首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isaac Channel 3 is a rare outcrop example of a perpendicular cut through a sinuous deep-water channel, and also where levee deposits formed on opposite sides of the channel are well exposed. Strata flanking the outer- and inner-bend margin of the channel show important differences in lithofacies, architecture and association with channel-fill strata. Proximal outer-bend levee deposits are sand-rich (N:G up to 0.68) and comprise medium- to thick-bedded, Ta-d turbidites interstratified with thinly-bedded, Tcd turbidites. The thicker-bedded deposits show lateral variation in grain size and thickness over hundreds of meters whereas thin-bedded strata thin and fine negligibly over similar distances. The distal outer-bend levee (up to 700 m laterally away from the channel) consists predominantly of thin-bedded turbidites interstratified with up to 5 m thick coarse-grained splay deposits. In contrast to the outer-bend, the inner-bend levee deposits are significantly more mud-rich (N:G as low as 0.15) and consist mostly of thin-bedded, Tcd turbidites with less common thicker-bedded, Ta-d turbidites. Lateral thinning and fining trends associated with these less common thicker-bedded deposits occur more rapidly than their outer-bend counterparts.Erosion associated with lateral migration of the channel axis produced a sharp contact along the outer-bend channel margin causing coarse-grained channel-fill deposits to be in erosional contact with levee deposits. This suggests that the crest of the outer-bend levee was elevated above the channel floor and produced a channel margin upon which channel-fill strata onlapped. Positive topography is interpreted to have developed by overspilling processes that deposited abundant sand on the outer-bend levee while the majority of the flow continued through the channel bend and bypassed to areas further downslope. In contrast, some thick-bedded, amalgamated channel-fill deposits in the axial channel area grade laterally over 140 m into thinly-bedded turbidites on the inner-bend levee. The lack of channel-fill on lap relationships implies that topography along the inner bend was sufficiently subtle that at least some flows were able to expand laterally and over the overbank area without becoming separated from the main throughgoing channel flow.Stratal relationships observed in Isaac Channel Complex 3 suggests three main episodes of channel-levee growth that were each initiated by a period of increased levee relief followed by channel filling and distal levee deposition. This consistent depositional history points to the regular variations, in both time and space, of sediment transport and deposition in a deep-marine sinuous channel-levee system.  相似文献   

2.
In the Castle Creek study area, a vertically dipping, 2.5 km-thick succession of basin-floor to base-of-slope Neoproterozoic rocks are superbly exposed. In part of that outcrop, inner-bend (point-bar) deposits of sharp-based, laterally accreting sinuous channels are exposed, of which one is described in detail (Isaac Channel unit 2.2—IC2.2). IC2.2 is up to 13 m thick and extends laterally for at least 400 m. Lateral-accretion deposits, or simply lateral accretion deposits (LADs), are inclined at 7–12° toward the channel base and are about 120–140 m long. Grain size changes little obliquely upward along an individual LAD, or vertically upward through the channel-fill. LADs consist of two repeating and interstratified kinds: coarse-grained LADs consisting of strata up to granule conglomerate, and fine-grained LADs composed of thin- to medium-bedded finer-grained turbidites. In the lower part of the channel-fill, strata consist only of amalgamated coarse-grained LADs composed of decimetre-thick beds composed of very coarse sandstone/granule conglomerate that grade upward to medium sandstone. Tractional sedimentary structures are absent and fine-grained strata, specifically mudstone, occur only as isolated patches of intraclast breccia. In the upper part of the channel-fill, however, LADs consist of a rhythmic interfingering of coarse- and fine-grained LADs. Coarse-grained LADs consist of 2–3 bed-thick packages that are separated and then pinch-out rapidly into fine-grained LADs. Close to their up-dip pinch-out these coarse strata consist commonly of poorly sorted, ungraded very coarse sandstone/granule conglomerate overlain abruptly by planar-laminated or medium-scale (dune) cross-stratified, medium-grained sandstone. Fine-grained LADs are composed of mudstone interbedded with thin- and medium-bedded Tbcd and Tcd turbidites that obliquely downward and become truncated as the super- and subjacent coarse-grained LADs amalgamate.The rhythmic intercalation of coarse- and fine-grained LADs is interpreted to be related to temporal changes in the nature of sediment deposition along the point-bar of a deep-marine sinuous channel. Following failure along the cut-bank margin (outer bend), deposition of coarse-grained sediment on the point-bar (inner bend) occurred in order to re-establish an equilibrium channel geometry, and thereby equilibrium sediment transport conditions (i.e. sediment bypass). Once equilibrium was re-established deposition of finer, thinner-bedded strata of the succeeding fine LAD resumed. These strata represent deposition from the dilute tail region of flows that for the most part had already transited that particular channel bend and transported the bulk of its coarse sediment further down-dip. This history of alternating coarse and fine-grained sedimentation was repeated several times in the channel bend as it migrated laterally. Moreover, in coarse LADs, the restricted occurrence of tractional sedimentary structures close to their up-dip pinch-out suggests that although suspension deposition may have dominated over much of the lateral accretion surface, it was succeeded, at least on the upper part of the lateral accretion surface, by sediment reworking and bed-load transport, possibly related to elevated turbulent stresses caused by mixing along the sharp density interface in a strongly stratified turbulent flow.Although seemingly similar to LADs reported from fluvial point-bars, deep-marine LADs of the Windermere exhibit many important differences. Some of these differences are likely related to the differences in the mode of sand (and coarser) sediment transport in deep-marine versus non-marine environments, specifically, suspension versus bed load, respectively. In addition, fundamental differences in the flow structure between subaqueous suspension currents and open-channel flows most probably exert an additional first-order control contributing to these differences.  相似文献   

