首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The most evolved rocks of the Pilansberg alkaline complex are aegirine lujavrites in which three varieties of eudialyte are recognized on the basis of textural relationships and composition. Manganoan eudialyte-I is a relict orthomagmatic phase occurring as poikilitic plates or as relict grains in pseudomorphed euhedral phenocrysts. Late eudialyte-II ranges in composition from manganoan eudialyte through kentbrooksite to taseqite-like varieties and is considered to be formed by cation exchange with eudialyte-I and alkaline fluids. Eudialyte-III is a hydrothermal phase replacing eudialyte-II, and has either taseqite-like (5–7.3 wt.% SrO, < 2.0 wt.% REE2O3) or kentbrooksite (< 1.5 wt.% SrO,  8.5 wt.% REE2O3) compositions. Three styles of replacement of eudialyte-I and -II are recognizable. Type 1 involves replacement by complex aggregates of zircon, fergusonite-(Ce), allanite-(Ce), britholite-(Ce), titanite, pyrochlore, albite and potassium feldspar, i.e. a “miaskitic” paragenesis. Type 2 alteration consists of complex aggregates dominated by deuteric Na–Zr-silicates (?catapleiite), stronalsite, strontium-apatite and lamprophyllite replacing eudialyte-I and -II and relicts of the “miaskitic paragenesis”, i.e. a highly sodic “agpaitic-to-hyperagpaitic” paragenesis. Type 3 replacement involves mantling of any residual eudialyte-II and zircon, and replacement of deuteric Na–Zr-silicates by eudialyte-III together with barytolamprophyllite as late hydrothermal phases. Further alteration and replacement resulted in the superposition of natrolite, britholite, pyrochlore, allanite and diverse Ba- and Mn-based minerals onto the types 2 and 3 assemblages, and ultimately to the deposition of allanite-(La), La-dominant REE carbonates and rarely a silica phase. All of the alteration styles are considered to have occurred in situ under subsolidus conditions (< 450 °C) by interaction of pre-existing eudialyte and other minerals with deuteric, sodium- and chlorine-bearing aqueous fluids. The evolution of the replacement products is from a miaskitic through an agpaitic to a hyperagpaitic paragenesis and ultimately back to a low agpaitic-to-miaskitic assemblage, reflecting changes in the a(Na+)/a(Cl) ratio and alkalinity of the deuteric/hydrothermal fluids.  相似文献   

2.
Ultrapotassic, peralkalic silica-saturated plutons (580 Ma) are widespread in the Cachoeirinha-Salgueiro foldbelt, northeastern Brazil. They consist of alkali-feldspar syenites with pyroxenite as co-magmatic inclusions and syn-plutonic or late-stage dikes. Pyroxenite and syenite have the same mineral phases (aegirine-augite, microcline, sphene, apatite, blue amphibole, magnetite), but only in different proportions. Rare inclusions of a “mixed” rock (about 60% syenite+40% pyroxenite in an emulsion-like texture) are also present. Pyroxenes in the three units are all only slightly zoned, silica-saturated and extremely low in Al2O3 (0.2–1.4%). Amphiboles are mostly K-rich richterite, characterized by high SiO2, low Al2O3 and TiO2 contents and low Mg#.

The three rock types have similar REE chondrite-normalized patterns, with negative slopes and lack of Eu anomaly, with the total REE in the pyroxenite greater than that of the syenite. Trace element patterns for the mixed rock are intermediate between those for the pyroxenite and syenite. Major element partitioning between pyroxenite and syenite has the same sense as that one observed between immiscible liquids in volcanic lavas and trace element partitioning is similar to the experimentally determined partition of immiscible liquid pairs.

The rocks have similar high δ18O values (avg. w.r.+ 8‰SMOW, corrected from pyroxene), high initial 87Sr/86Sr ratios (about 0.710), and low 143Nd/144Nd (avg. 0.51104).

Field and geochemical characteristics indicate chemical equilibrium among the three rock types and suggest liquid immiscibility between syenite and pyroxenite, the mixed rock representing the original magma composition.  相似文献   


3.
The Ditrău Alkaline Massif is an intrusion into the Bucovina nappe system that is part of the Mesozoic crystalline zone located in Transylvania, Romania, in the Eastern Carpathians. Nepheline syenites are the most abundant rocks in the central and eastern part of the Massif, and represent the last major intrusion of the complex. Fluid inclusions in nepheline, aegirine and albite were trapped at magmatic conditions on or below the H2O-saturated nepheline syenite solidus at about 400–600 °C and 2.5–5 kbars. Early nepheline, and to a lesser extent albite, were altered by highly saline fluids to produce cancrinite, sodalite and analcime, during this process cancrinite also trapped fluid inclusions. The fluids, in most cases, can be modeled by the H2O–NaCl system with varying salinity; however inclusions with more complex fluid composition (containing K, Ca, CO3, etc., in addition to NaCl) are common. Raman spectroscopic analyses of daughter minerals confirm the presence of alkali-carbonate fluids in some of the earliest inclusions in nepheline, aegirine and albite.

