首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 15 毫秒
1.
2.
3.
Remote Sensing (RS) technology has recently offered new and promising opportunities to analyze river systems. In this paper, we present a calibration of characteristic Hydraulic Scaling Law (HSL) using a regional database of river geomorphic features. We consistently linked discharge with channel geometry features for estimated Bankfull Channel Depth (eBCD), Active Channel Width (ACW), and Low Flow water Channel Width (LFCW), which are continuously available from RS data along the river course. We then used historical information and external sources of information on channel reaches that were relatively unaffected by human pressure over periods ranging from a few decades to a century (measured in comparable geographical areas) to infer relatively Unaltered HSLs (rUHSLs). Adopting rUHSL validated with available local historical evidence on channel geometry, we were able to assess historical changes in channel geometry consistently over the entire region and within the studied temporal window. The case study was conducted for the Po basin in the Piedmont Region, north-west Italy. From our analysis, it emerges that regionally 74% of the river network has riverbed incisions exceeding 1 m, while 66% of channels have halved their historical widths with a total of 617 ha of land subtracted from the active channel. LFCW is, on average, wider in Alpine rivers compared with those located in the North Apennines. Although it is currently not possible to measure the accuracy of these estimates, the evidence generated is coherent with available historical information, characteristic hydraulic scaling laws, evidence from relatively unaltered reaches and the available literature on local fluvial systems. This methodology provides robust, novel and quantitative information regarding decadal to secular channel changes that have occurred on a regional scale. This new layer of information enriches our ability to rationally address assessments of large-scale past and future channel trajectories. © 2018 John Wiley & Sons, Ltd.  相似文献   

4.
5.
6.
7.
8.
《水文科学杂志》2013,58(3):513-525
Abstract

The Water Erosion Prediction Project (WEPP) model was calibrated and evaluated for estimation of runoff and sediment yield in the data-scarce conditions of the Indian Himalaya. The inputs derived from remote sensing and geographic information system technologies were combined in the WEPP modelling system to simulate surface runoff and sediment yield from the hilly Kaneli watershed. The model parameters were calibrated using measured data on runoff volumes and sediment yield. The calibrated model was validated by producing the monthly runoff and sediment yield simulations and comparing them with data that were not used in calibration. The model was also used to make surface runoff and sediment yield simulations for each of the individual watershed elements, comprising 18 hillslopes and seven channels, and the detailed monthly results for each are presented. Although, no field data on hillslope runoff and sediment yield are currently available for the validation of distributed results produced by the model, the present investigation has demonstrated clearly the applicability of the WEPP model in predicting hydrological variables in a data-scarce situation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号