3.
This paper re-examines the Upper Miocene Upper Mount Messenger Formation, Taranaki Basin, to characterize its architecture and interpret its environmental evolution. Analysis of stratal architecture, lithofacies distributions, and paleotransport directions over the 250 m thick formation shows the outcrops provide a nearly dip parallel section displaying the lateral relationships between contemporaneous channel-levee and overbank depositional environments. At least five 30–40 m thick upward fining units are recognized in the north-central parts of the outcrop and are interpreted as large-scale overbank avulsion cycles. Each unit consists of thick- to medium-bedded predominantly planar laminated sandstone turbidites at the base that fine upward into thin- to very thin-bedded, planar laminated and ripple cross-laminated mud-rich turbidites. The units are traceable laterally over a distance exceeding 3 km where they are cut by channels that show basal mudstone draped by medium- to thin-bedded sandstone, and onlapped by thick-bedded planar laminated sandstone at the margin. The channels are separated by tapered packages of medium- to thin-bedded turbidites containing climbing-ripple cross-lamination interpreted as levees. The individual channel-levee and overbank avulsion cycles formed through four stages: 1) a channel avulsion spread sand into the overbank as an unconfined splay, 2) preferential scouring in one area of the splay led to development of a channel with small levees that prograded across the splay, 3) a deep incision followed by abandonment of the channel deposited a mud lining. Alternatively, the mud lining was formed during the first stage as the downdip portion of the channel was abandoned. 4) The channel filled at first by thick-bedded planar laminated and then by climbing-ripple cross-laminated sand. At this time, the growth of constructional levees progressively limited sand into the overbank. Ratios of Bouma division thicknesses calculated over a stratigraphic interval present a new method to distinguish deep-water depositional environments.  相似文献   

4.
This study integrates newly acquired stratigraphic data, geologic mapping, and paleocurrent data to constrain the stratigraphic evolution of the oldest channel-lobe complex in the Upper Cretaceous Cerro Toro Formation in the Silla Syncline area of the Magallanes Basin, termed the Pehoe member. The Pehoe member ranges in thickness from 60 m in the north to at least 410 m farther down system and comprises three separate divisions (A, B, and C). A lower conglomerate unit and an upper one, termed Pehoe A and C divisions respectively, represent the fill of major incised submarine channels or channel complexes. These are separated by stratified sandstone of the Pehoe B division, representing a weakly confined lobe complex, either transient or terminal.The integration of new data with observations from previous studies reveal that the three main coarse-grained conglomerate and sandstone members in the Cerro Toro Formation in the Silla Syncline include at least seven distinct submarine channels or channel complexes and two major lobe complexes. The thinning and disappearance of these units along the eastern limb of the syncline reflect confinement of the flows to a narrow trough or mini-basin bounded to the east by a topographic high. This confinement resulted in unidirectional paleocurrents to the south and southeast in all deposits. Changes in depositional geometries are interpreted as reflecting changes in sediment supply and relative confinement. Submarine channels were from 700 m to 3.5 km wide and occupied a fairway that was 4-5 km wide. Flows moving south and southeast in this mini-basin probably crossed the eastern topographic high south of the present exposures and joined those moving southward along the axis of the foreland basin at least 16 km to the east.  相似文献   