During crystallization, the melts exsolved a high salinity, carbonate-rich magmatic fluid that evolved to lower salinity as crystallization progressed. Phases that occur early in the paragenesis contain high-salinity inclusions while late phases contain low-salinity inclusions. The salinity trend is consistent with experimental data for the partitioning of chlorine between silicic melt and exsolved aqueous fluid at about 2.0 kbars. The activity of water (aH2O) in the melt increases during crystallization, resulting in the formation of hydrous phases during late-stage crystallization of the nepheline syenites.  相似文献   


4.
The Pine Canyon caldera is a small (6–7 km diameter) ash-flow caldera that erupted peralkaline quartz trachyte, rhyolite, and high-silica rhyolite lavas and ash-flow tuffs about 33–32 Ma. The Pine Canyon caldera is located in Big Bend National Park, Texas, USA, in the southern part of the Trans-Pecos Magmatic Province (TPMP). The eruptive products of the Pine Canyon caldera are assigned to the South Rim Formation, which represents the silicic end member of a bimodal suite (with a “Daly Gap” between 57 and 62 wt.% SiO2); the mafic end member consists primarily of alkali basalt to mugearite lavas of the 34–30 Ma Bee Mountain Basalt. Approximately 60–70% crystallization of plagioclase, clinopyroxene, olivine, magnetite, and apatite from alkali basalt coupled with assimilation of shale wall rock (Ma/Mc = 0.3–0.4) produced the quartz trachyte magma. Variation within the quartz trachyte–rhyolite suite was the result of 70% fractional crystallization of an assemblage dominated by alkali feldspar with subordinate clinopyroxene, fayalite, ilmenite, and apatite. High-silica rhyolite is not cogenetic with the quartz trachyte–rhyolite suite, and can be best explained as the result of  5% partial melting of a mafic granulite in the deep crust under the fluxing influence of fluorine. Variation within the high-silica rhyolite is most likely due to fractional crystallization of alkali feldspar, quartz, magnetite, biotite, and monazite. Lavas and tuffs of the South Rim Formation form A-type rhyolite suites, and are broadly similar to rock series described in anorogenic settings both in terms of petrology and petrogenesis. The Pine Canyon caldera is interpreted to have developed in a post-orogenic tectonic setting, or an early stage of continental rifting, and represents the earliest evidence for continental extension in the TPMP.  相似文献   

5.
U. Kramm  L. N. Kogarko 《Lithos》1994,32(3-4):225-242
Nd and Sr compositions of the highly evolved agpaitic nepheline syenites and associated ijolites and carbonatites from the Khibina and the Lovozero alkaline centres define three magma sources. Isotopes of the voluminous nepheline syenites and ijolites of Khibina intrusions III, IV, V, VI and VII as well as of nepheline syenites of Lovozero lie on the Kola Carbonatite Mixing Line which is close to the “mantle array” defined by the components “bulk earth” and “prema” on a Sr---Nd plot. The Khibina carbonatites and associated silicate rocks of intrusion VIII, which have more radiogenic Sr, did not evolve from the same parent magma as the nepheline syenites.

Isotopic constraints exclude a pre-enrichment of Rb, Sr, Sm and Nd in the lithospheric mantle below Kola over more than 10 Ma prior to the crystallization of the magmas. A formation of the melts involving major participation of the Precambrian crust of the Baltic Shield is also excluded.

The lack of significant Eu anomalies in the Lovozero nepheline syenites gives evidence that the agpaitic magmas in the Kola region did not form from basaltic liquids by fractional crystallization of plagioclase or anorthoclase at crustal levels. A formation from nephelinite or nepheline benmoreite magmas at mantle pressures is more likely, possibly by dynamic flow crystallization.

Enrichment factors suggest that large-ion lithophile and high field-strength elements as Ta, La, Nb and Zr, which are highly concentrated in the agpaites, were scavenged from mantle volumes of some 100,000 km3. An enrichment of these elements prior to magma formation may have been performed by volatile transfer.

The well-defined whole-rock isochrons of the Khibina III–VII and the Lovozero agpaites of c. 370 Ma date the magma separation for the different intrusion, if these melts are cogenetic and formed by fractional crystallization in a Khibina and a Lovozero magma chamber. If, however, Rb and Sr were collected by a process of volatile transfer, and the initial Sr isotopic compositions of the two distinguished agpaite suites are, therefore, averages of the sampled mantle volumes, the Rb---Sr whole-rock isochron ages of c. 370 Ma would date this process of element collection. The concordance of the whole-rock ages with the mineral ages of Khibina and Lovozero samples is then further evidence for the short period between magma genesis, intrusion and crystallization.  相似文献   


