 5-fold to 161 mmol C m−2 d−1 but, notably, did not alter the phytoplankton assemblage from the initial composition of ∼50% diatoms. South patch iron addition also reduced total particulate organic carbon:Chl from ∼300 to 100; enhanced the presence of novel non-photosynthetic, but fluorescent, compounds; and counteracted a decrease in photosynthetic performance as photoperiod decreased. These experiments show unambiguously that in the contemporary, high nitrate Southern Ocean increasing iron supply increases primary productivity, confirming the initial premise of the Martin Iron Hypothesis. However, despite a 5-fold increase in PPEU under iron-replete conditions in late summer, the effect of iron on annual productivity in the Southern Ocean poleward of the SBACC is limited by seasonal ice coverage and the dark of polar winter.  相似文献   

19.
Taxonomic composition and productivity of winter and spring phytoplankton in a eutrophic estuary have been investigated in order to elucidate the carbon flux under conditions of limitation by physical factors – light and temperature. In spite of the important differences in nutrients, solar radiation and water temperature between winter and spring season, mean concentrations of particulate organic carbon were equal to 13.2 and 13.0 mgC l−1, respectively. Chlorophyll a averaged at 79 μgChl l−1 in winter, that is 69% of spring. Although community respiration accounted for only 6–26% of light saturated photosynthesis, integrated net primary production of the 1.2 m deep water column was negative until April. High attenuation of the water body (Ko = 2.9 m−1) lead to a negative carbon balance (net heterotrophy) below 35 cm for all sampling dates. Thus, the high winter POC and phytoplankton values can only originate from summer or autumn primary production. This assumption was supported by a carbon loss rate of just 3% of total organic carbon per day for the whole water column. The composition of phytoplankton was very constant through both seasons: 39% Chlorophyceae, 33% Cyanobacteria and 25% Bacillariophyceae. As expected, phytoplankton was low light acclimated, having high α values (slope of light limited photosynthesis), but moderate maximum photosynthesis rates at saturating irradiances, which were heavily affected by temperature. Calculation of net carbon flux yet showed net heterotrophy of the Bodden waters in winter and early spring were caused by external physical limitation (low surface irradiance and low temperature) in combination with a high light attenuation of the water body.  相似文献   

20.
Sedimentation of particulate carbon from the upper 200–300 m in the central Greenland Sea from August 1993 to June 1995 was less than 2 g C m−2 yr−1. Daily rates of sedimentation of particulate organic carbon reached highest values of about 18 mg m−2 d−1 in fall 1994. For total particulate material, maximum rates of sedimentation of about 250 mg m−2 d−1 were recorded in spring and fall 1994. For chlorophyll equivalent, highest rates of sedimentation of about 140 μg m−2 d−1 were recorded in spring 1994. As reported in related investigations, the transient accumulation of DOC in surface waters during summer, as well as respiration and mortality of deep overwintering zooplankton stocks, appeared to dominate the fate of photosynthetically fixed organic carbon. The above processes may account for roughly 43 g C m−2 in the upper 200 m of the central Greenland Sea. For comparison, the seasonal deficit in dissolved inorganic carbon was reported to be about 23 g C m−2 in the upper 20 m of surface water, and estimates for new annual production were reported to be about 57 g C m−2. In our investigation, the biological carbon pump was not unusually effective in transporting carbon out of the productive surface layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号