5.
GSWA Harvey 1 was drilled as part of the South West CO2 Geosequestration Hub carbon capture and storage project (South West Hub) to evaluate storage volume, injectivity potential and carbon dioxide retention capacity in the south-western Perth Basin. Six cored intervals from the Triassic Lesueur Sandstone contain nine lithofacies consistent with fluvial depositional environments: the lower Wonnerup Member is dominated by fluvial lithofacies consisting of stacked beds of porous, permeable sandstone deposited as high-energy fill and barforms, with rare finer-grained swampy/overbank deposits. The overlying Yalgorup Member contains mainly floodplain palaeosols with low- to moderate-energy barforms. The high- to moderate-energy fluvial facies typically have a low gamma response and contain clean, medium to very coarse-grained quartz-dominated sandstones. Other clastic components include K-feldspar (8–25%) with trace muscovite, garnet and zircon, and interstitial diagenetic kaolinite (up to 15%) and Fe-rich chlorite (up to 13%). The low-energy facies contain variably interbedded mudstone and thin, moderate to well sorted fine-grained sandstone, typically with a high gamma response, and are consistent with deposition under swampy, overbank and palaeosol conditions. These facies have significantly higher proportions of mica and diagenetic clays, including smectite (up to 8%) and illite (up to 10%), and detrital plagioclase (up to 21%) and trace carbonate bioclasts. High porosity and permeability in the cored intervals of the Wonnerup Member indicate good reservoir characteristics in terms of storage capacity and injectivity at depths relevant to CO2 injection (>1500 m). High porosity and extremely variable permeability values in the Yalgorup Member were measured. The variation is due to permeable vertical sandstone features in low permeability sandy mudstone and indicate limited sealing potential, although the spatial connectivity of the vertical features cannot be resolved from the available core. A preliminary assessment of the area as a CCS site seems favourable; however, the project is only in the early stages of its characterization and far more regional and site-specific data are needed to evaluate how injected CO2 may behave in the subsurface.  相似文献   

6.
High-resolution physical stratigraphy and detailed facies analysis have been carried out in the foredeep turbidites of Annot Sandstone in the Peïra Cava basin (French Maritime Alps) in order to characterize the relationship between facies and basin morphology. Detailed correlation patterns are evidence of a distinction between a southern bypass-dominated region, coincident with a channel-lobe transition and a north-eastern depositional zone, represented by sheet-like basin plain. These depositional elements are characterized by three main groups of beds related to the downcurrent evolution of bipartite flows. These facies groups are: 1) pebbly coarse-grained massive sandstones with rip-up mudstone clasts and impact mudstone breccias (Type I and II beds) deposited by basal dense flows, 2) coarse-grained massive sandstone overlain by tractive structures (Type III and IV beds) indicating the bypass of overlying turbulent flows and 3) massive medium-grained and fine-grained laminated sandstones related to the deposition of high and low density turbidity currents (Type V and VI beds). Ponding and reflection processes, affecting the upper turbulent flows, can characterize all type beds, but especially the beds of the third group. As described in other confined basins of the northern Apennines (Italy), the lateral and vertical distribution of these type of beds, together with other important sedimentary characteristics, - such as the sandstone/mudstone ratio, bed thicknesses, amalgamation surfaces and paleocurrents - reveal that the deposition of the Annot Sandstone in the Peïra Cava basin was controlled by an asymmetric basin with a steep western margin. This margin favored, on the one hand, basal dense flow decelerations and impacts, as well as bypass and deflection of the upper turbulent flows towards the north east.  相似文献   

7.
Mapping geological details and interpreting three-dimensional geometries in a highly heterogeneous outcrop such as the exposure at Big Rock Quarry has been a continuous challenge especially because high vertical cliffs make access to most of the rocks difficult for direct geological observations. Previous interpretations of facies architecture were derived from gamma-ray profiles, a core and measurements made on two-dimensional photomosaics. This paper represents the first attempt of three-dimensional interpretation of the geometry and facies pattern of the Jackfork nested channel complex deposited at the base-of-slope.Examination of the photo real model of the outcrop with assigned lithologies allowed extraction of accurate 3-D qualitative, as well as quantitative (channel dimensions) geometric information. This facilitated interpretation and reconstruction of the submarine channel complex architecture making possible correlations of strata exposed on the two sides of the quarry.Most of the exposed vertically and laterally stacked channels are large, aggradational with well-defined axial regions overlain by matrix-supported breccia which grades upward into amalgamated sandstones. The thickness of the sandstone decreases toward the southeastern end of the quarry where more shale is present. The channel infill consists of thin-bedded sandstones interlayered with shale which overlain the breccia. The upper part of the quarry is made up of smaller, lateral migrating channels.Significant channel width and thickness variation can be recognized at outcrop scale. Thirty-eight identified channels are characterized by a relatively low aspect ratio (4:1 to 32:1) with channel dimensions ranging from 25 m to 314 m wide and 2 m-24 m deep. Bed thickness distributions of various facies show that the sandstone comprises a significant proportion (83%) of the total channel thickness, while shale and breccia represent about 8%, and 17% respectively. This yields a high net-to gross ratio of more than 80%.Compared to previous reconstructions our 3-D photo real model is more accurate and it can be used to calibrate simulation of processes in deep-water environments.  相似文献   