6.
Zircon, monazite and xenotime crystallized over a temperature interval of several hundred degrees at the magmatic to hydrothermal transition of the Sn and W mineralized Mole Granite. Magmatic zircon and monazite, thought to have crystallized from hydrous silicate melt, were dated by conventional U–Pb techniques at an age of 247.6 ± 0.4 and 247.7 ± 0.5 Ma, respectively. Xenotime occurring in hydrothermal quartz is found to be significantly younger at 246.2 ± 0.5 Ma and is interpreted to represent hydrothermal growth. From associated fluid inclusions it is concluded that it precipitated from a hydrothermal brine ≤ 600 °C, which is below the accepted closure temperature for U–Pb in this mineral. These data are compatible with a two-stage crystallization process: precipitation of zircon and monazite as magmatic liquidus phases in deep crustal magma followed by complete crystallization and intimately associated Sn–W mineralization after intrusion of the shallow, sill-like body of the Mole Granite. Later hydrothermal formation of monazite in a biotite–fluorite–topaz reaction rim around a mineralized vein was dated at 244.4 ± 1.4 Ma, which distinctly postdates the Mole Granite and is possibly related to a younger hidden intrusion and its hydrothermal fluid system.

Obtaining precise age data for magmatic and hydrothermal minerals of the Mole Granite is hampered by uncertainties introduced by different corrections required for multiple highly radiogenic minerals crystallising from evolved hydrous granites, including 230Th disequilibrium due to Th/U fractionation during monazite and possibly xenotime crystallization, variable Th/U ratios of the fluids from which xenotime was precipitating, elevated contents of common lead, and post-crystallization lead loss in zircon, enhanced by the fluid-saturated environment. The data imply that monazite can also survive as a liquidus phase in protracted magmatic systems over periods of 106 years. The outlined model is in agreement with prominent chemical core-rim variation of the zircon.  相似文献   


7.
Both adakitic and shoshonitic igneous rocks in the Luzong area, Anhui Province, eastern China are associated with Cretaceous Cu–Au mineralization. The Shaxi quartz diorite porphyrites exhibit adakite-like geochemical features, such as light rare earth element (LREE) enrichment, heavy REE (HREE) depletion, high Al2O3, MgO, Sr, Sr / Y and La / Yb values, and low Y and Yb contents. They have low εNd(t) values (− 3.46 to − 6.28) and high (87Sr / 86Sr)i ratios (0.7051–0.7057). Sensitive High-Resolution Ion Microprobe (SHRIMP) zircon analyses indicate a crystallization age of 136 ± 3 Ma for the adakitic rocks. Most volcanic rocks and the majority of monzonites and syenites in the Luzong area are K-rich (or shoshonitic) and were also produced during the Cretaceous (140–125 Ma). They are enriched in LREE and large-ion lithophile elements, and depleted in Ti, and Nb and Ba and exhibit relatively lower εNd(t) values ranging from − 4.65 to − 7.03 and relatively higher (87Sr / 86Sr)i ratios varying between 0.7057 and 0.7062. The shoshonitic and adakitic rocks in the Luzong area have similar Pb isotopic compositions (206Pb / 204Pb = 17.90–18.83, 207Pb / 204Pb = 15.45–15.62 and 208Pb / 204Pb = 38.07–38.80). Geological data from the Luzong area suggest that the Cretaceous igneous rocks are distributed along NE fault zones (e.g., Tanlu and Yangtze River fault zones) in eastern China and were likely formed in an extensional setting within the Yangtze Block. The Shaxi adakitic rocks were probably derived by the partial melting of delaminated lower crust at pressures equivalent to crustal thickness of > 50 km (i.e., 1.5 GPa), possibly leaving rutile-bearing eclogitic residue. The shoshonitic magmas, in contrast, originated mainly from an enriched mantle metasomatized by subducted oceanic sediments. They underwent early high-pressure (> 1.5 GPa) fractional crystallization at the boundary between thickened (> 50 km) lower crust and lithospheric mantle and late low-pressure (< 1.5 GPa) fractional crystallization in the shallow (< 50 km) crust. The adakitic and shoshonitic rocks appear to be linked to an intra-continental extensional setting where partial melting of enriched mantle and delaminated lower crust was probably controlled by lithospheric thinning and upwelling of hot asthenosphere along NE fault zones (e.g., Tanlu and Yangtze River fault zones) in eastern China. Both the shoshonitic and adakitic magmas were fertile with respect to Cu–Au mineralization.  相似文献   

8.
S. Jung  E. Hoffer  S. Hoernes 《Lithos》2007,96(3-4):415-435
Major element, trace element and Nd–Sr–Pb–O isotope data for a suite of Neo-Proterozic, pre-orogenic, rift-related syenites from the Northern Damara orogen (Namibia) constrain their sources and petrogenesis. New U–Pb ages obtained on euhdreal titanite of inferred magmatic origin constrain the age of intrusion of the Lofdal and Oas syenites to ca. 750 Ma compatible with previous high-precision zircon analyses from the Oas complex. Major rock types from Lofdal and Oas are mildly sodic nepheline-normative and quartz-normative syenites and were primarily generated by fractional crystallization from a mantle-derived alkaline magma. Primitive samples from Lofdal and Oas show depletion of Rb, K and Th relative to Ba and Nb together with variable negative anomalies of P and Ti on a primitive mantle-normalized diagram. Evolved samples from Oas develop significant negative Ba, Sr, P and Ti anomalies and positive U and Th anomalies mainly as a function of crystal fractionation processes. The lack of a pronounced negative Nb anomaly in samples from Lofdal suggests that involvement of a crustal component is negligible. For the nepheline-normative samples from Lofdal, the unradiogenic Sr and radiogenic Nd isotope composition and low δ18O values suggest derivation of these samples from a moderately depleted lithospheric upper mantle with crustal-like U/Pb ratios (87Sr/86Sr: 0.7031–0.7035, ε Nd: ca. + 1, δ18O: 7‰, 206Pb/204Pb: ca.18.00, 207Pb/204Pb: 15.58–15.60). Primitive samples of the Oas quartz-normative syenites have identical isotope characteristics (87Sr/86Sr: 0.7034, ε Nd: ca. + 1, δ18O: 6.5‰, 206Pb/204Pb: ca.18.00, 207Pb/204Pb: 15.59) whereas more differentiated samples have higher 87Sr/86Sr ratios (0.709–0.714), slightly higher δ18O values (7.0–7.1‰), less radiogenic ε Nd values (− 1.1 to − 1.4) and more radiogenic 206Pb/204Pb ratios up to 18.27. These features together with model calculations using Sr–Nd–Pb isotopes suggest modification of a primary syenite magma by combined AFC processes involving ancient continental crust. In this case, high Nb abundances of the parental syenite liquid prevent the development of significant negative Nb anomalies that may be expected due to interaction with continental crust.  相似文献   

9.
Within the 1.16 Ga old Ilímaussaq intrusion, up to 700 m large autoliths occur in one stratigraphic unit of the layered floor series of agpaitic nepheline syenites (kakortokites). These autoliths consist of two different rock types: augite syenite and naujaite (agpaitic nepheline syenite). All three rock types show a number of alteration features related to the entrapment of the autoliths in the kakortokite magma caused by the interaction with a fluid phase.

In the kakortokites, the oxidation of primary arfvedsonite to aegirine and fluorite is restricted to the close proximity to the autoliths. Close to the surrounding kakortokite, the primary mafic phases of the augite syenites (augite, fayalite, Fe–Ti oxides) are completely replaced by arfvedsonite, aenigmatite, biotite, aegirine and fluorite. The decomposition of primary hastingsite to spectacular aegirine–augite–nepheline–aenigmatite symplectites can be observed up to several meters inside the autoliths. Additionally, fluorite formed at grain boundaries of primary nepheline. In the naujaite autoliths, primary arfvedsonite is replaced by aegirine–biotite intergrowths and abundant aenigmatite is occasionally replaced by Ti-rich aegirine and Fe–Ti oxides.

The mineral reactions in the autoliths are used to decipher details of the late to post-magmatic processes in a peralkaline syenitic intrusion. Mineral equilibria record an evolution governed by falling temperature (620 to ca. 500 °C) and increasing relative oxygen fugacity from FMQ + 1 to above FMQ + 4. Quantification of the observed mineral reactions reveals the infiltration of the autoliths with an oxidizing fluid phase rich in Na and F and minor addition of K. Volatiles (H and F) and in some cases also Fe, Ti and Ca (± Mg) released from primary autolith phases were mainly just relocated within the autoliths.  相似文献   


10.
Three types of zircon coexist in an unusual lower crustal xenolith from the Valle Guffari diatreme (Hyblean Plateau, Sicily): igneous Type 1 (near-euhedral, weakly zoned; Ce/Ce > 1); partially recrystallised Type 2 (ovoid, structureless; weak Ce anomaly); hydrothermal Type 3 (sugary, spongy-textured, probably related to F-rich aqueous fluids). U–Pb dating by LAM-ICPMS, supported by in situ Hf-isotope analysis, suggests that both Type 1 and Type 2 zircons were originally Archean (ca 2.7 Ga), though many of these grains have experienced severe Pb loss. The U–Pb ages of the hydrothermal zircons cluster around 246 Ma, interpreted as the timing of the hydrothermal event. Their εHf (+ 8.5 to − 1.2) indicates the mixing of old crustal components and material from a juvenile source.

In situ Os-isotope analyses of sulfides hosted in peridotite xenoliths from Valle Guffari show Paleoproterozoic–Archean TRD minimum ages, corresponding to the age of the oldest zircon grains in the crustal xenolith. Other peaks of TRD ages suggest that multiple metasomatic events have affected the lithospheric mantle.