8.
9.
The Var turbiditic system located in the Ligurian Sea (SE France) is an intermediate mud/sand-rich system. The particularity of the Var deep-sea fan is its single channel with abrupt bends and its asymmetric and hyper-developed levee on the right hand side: the Var Sedimentary Ridge. Long-term sediment accumulation on the Var Sedimentary Ridge makes this an ideal target for studying the link between onshore climate change and deep-sea turbidite stratigraphy. This paper focuses on the establishment of the first detailed stratigraphy of the levee, which is used to analyze the timing of overbank deposition throughout the last deglaciation. Main results indicate that high variability in turbidite frequencies and deposition rates along the Var Sedimentary Ridge are determined by two main parameters: 1) the progressive decrease of the levee height controlling the ability of turbidity currents to spill out from the channel onto the levee, and 2) climatic variations affecting the drainage basin, in particular changes in glacial condition since late Last Glacial Maximum to early Holocene. Compared to other deep-water areas, this study confirms the ability of turbiditic systems to record past climatic events on millennial timescales, and underlines the influence of European deglaciation on the observed decrease in turbidite activity in the Var canyon. The presence of a very narrow continental shelf and a single, large channel-levee system makes the Var Sedimentary Ridge a unique example of climate-controlled turbiditic accumulations.  相似文献   

10.
The Brae oilfield reservoir in the North Sea comprises Upper Jurassic resedimented conglomerates and sandstones interbedded with organic-rich silstone and mudstone thin-bedded turbidites. The system represents a series of small overlapping fans that form a thick (300 m) slope-apron accumulation of sediments deposited in a narrow (<10 km wide) belt along an active fault zone. The complex lateral and vertical distribution of facies was due mainly to variable tectonic activity, and partly also to sediment supply and sea-level changes. Margin setting represents fan and/or source area  相似文献   

11.
利用高分辨率三维地震资料、测井和钻井数据,对东非鲁伍马盆地深水沉积特征进行了系统刻画.根据深水沉积体的地震相特征,识别出峡谷、水道、漫溢沉积、朵体、块体搬运沉积(MTDs)和凝缩段等深水沉积单元,建立了地震识别图版.分析总结了水道和朵体的岩性特征、电性特征和储层物性特征,砂岩具有低伽马(GR)和高电阻(RT)特征,厚层...  相似文献   

12.
Digital outcrop models help to constrain the interactions of stratigraphic and structural heterogeneity on ancient depositional systems. This study uses a stochastic approach that incorporates stratigraphic and structural modeling to interrogate the three-dimensional morphology of deep-water channel strata outcropping on Sierra del Toro in the Magallanes Basin of Chile. This approach considers the relative contributions, and associated uncertainty, of erosional downcutting versus post-depositional structural folding and small-offset faulting on the present-day configuration of the submarine channel complexes. Paleodepositional channel-belt gradients were modeled using a combination of three-dimensional visualization, stochastic surface modeling, palinspastic restoration, and decompaction modeling that are bound with errors constrained by stratigraphic and structural uncertainty. Modeling results indicate that at least 100 m of downcutting occurs over 6 km, and the resultant thalweg gradient of 64–125 m/km (decompacted) suggests that the Cerro Toro axial channel belt is an out-of-grade depositional system. Furthermore, the presence of steeper segments (100–175 m/km decompacted) suggests the preservation of one or more knickpoints that are similar in magnitude to tectonically-induced knickpoints on the modern seafloor. The interpreted knickpoints are correlated with a decreasing channel width-depth ratio and an increase of channel depth. These results indicate that stochastic surface modeling using digital outcrop models can constrain stratigraphic interpretations and post-depositional structural heterogeneity.  相似文献   