These observations suggest that the lower crust and the upper part of the lithospheric mantle beneath the Hyblean Plateau represent the northernmost portion of the African Plate. These two units have coexisted since at least late Archean time, and have remained linked through several episodes of crustal modification, including the Permo-Triassic hydrothermal event, which was probably related to the onset of rifting in the Ionian Basin.  相似文献   


11.
Joseph M. Pyle 《Lithos》2006,88(1-4):201-232
Analysis of monazite-bearing lithologies from the Precambrian Honey Brook Upland (HBU) and overlying metasedimentary Paleozoic Chester Valley Sequence (CVS) (SE PA, USA) reveals overprinting of primary major and accessory phase parageneses by texturally and compositionally disparate secondary accessory phase parageneses. Two-pyroxene temperatures of 915–945 °C for reconstituted pyroxene reflect emplacement temperatures of felsic plutonic rocks (opdalite, charnockite) prior to Mesoproterozoic metamorphism. Monazite in metavolcanic felsic gneiss yields three age domains at 1009 ± 4 Ma (2 s.e.), 965 ± 6, and 876 ± 10 Ma. The first two domains record metamorphism of the HBU after anorthosite intrusion; peak monazite–xenotime temperatures for the monazite core domain are 700 °C, and high Th/U values in the second (overgrowth) age domain likely reflect a second high-T monazite growth episode. Formation of cummingtonite coronas on orthopyroxene in opdalite constrains maximum 1010 Ma metamorphic temperatures in the “granulite-facies” terrane to 730–740 °C. Evidence of increased Cl fluid activity in the 965 Ma metamorphism includes higher Cl content of matrix apatite relative to garnet-included apatite (metavolcanics), and Cl-bearing K-hornblende succeeding cummingtonite in coronal overgrowths (opdalite). Extreme monazite Th/U values (75–250) in the rim domain suggest growth during low-T hydrothermal alteration. In the opdalite, secondary singe-grain monazite and monazite + xenotime metasomites in apatite yield ages of 714 ± 24 and 586 ± 88 Ma, temperatures of 325–425 °C, and are interpreted to reflect thermal disturbances associated with late Proterozoic plutonic and volcanic activity in the Upland. This thermal disturbance may be recorded by Rb–Sr age of 567 Ma for biotite from a HBU gneiss. Monazite age domains in metaquartzite (378 ± 28, 272 ± 44 Ma) suggest that low-grade metamorphism (260–320 °C, Mnz–Xno thermometry) of the CVS is not a result of Taconian orogenesis.  相似文献   

12.
Agpaitic rocks comprise most of the exposed part of the 1.16 Ga old, 8 × 17 km large and about 1700 m thick Ilímaussaq intrusion in South Greenland. Within these, more than 600 m thick sequence of sodalite-rich “naujaites” (mainly sodalite + arfvedsonite + alkali feldspar + nepheline + eudialyte + aenigmatite) are interpreted as a sodalite flotation cumulate. Sodalites show two to three different zones in cathodoluminescence (CL) and at least two zones in thin sections. The CL zones can be related to chemical differences detectable by electron microprobe, whereas relations with optical zonations are less obvious. Compositional trends in sodalite reflect trends in the evolution of volatile contents in the melt. The sodalite at Ilímaussaq is almost free of Ca and closely corresponds to the pure Na–Cl sodalite endmember with about 7 wt.% of Cl; S contents reach up to 0.9 wt.%. Cl/Br ratios range from 500 to 1700. Raman spectroscopy shows that S is present as [SO4]2− in sodalite, although sphalerite (ZnS) is a stable phase in naujaites. Peralkalinity and fO2 conditions allow S2− and [SO4]2− to be present contemporaneously.

The whole naujaite sequence is divided into two parts, an upper part with low, homogeneous S contents and Cl/Br ratios in the sodalite cores, and a lower part with strongly variable and higher S contents and with Cl/Br ratios, which are decreasing downwards. The details of the S content and the Cl/Br ratio evolution show that sodalite strongly influences the halogen contents of the melt by scavenging Cl and Br.

The naujaites were formed from a highly reduced, halogen-rich magma in equilibrium with magmatic methane at about 800 °C, which, upon ascent, cooling and fractionation, exsolved an aqueous fluid phase. Both fluids were trapped in separate inclusions indicating their immiscibility.

Micrometer-sized aegirine crystals and primary hydrocarbon-bearing inclusions are abundant in the crystal cores. The inclusions were trapped at pressures up to 4 kbar, although the emplacement pressure of the intrusion is about 1 kbar. This indicates growth of the sodalite during melt ascent and a very effective mechanism of trace element scavenging during sodalite growth. Sodalite rims are devoid of aegirine or primary hydrocarbon inclusions and probably reflect the emplacement stage.  相似文献   


13.
Aenigmatite in the Ilímaussaq intrusion shows a variety of textural relations to the other mafic minerals and an unusual range in chemical compositions. The saturated and oversaturated rocks contain zoned aenigmatities with Ca, Al, Fe2+-rich cores coexisting with katophorite, and near-ideal Ti-aenigmatite rims coexisting with arfvedsonite and aegirine. The aenigmatite substitutions are outlined, and the varying chemistry discussed. A no-oxide field seems to have existed in the (log fO2, T) space for the undersaturated magma, and an arfvedsonite-aenigmatite oxygen buffer equilibrium is suggested for the coexisting Fe3+-rich aenigmatite and katophorite. This buffer was later invalidated by the stabilisation of aegirine, whereby the Fe3+-aenigmatite component broke down, causing extensive recrystallisation into near-ideal Ti-aenigmatite.  相似文献   

14.
This study documents the petrography and whole-rock major and trace element geochemistry of 38 samples mainly from a drill core through the entire Fedorivka layered intrusion (Korosten Pluton), as well as mineral compositions (microprobe analyses and separated mineral fraction analyses of plagioclase, ilmenite, magnetite and apatite) of 10 samples. The Fedorivka layered intrusion can be divided into 4 lithostratigraphic units: a Lower Zone (LZ, 72 m thick), a Main Zone (MZ, 160 m thick), and an Upper Border Zone, itself subdivided into 2 sub-zones (UBZ2, 40 m thick; UBZ1, 50 m thick). Igneous lamination defines the cumulate texture, but primary cumulus minerals have been affected by trapped liquid crystallization and subsolidus recrystallization. The dominant cumulus assemblage in MZ and UBZ2 is andesine (An39–42), iron-rich olivine (Fo32–42), augite (En29–35Fs24–29Wo42–44), ilmenite (Hem1–6), Ti-magnetite (Usp52–78), and apatite. The data reveal a continuous evolution from the floor of the intrusion (LZ) to the top of MZ, due to fractional crystallization, and an inverse evolution in UBZ, resulting from crystallization downwards from the roof. The whole-rock Fe/Mg ratio and incompatible element contents (e.g. Rb, Nb, Zr, REE) increase in the fractionating magma, whereas compatible elements (e.g. V, Cr) steadily decrease. The intercumulus melt remained trapped in the UBZ cumulates due to rapid cooling and lack of compaction, and cumulus mineral compositions re-equilibrated (e.g. olivine, Fe–Ti oxides). In LZ, the intercumulus melt was able to partially or totally escape. The major element composition of the MZ cumulates can be approximated by a mixing (linear) relationship between a plagioclase pole and a mafic pole, the latter being made up of all mafic minerals in (nearly) constant relative proportions. By analogy with the ferrobasaltic/jotunitic liquid line of descent, defined in Rogaland, S. Norway, and its conjugated cumulates occurring in the Transition Zone of the Bjerkreim-Sokndal intrusion (Rogaland, a monzonitic (57% SiO2) melt is inferred to be in equilibrium with the MZ cumulates. The conjugated cumulate composition falls (within error) on the locus of cotectic compositions fixed by the 2-pole linear relationship. Ulvöspinel is the only Ti phase in some magnetites that have been protected from oxidation. QUIlF equilibria in these samples show that magnetite and olivine in MZ have retained their liquidus compositions during subsolidus cooling. This permits calculation of liquidus fO2 conditions, which vary during fractionation from ΔFMQ = 0.7 to − 1.4 log units. Low fO2 values are also evidenced by the late appearance of cumulus magnetite (Fo42) and the high V3+-content of the melt, reflected in the high V-content of the first liquidus magnetite (up to 1.85% V).  相似文献   

15.
The Oshurkovo Complex is a plutonic sheeted complex which represents numerous successive magmatic injections into an expanding system of subparallel and subvertical fractures. It comprises a wide range of rock types including alkali monzodiorite, monzonite, plagioclase-bearing and alkali-feldspar syenites, in the proportion of about 70% mafic rocks to 30% syenite. We suggest that the variation within the complex originated mainly by fractional crystallization of a tephrite magma.

The mafic rocks are considered as plutonic equivalents of lamprophyres. They exhibit a high abundance of ternary feldspar and apatite, the latter may attain 7–8 vol.% in monzodiorite. Ternary feldspar is also abundant in the syenites. The entire rock series is characterized by high Ba and Sr concentrations in the bulk rock samples (3000–7000 ppm) and in feldspars (up to 1 wt.%). The mafic magma had amphibole at the liquidus at 1010–1030 °C based on amphibole geothermometer. Temperatures as low as this were due to high H2O and P2O5 contents in the melt (up to 4–6 and 2 wt.%, respectively). Crystallization of the syenitic magmas began at about 850 °C (based on ternary feldspar thermometry). The series was formed at an oxygen fugacity from the NNO to HM buffer, or even higher.