13.
14.
The Upper Triassic – Lower Jurassic Åre Formation comprising the deeper reservoir in the Heidrun Field offshore mid-Norway consists of fluvial channel sandstones (FCH), floodplain fines (FF), and sandy and muddy bay-fill sediments (SBF, MBF) deposited in an overall transgressive fluvial to lower delta plain regime. The formation has been investigated to examine possible sedimentary facies controls on the distribution of cementation and compaction based on petrography and SEM/micro probe analyses of core samples related to facies associations and key stratigraphic surfaces. The most significant authigenic minerals are kaolinite, calcite and siderite. Kaolinite and secondary porosity from dissolution of feldspar and biotite are in particular abundant in the fluvial sandstones. The carbonate minerals show complex compositional and micro-structural variation of pure siderite (Sid I), Mg-siderite (Sid II), Fe-dolomite, ankerite and calcite, displaying decreasing Fe from early to late diagenetic carbonate cements. An early diagenetic origin for siderite and kaolinite is inferred from micro-structural relations, whereas pore filling calcite and ankerite formed during later diagenesis. The Fe-dolomite probably related to mixing-zone dolomitization from increasing marine influences, and a regional correlatable calcite cemented layer has been related to a flooding event. Porosity values in non-cemented sandstone samples are generally high in both FCH and SBF facies associations averaging 27%. Differential compaction between sandstone and mudstone has a ratio of up to 1:2 and with lower values for MBF. We emphasize the role of eogenetic siderite cementation in reducing compactability in the fine-grained, coal-bearing sediments most prominent in MBF facies. This has implications for modeling of differential compaction between sandstone and mudstones deposited in fluvial-deltaic environments.  相似文献   

15.
The physical and chemical changes associated with the thermal maturation of organic-rich shale have affected the paleomagnetic and rock magnetic characteristics of the Devonian Duvernay Formation in the Western Canada Sedimentary Basin. This formation has several lithofacies that correspond to deposition in platform, slope and deeper water settings under varied redox conditions. Shale, laminated mudstone and some massive mudstone facies show evidence of magnetic changes associated with maturation but wackestone, packstone and some massive mudstone facies appear to be unaffected by the process. Rock magnetic evidence suggests that thermal maturation induces a change in the magnetization carrier from magnetite and hematite to solely magnetite.The packstone and wackestone facies commonly show a reversed characteristic magnetization with a paleopole at 194°E, 70°N (A95=13.2) of Late Cretaceous-age. Shale and laminated mudstone facies in immature areas of the basin have inclination-only characteristic remanent magnetization (ChRM) means that range from 55 to 67 °C, requiring a pre-Cretaceous magnetization age. Shale and laminated mudstone facies in mature areas of the basin have a much steeper ChRM in direction ranging from 77 to 83 °C. Their very steep nature suggests that step demagnetization has not completely removed a drilling-induced remanence in some wells.  相似文献   

16.
Predicting the hydrodynamics, morphology and evolution of ancient deltaic successions requires the evaluation of the three-dimensional depositional process regime based on sedimentary facies analysis. This has been applied to a core-based subsurface facies analysis of a mixed-energy, clastic coastal-deltaic succession in the Lower-to-Middle Jurassic of the Halten Terrace, offshore mid-Norway. Three genetically related successions with a total thickness of 100–300 m and a total duration of 12.5 Myr comprising eight facies associations record two initial progradational phases and a final aggradational phase. The progradational phases (I and II) consist of coarsening upward successions that pass from prodelta and offshore mudstones (FA1), through delta front and mouth bar sandstones (FA2) and into erosionally based fluvial- (FA3) and marine-influenced (FA4) channel fills. The two progradational phases are interpreted as fluvial- and wave-dominated, tide-influenced deltas. The aggradational phase (III) consists of distributary channel fills (FA3 and FA4), tide-dominated channels (FA5), intertidal to subtidal heterolithic fine-grained sandstones (FA6) and coals (FA7). The aggradational phase displays more complex facies relationships and a wider range of environments, including (1) mixed tide- and fluvial-dominated, wave-influenced deltas, (2) non-deltaic shorelines (tidal channels, tidal flats and vegetated swamps), and (3) lower shoreface deposits (FA8). The progradational to aggradational evolution of this coastal succession is represented by an overall upward decrease in grain size, decrease in fluvial influence and increase in tidal influence. This evolution is attributed to an allogenic increase in the rate of accommodation space generation relative to sediment supply due to tectonic activity of the rift basin. In addition, during progradation, there was also an autogenic increase in sediment storage on the coastal plain, resulting in a gradual autoretreat of the depositional system. This is manifested in the subsequent aggradation of the system, when coarse-grained sandstones were trapped in proximal locations, while only finer grained sediment reached the coastline, where it was readily reworked by tidal and wave processes.  相似文献   