The evolution of the alkali monzodiorite–syenite series by fractional crystallization of a tephritic magma is established on the basis of geological, mineralogical, geochemical and Sm–Nd and Rb–Sr isotope data. The geochemical modeling suggests that fractionation of amphibole with subordinate apatite from the tephrite magma leaves about 73 wt.% of the residual monzonite melt. Further extraction of amphibole and plagioclase with minor apatite and Fe–Ti oxides could bring to formation of a syenite residuum. Rb–Sr isotopic analyses of biotite, apatite and whole-rock samples constrain the minimum age of basic intrusions at ca. 130 Ma and that of cross-cutting granite pegmatites at ca. 120 Ma. Hence the entire evolution took place in an interval of ≤10 My. Initial 87Sr/86Sr ratios for the mafic rocks range from 0.70511 to 0.70514, and for syenites from 0.70525 to 0.70542. Initial Nd (130 Ma) values for mafic rocks vary from −1.9 to −2.4, and for syenites from −2.9 to −3.5. In a Nd(T) vs. (87Sr/86Sr)i diagram, all rock types of the complex fall in the enriched portion of the Mantle Array, suggesting their derivation from a metasomatized mantle source. However, the small but distinguishable difference in Sr and Nd isotopic compositions between mafic rocks and syenites probably resulted from mild (10–20%) crustal contamination during differentiation. Large negative Nb anomalies are interpreted as a characteristic feature of the source region produced by Precambrian fluid metasomatism above a subduction zone rather than by crustal contamination.  相似文献   


16.
Sr–Nd–Pb isotope ratios of alkaline mafic intra-plate magmatism constrain the isotopic compositions of the lithospheric mantle along what is now the eastern foreland or back arc of the Cenozoic Central Andes (17–34°S). Most small-volume basanite volcanic rocks and alkaline intrusive rocks of Cretaceous (and rare Miocene) age were derived from a depleted lithospheric mantle source with rather uniform initial 143Nd/144Nd ( 0.5127–0.5128) and 87Sr/86Sr ( 0.7032–0.7040). The initial 206Pb/204Pb ratios are variable (18.5–19.7) at uniform 207Pb/204Pb ratios (15.60 ± 0.05). A variety of the Cretaceous depleted mantle source of the magmatic rocks shows elevated Sr isotope ratios up to 0.707 at constant high Nd isotope ratios. The variable Sr and Pb isotope ratios are probably due to radiogenic growth in a metasomatized lithospheric mantle, which represents the former sub-arc mantle beneath the early Palaeozoic active continental margin. Sr–Nd–Pb isotope signatures of a second mantle type reflected in the composition of Cretaceous (one late Palaeozoic age) intra-plate magmatic rocks (143Nd/144Nd  0.5123, 87Sr/86Sr  0.704, 206Pb/204Pb  17.5–18.5, and 207Pb/204Pb  15.45–15.50) are similar to the isotopic composition of old sub-continental lithospheric mantle of the Brazilian Shield.

Published Nd and Sr isotopic compositions of Mesozoic to Cenozoic arc-related magmatic rocks (18–40°S) represent the composition of the convective sub-arc mantle in the Central Andes and are similar to those of the Cretaceous (and rare Miocene) intra-plate magmatic rocks. The dominant convective and lithospheric mantle type beneath this old continental margin is depleted mantle, which is compositionally different from average MORB-type depleted mantle. The old sub-continental lithospheric mantle did not contribute to Mesozoic to Cenozoic arc magmatism.  相似文献   


17.
Barite occurrences related to the Cenozoic (Late Alpine) low-temperature hydrothermal activity are present in the continental Ohře (Eger) Rift area. A specific, Ra-bearing type of barite has been known under the name “radiobarite” from this area since 1904. Revision of 12 localities revealed the presence of alleged radiobarite only in the Teplice (Lahošť–Jeníkov) and Karlovy Vary areas. Barite from other localities is radium-poor. Barite crystals showing concentric oscillation colour zoning totally prevail. Isomorphous substitution of Sr (X×10−1 to X×wt%), Ca (X×10−2 wt%) and Fe (X×10−1 wt%) for Ba was proved. Average SrO contents of 0.4 wt% are markedly exceeded in some samples from Lahošť–Jeníkov (max. 3.2 wt%) and Karlovy Vary (max. 4.9 wt%). Besides inclusions of stoichiometric iron disulphide, the same samples also contain iron disulphides with unusual high contents of Co (max. 12.2 wt%) and Ni (max. to 8.4 wt%). Specific activity of 238U in the studied barites is very low while that of 226Ra reaches 8 Bq/g in several samples. Therefore, 226Ra is not in equilibrium with its parent uranium. These “radiobarites” or their parts must be therefore relatively young, not older than 10–15 ka. Very low uranium contents (<0.4 ppm) were also confirmed by neutron activation analyses of barite samples.

Unit-cell dimensions refined from X-ray powder diffraction data do not show any systematic variation with the measured chemical composition. Their values agree with the data given in the literature. Reflection half-widths, however, seem to correlate with chemistry. Peaks are wider in samples from Lahošť–Jeníkov and Karlovy Vary.

Sulphur and oxygen stable isotope compositions of the Cenozoic barite mineralization of Teplice area are very uniform (δ34S values between 3.9‰ and 7.1‰ CDT, and δ18O values between 6.1‰ and 7.7‰ SMOW), while the barites of Děc˘ín area show more variable sulphur sources. Sulphate derived from sediments of the Tertiary Most Basin seems to dominate for the Teplice area, while Cretaceous sediments are a more probable sulphur source in the Děc˘ín area. Calculation of oxygen isotope composition of hydrothermal fluids based on fluid inclusion homogenization temperatures and barite δ18O data shows δ18Ofluid values in the range of meteoric waters or δ18O – shifted deep circulating meteoric or basinal waters.  相似文献   


18.
A combined geochronological, geochemical, and Nd isotopic study of felsic high-pressure granulites from the Snowbird Tectonic Zone, northern Saskatchewan, Canada, has been carried out through the application of integrated electron microprobe and isotope dilution thermal ionization mass spectrometry (ID-TIMS) techniques. The terrane investigated is a 400 km2 domain of garnet–kyanite–K–feldspar-bearing quartzofeldspathic gneisses. Monazite in these granulites preserves a complex growth history from 2.6 to 1.9 Ga, with well-armored, high Y and Th grains included in garnet yielding the oldest U–Pb dates at 2.62 to 2.59 Ga. In contrast, matrix grains and inclusions in garnet rims that are not well-armored are depleted in Y and Th, and display more complicated U–Pb systematics with multiple age domains ranging from 2.5 to 2.0 Ga. 1.9 Ga monazite occurs exclusively as matrix grains. Zircon is typically younger (2.58 to 2.55 Ga) than the oldest monazite. Sm–Nd isotope analysis of single monazite grains and whole rock samples indicate that inclusions of Archean monazite in garnet are similar in isotopic composition to the whole rock signature with a limited range of slightly negative initial Nd. In contrast, grains that contain a Paleoproterozoic component show more positive initial Nd, most simply interpreted as reflecting derivation from a source involving consumption of garnet and general depletion of HREE's. Our preferred interpretation is that the oldest monazite dates record igneous crystallization of the protolith. The ca. 2.55 Ga dates in zircon and monazite record an extensive melting event during which garnet and ternary feldspar formed. Very high-pressure (> 1.5 GPa) metamorphism during the Paleoproterozoic at 1.9 Ga produced kyanite from garnet breakdown, and resulted in limited growth of new monazite and zircon. In the case of monazite, this is likely due to the armoring and sequestration of early-formed monazite such that it could not participate in metamorphic reactions during the high-pressure event, as well as the depletion of the REE's due to melt loss following the early melting event.  相似文献   

19.
This paper reports the integrated application of petrographic and Sm–Nd isotopic analyses for studying the provenance of the Neoproterozoic Maricá Formation, southern Brazil. This unit encompasses sedimentary rocks of fluvial and marine affiliations. In the lower fluvial succession, sandstones plot in the “craton interior” and “transitional continental” fields of the QFL diagram. Chemical weathering probably caused the decrease of the 147Sm/144Nd ratios to 0.0826 and 0.0960, consequently lowering originally > 2.0 Ga TDM ages to 1.76 and 1.81 Ga. 143Nd/144Nd ratios are also low (0.511521 to 0.511633), corresponding to negative εNd present-day values (− 21.8 and − 19.6). In the intermediate marine succession, sandstones plot in the “dissected arc” field, reflecting the input of andesitic clasts. Siltstones and shales reveal low 143Nd/144Nd ratios (0.511429 to 0.511710), εNd values of − 18.1 and − 23.6, and TDM ages of 2.16 and 2.37 Ga. Sandstones of the upper fluvial succession have “dissected arc” and “recycled orogen” provenance. 143Nd/144Nd isotopic ratios are also relatively low, from 0.511487 to 0.511560, corresponding to εNd values of − 22.4 and − 21.0 and TDM of 2.07 Ga. A uniform granite–gneissic basement block of Paleoproterozoic age, with subordinate volcanic rocks, is suggested as the main sediment source of the Maricá Formation.  相似文献   

20.
W.B. Jones 《Lithos》1979,12(2):89-97
The trachyte caldera volcanoes Kilombe and Londiani have abundant syenite boulders lying on their surfaces. Kilombe also has a syenite inclusions in post-caldera flows and tuffs. Petrographic and chemical investigations show that most of the syenites are very similar to the associated lavas. An origin by almost complete crystallization of batches of trachytic liquid in magma chambers under each volcano is proposed for these. Separation of a small amount of residual melt gives rise to a few melasyenites strongly enriched in Na, Fe and lanthanides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号