17.
This study documents the stratigraphic and palaeogeographic distribution of hybrid event beds that comprise both debris-flow (cohesive) and turbidity current (non-cohesive) deposits. This is the first study of such beds in a submarine fan system to combine outcrop and research borehole control, and uses a dataset from the Skoorsteenberg Formation of the Tanqua depocentre in the Karoo Basin, South Africa. Three types of 0.1–1.0 m thick hybrid beds are observed, which have a basal weakly graded fine-grained sandstone turbidite division overlain by a division of variable composition that can comprise 1) poorly sorted carbonaceous-rich material supported by a mud-rich and micaceous sand-matrix; 2) poorly sorted mudstone clasts in a mud-rich sand-silt matrix; or 3) gravel-grade, rounded mudstone clasts in a well sorted (mud-poor) sandstone matrix. These upper divisions are interpreted respectively as: 1) the deposit of a debris-flow most likely derived from shelf-edge collapse; 2) the deposit of a debris flow, most likely developed through flow transformation from turbidity current that eroded a muddy substrate; and 3) from a turbidity current with mudstone clasts transported towards the rear of the flow. All three hybrid bed types are found concentrated at the fringes of lobes that were deposited during fan initiation and growth. The basinward stepping of successive lobes means that the hybrid beds are concentrated at the base of stratigraphic successions in medial and distal fan settings. Hybrid beds are absent in proximal fan positions, and rare and thin in landward-stepping lobes deposited during fan retreat. This distribution is interpreted to reflect the enhanced amounts of erosion and availability of mud along the transport route during early lowstands of sea level. Therefore, hybrid beds can be used to indicate a fan fringe setting, infer lobe stacking patterns, and have a sequence stratigraphic significance.  相似文献   

18.
The Brae oilfield reservoir in the North Sea comprises Upper Jurassic resedimented conglomerates and sandstones interbedded with organic-rich silstone and mudstone thin-bedded turbidites. The system represents a series of small overlapping fans that form a thick (300 m) slope-apron accumulation of sediments deposited in a narrow (<10 km wide) belt along an active fault zone. The complex lateral and vertical distribution of facies was due mainly to variable tectonic activity, and partly also to sediment supply and sea-level changes.  相似文献   

19.
The Xujiajuan Formation of the Lower Xiangshan Group in Ningxia, China, is composed of grayish-green to yellowish-green, fine- to medium-grained sandstone, calcareous sandstone, siltstone, and shale. The upper part is thin-bedded limestone. At the top of the second and third members of the formation, a number of beds intercalated between turbidites and deep-water shale show well-developed cross-bedding. These beds are composed mainly of thin- to medium-bedded calcareous siltstone, fine-grained sandstone, fine-grained calcisiltitic limestone, and silty shale. All bedding types reflect traction-current action. The laminae of the bidirectional and unidirectional cross-bedded units tend to dip either opposite to or at a large angle to the regional slope. The units vary in shape and orientation in both upslope and downslope directions. A comprehensive evaluation of the sedimentary structures and inferred paleocurrents suggests that the cross-bedded intervals were not formed by contour currents or turbidity currents, but most probably represent internal-wave and internal-tide deposits.  相似文献   

20.
The Plio-Pleistocene stratigraphic record of the Peri-Adriatic basin (eastern central Italy) is well exposed along the uplifted western margin of the basin and consists of a series of coarse-grained slope canyon fills encased in a thick succession of hemipelagic mudstones. This study deals with the detailed sedimentology, stratal architecture, and sequence-stratigraphic interpretation of two of these submarine canyon-fills (namely CMC1 and CMC2) exposed at Colle Montarone. These strata contain widespread evidence of gravity-driven sedimentation processes, with high- and low-density turbidity currents, slumps and cohesive debris flows being responsible for most of the sediment transport and deposition. Beds are organised into four recurrent lithofacies, each corresponding to a specific deep-water depositional element: (i) clast-supported conglomerates (channel complexes); (ii) thin-bedded sandstones and mudstones (levee-overbank); (iii) very thinly-bedded mudstones (tributary channels); (iv) pebbly mudstones and chaotically bedded mudstones (mass-transport complexes).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号